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High-throughput techniques allow for massive screening of drug combinations. To find

combinations that exhibit an interaction effect, one filters for promising compound

combinations by comparing to a response without interaction. A common principle for

no interaction is Loewe Additivity which is based on the assumption that no compound

interacts with itself and that two doses from different compounds having the same

effect are equivalent. It then should not matter whether a component is replaced by the

other or vice versa. We call this assumption the Loewe Additivity Consistency Condition

(LACC). We derive explicit and implicit null reference models from the Loewe Additivity

principle that are equivalent when the LACC holds. Of these two formulations, the implicit

formulation is the known General Isobole Equation (Loewe, 1928), whereas the explicit

one is the novel contribution. The LACC is violated in a significant number of cases.

In this scenario the models make different predictions. We analyze two data sets of

drug screening that are non-interactive (Cokol et al., 2011; Yadav et al., 2015) and show

that the LACC is mostly violated and Loewe Additivity not defined. Further, we compare

the measurements of the non-interactive cases of both data sets to the theoretical null

reference models in terms of bias and mean squared error. We demonstrate that the

explicit formulation of the null reference model leads to smaller mean squared errors

than the implicit one and is much faster to compute.

Keywords: dose equivalence, explicit mean equation, general isobole equation, Hill curve, null reference model,

response surface, synergy

1. INTRODUCTION

In mixture toxicology and compound interaction modeling one is interested in synergistic or
antagonistic effects between biological compounds. When combining two or more compounds,
their combined effect can be much larger than the individual effects. Such a so-called synergistic
effect allows for administration of lower doses to reach the same effect. This has applications in
many areas such as chemotherapy (Lehar et al., 2009).

The basic understanding of synergy is any effect greater than the expected effect with no
interaction assumed. This expected effect without interaction is specified with a so-called null
reference model. Therefore, synergy depends highly on such a reference model of a non-interactive
scenario. The central problem of defining such null reference models is the prediction of a
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response surface from the conditional responses. Conditional
responses are the responses to a single compound, that is,
conditional on the concentration of the other compound being
zero.

Throughout the last century, several models for the null
reference and methods to measure the deviance from these
have been proposed. An extensive overview is given by Greco
et al. (1995) and recent reviews are given by Geary (2012)
and Foucquier and Guedj (2015). One of the most famous null
reference models is the general isobole equation, which was
introduced by Loewe (1928), and is based on the so-called Loewe
Additivity principle. Several other models have been introduced
such as Bliss Independence (Bliss, 1939), Chou and Talalay’s
method (Chou and Talalay, 1977), which concentrate on the
null reference model locally, and the ZIP model (Yadav et al.,
2015). Despite the variety of null reference models, there is no
agreement on a best model or a best practice on how specifically
synergy is detected. However, Loewe Additivity enjoys a wide
reputation because of its principle of the sham combination. This
principle rests on the idea that a compound combined with itself
should yield no interaction effect.

Loewe Additivity is a phenomenological description,
not a mechanistic one that is aiming to explain underlying
mechanisms. This has its advantages in clinical trials, as
a measure of success, such as synergy, does not need to
be updated with biological advances (Fitzgerald et al.,
2006). A way to root Loewe Additivity in such mechanistic
terms is undertaken by Baeder et al. (2016). Further,
we do not take temporal effects into consideration but
work uniquely in the concentration space. While temporal
considerations are important, in most high-throughput studies
the effect is measured after a fixed period when transient
responses have died out, but before effects like cell division
set in.

We first give a short introduction to conditional dose
response curves in section 2.1, to then describe the most
common null reference principle, Loewe Additivity. We study
Loewe Additivity’s consistency condition and its consequences
in section 2.2. Further, in section 2.3 we introduce an explicit
null reference model derived from the Loewe Additivity
principle, which describes the same null reference model as the
general isobole equation, when the Loewe Additivity consistency
condition is met. As this consistency condition is often violated
by experimental data (Geary, 2012; Tallarida, 2012) we investigate
the consequences of these violations to the null reference models
visually at the end of section 2.3, and evaluate them in section 3.

2. MATERIALS AND METHODS

2.1. Introduction and Background
As the first experiments for the assessment of synergy were
conducted in vivo, one used to administer varying doses of
compounds, that is, the unit of compound per kilogram of
biological system under investigation. That historical term still
remains in the research area of synergy and often the term dose is
used to actually refer to concentrations, the number of molecules
per unit volume. In this study, we refer to the response as plotted

on the y-axis of a dose-response curve as response. Both of our
examples on data are inhibitory, where the response consists of
cell survival. Thus a larger dose leads to less cells surviving and
hence a smaller response. We use effect to denote the inverse
of response. Thus, for dose zero we have maximal response and
minimal effect and for infinite dose we have minimal response
and maximal effect. In the literature this measured effect is
also referred to as the phenotypic effect or as cell survival of
disease agents or cancer cell lines. Measurements taken for only
one compound, here referred to as the conditional responses or
individual dose response, are also called mono-therapeutic (Di
Veroli et al., 2016) or single compound, but we prefer a more
statistical terminology. We refer to the measurements of one
cell line exposed to all combinations of the two compounds as
a record, but in other literature it is referred to as response
matrix (Lehár et al., 2007; Yadav et al., 2015).

To quantify the degree of synergy between two compounds,
the typical approach is to somehow compare their measured
combination effect to a so-called null reference model: the
expected response assuming no interaction between the two
compounds. The larger the deviance to such a null reference
model, the larger the interaction effect. Writing xj for the dose
of compound j ∈ {1, 2}, a null reference model specifies the
response f (x1, x2) for a combination of doses x1 and x2. In the
next few sections, we will first review the ideas leading to a specific
null reference model, the so-called general isobole equation,
which is based on the principle of Loewe Additivity. Our own
contribution starts with section 2.2, in which we write down
the precise assumption underlying this principle and discuss its
consequences.

2.1.1. Conditional Individual Dose Response Curves
As we will see, null reference models are build on top of the
dose-response curves for the individual compounds. That is,
the null reference model extrapolates individual dose-response
curves, i.e., f1(x1) ≡ f (x1, 0) and f2(x2) ≡ f (0, x2), to a response
f (x1, x2) for any combination of doses (x1, x2). A popular model
for individual dose-response curves fj(xj) with j ∈ {1, 2} is theHill
curve (Hill, 1910), also referred to as the sigmoid function. The
Hill model is, due to its good fit to many sources of data, the most
widely applied model for fitting compound responses (Goutelle
et al., 2008). It has a sigmoidal shape with little change in response
for small doses, but a rapid decline once a certain threshold is
met. For even larger doses the response asymptotes to a constant,
which corresponds to the maximal effect. The red and blue lines
in Figure 1 correspond to two different Hill curves.

There are several parameterizations of the Hill curve. In this
paper, we work with the so-called four-parameter log-logistic
model, which is also used in the drc package (Ritz et al., 2015):

f (x) = y∞ +
y0 − y∞

1+ ( xe )
s
, (1)

where y0 is the response at zero dose and y∞ the maximal effect
of the cells to the compound, e the dose concentration reaching
half of the maximal effect and s the steepness of the curve, where
a positive s leads to a monotonically decreasing curve.
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FIGURE 1 | Two different Hill curves (red and blue). Dashed lines indicate the

different doses x1 and x2 that reach a response of 0.3 and 0.9. The

dose-response curves differ only in EC50 with e1 = 1 and e2 = 2. Values of

the other parameters are y0 = 1, y∞ = 0 and s = 2.

We use the Hill curves to illustrate our theory and methods
and to fit individual dose-response curves to real-world data
in section 3. Our theoretical analysis and the methods that
result from that, are not restricted to the use of Hill curves
as model for individual dose-response curves, but apply more
generally to any type of dose-response model, as long as it is
monotonically decreasing or increasing and twice continuously
differentiable.

2.1.2. Loewe Additivity
Throughout the extensive research that was conducted in the field
of synergy over the last century, several null reference principles
were introduced, but only two survived the critics (Greco
et al., 1995): Loewe Additivity (Loewe, 1928) and Bliss
Independence (Bliss, 1939). Loewe Additivity assumes that
one compound can be substituted for another, which makes
sense when the two compounds have the same mechanism
of action. In Bliss Independence, on the other hand, the
underlying assumption is that the two compounds have a
different mechanism of action, leading to an addition of the
individual responses. In this paper, we will exclusively focus on
Loewe Additivity, which tends to lead to better predictions of
synergy than Bliss Independence (Cokol et al., 2011).

Loewe argued that, if two individual doses x∗1 and x∗2 give
rise to the same response, say y, then, in case of no interaction
between the compounds, all dose combinations on the straight
line running from (x∗1 , 0) to (0, x

∗
2), i.e., for which

x1

x∗1
+

x2

x∗2
= 1 , (2)

should yield the exact same response y. Intuitively and visually,
this idea is very appealing. We illustrate this concept in
Figures 1, 2.

In Figure 1, the lower dashed horizontal line corresponds to
the response y = 0.3, e.g., representing the survival of 30% of
the cell culture. The individual doses, x∗1 and x∗2 , that yield this
response follow from the intersection this horizontal line with the

FIGURE 2 | Contour lines of the response surface from Equations (3), (6), or

(7) with x1 on the x-axis and x2 on the y-axis at linear concentrations.

red and the blue individual response curves, respectively. They
are indicated by the two vertical dashed lines. To visualize the
response surface for arbitrary combinations of doses x1 and x2,
we make use of a contour plot in a two-dimensional coordinate
system, as in Figure 2, with the dose x1 along the x-axis and the
dose x2 along the y-axis. Contour lines correspond to so-called
isoboles or iso-effect curves: combinations of doses (x1, x2) that
yield the exact same response. For y = 0.3, we already know two
points on this isobole: (x∗1 , 0) and (0, x∗2). Loewe Additivity now
says that the isobole in case of no interaction should be linear,
that is, following Equation (2).

The straight line matches the assumption that the two
compounds “act similarly, presumably at the same site of action,
differing only in potency” (Greco et al., 1995, p. 344). It suggests
that doses for the two compounds are exchangeable, more
specifically that a dose x1 which is d% of the dose x∗1 needed
to reach the response y by just the first compound, has the
same effect as a dose x2 which is the same d% of the dose x∗2
needed to reach the response y by just the second compound.
This argumentation, in combination with the principle of a
sham combination (two doses of the same compound must
have the same effect as a single compound with the sum of
the doses), directly leads to Equation (2). In section 2.2 we
will get back to this argumentation and discuss in detail the
properties that individual dose-response curves should have for
this argumentation to stand.

2.1.3. General Isobole Equation
In the above, we showed, following Loewe, how to find dose
combinations (x1, x2) that yield the same response y as the two
equivalent doses x∗1 and x∗2 that individually reach this response
y. Applying the same procedure for different values of y, we get
the contour lines in Figure 2 and can construct a response surface
for any combination of doses (x1, x2).

The corresponding null reference model is called the general
isobole equation (Loewe, 1928, p.179; Berenbaum, 1989). It is
defined as fGI (x1, x2) = y with y the solution of
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x1

f−1
1

(

y
) +

x2

f−1
2

(

y
) = 1 , (3)

which corresponds to Equation (2) with substitutions x∗1 =

f−1
1 (y) and x∗2 = f−1

2 (y). The general isobole equation defines the
response curve implicitly and for most types of individual dose-
response curves, including Hill curves, numerical computations
are needed to derive fGI (x1, x2). This can be considered a
practical disadvantage, in particular when applied to high-
throughput data. More details on how to solve Equation (3)
numerically are presented in Supplementary Material 5.

2.2. Theory
Above we derived the general isobole equation, an implicitly
defined null reference model based on the principle of Loewe
Additivity. The argumentation leading to the straight isoboles,
although appealing, was rather informal, as it was in Loewe’s
original work (Loewe, 1928) and in most of the literature that
followed. In this section we will formalize the argumentation
to arrive at the conclusion that strictly adhering to the
Loewe Additivity principle puts very serious constraints on the
(relationship between the) individual dose-response curves of the
two compounds.

2.2.1. Loewe Additivity Consistency Condition
Loewe Additivity says that we can exchange one compound for
another to reach the same effect. We define the effect equivalent

dose x
equiv
1 (x2) as the dose of compound 1 that yields the same

response as dose x2 of compound 2, and vice versa for x
equiv
2 (x1).

Given individual dose-response curves f1(x1) and f2(x2), these
effect equivalent doses obey

x
equiv
1 (x2) = f−1

1 (f2(x2)) (4)

x
equiv
2 (x1) = f−1

2 (f1(x1)) . (5)

The construction of response equivalent doses is
illustrated in Figure 1 for the response levels y = 0.9
and y = 0.3.

With these equivalent doses one can construct two response
surfaces. To do so, we add to the concentration x1 of compound

1 its equivalent dose x
equiv
1 (x2) and the same mutatis mutandis

for x2 and compute the response:

f2→1(x1, x2) = f1(x1 + f−1
1 (f2(x2))) (6)

f1→2(x1, x2) = f2(f
−1
2 (f1(x1))+ x2) . (7)

We can use both response curves as null reference models:
just like the general isobole equation they specify the expected
response for any combination of doses under the assumption
of no interaction between the two compounds. If the individual
dose-response curves are analytically invertible, as for the Hill
curves that we use throughout this paper, these null reference
models are explicit and do not require complicated numerical
computations. It so happens that for our running example in
Figure 1, the two response curves f2→1(x1, x2) and f1→2(x1, x2)
coincide with each other and with fGI (x1, x2), leading to the exact
same contour plot in Figure 2. We will see in section 2.2.2 why.

Taking the principle of Loewe Additivity seriously, it should
not matter whether we exchange the dose for compound 1 with
the equivalent dose for compound 2 or, vice versa, exchange the
dose for compound 2 with the equivalent dose for compound 1.
We formalize this in the Loewe Additivity Consistency Condition,
further referred to as LACC:

f2→1(x1, x2) = f1→2(x1, x2) ∀x1, x2∈R≥0 . (8)

To the best of our knowledge, we are the first to explicitly state
this consistency condition in a general mathematical form.

2.2.2. Conditions for the LACC to Hold
Perhaps surprisingly and in contrast with suggestions elsewhere
(e.g., Greco et al., 1995; Yadav et al., 2015), the Loewe Additivity
Consistency Condition is easily violated and poses strong
restrictions on the relationship between the two individual dose-
response curves. Specifically, we have the following theorem.

Theorem 1. The Loewe Additivity Consistency Condition in
Equation (8) holds, if and only if a dose and its equivalent are
proportional to each other, i.e.,

x
equiv
1 (x2) = f−1

1

(

f2 (x2)
)

= cx2, (9)

x
equiv
2 (x1) = f−1

2

(

f1 (x1)
)

= 1
c x1, (10)

for a constant c > 0.

The proof of this theorem can be found in Supplementary
Material 1. Both Tallarida (2012) and Geary (2012) recently
commented on the connection between the consistency
condition in Equation (8) and the proportionality between a dose
and its equivalent, but did not provide a theoretical proof. Note
that in the proof and in the following discussion of the LACC, we
make the implicit assumption that both response curves start off
at the same response for zero dose and yield the same maximal
effects, i.e., converge to the same asymptotes when the dose goes
to infinity. If not, there are doses for one compound that do not
have an equivalent dose for the other. In section 2.3.2 we discuss
how to adapt the null reference models if this condition is not
met.

Rewriting Equation (9), we have

log
(

x
equiv
1 (x2)

)

= log (c) + log (x2) , (11)

i.e., the LACC holds if and only if the dose-response curves are
shifted copies of each other on the logarithmic dose axis. If the
individual dose-response curves for the two compounds are Hill
curves, this implies that only the dose concentration reaching
half of the maximal effect (e in Equation 1) can differ: both
Hill curves should have the same responses at zero dose (y0),
the same maximal effect (y∞), and the same slopes (s) for the
LACC to hold (see Supplementary Material 3). Since the two
Hill curves in Figure 1 are indeed shifted horizontally relative
to each other with the same y0, y∞, and s, yet different e, in
this case the LACC indeed holds. The implicit general isobole
equation from Equation (3) and the explicit null referencemodels
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from Equations (6, 7) all yield the same response surface and all
isoboles in Figure 2 are linear and parallel to each other.

This equivalence and the parallel linear isoboles are not a
coincidence, as can be seen from the following corollary to
Theorem 1:

Corollary 1. If the Loewe Additivity Consistency Condition in
Equation (8) holds, (1) fGI (x1, x2) = f2→1(x1, x2) = f1→2(x1, x2)
and (2) the isoboles corresponding to these models are parallel.

The proof of this corollary can be found in Supplementary
Material 2.

2.3. Methods
Our running example in Figures 1, 2 represents the exception
rather than the rule. As we have seen, the LACC requires a
very specific interplay between the two individual dose-response
curves, which is likely often violated in practice. This sheds
doubts on the value of an implicit formulation of a response
surface as the one provided by the general isobole equation
for real-world applications. If the LACC does hold, fGI (x1, x2)
is equivalent to explicit formulations such as f2→1(x1, x2) and
f1→2(x1, x2) that are much easier to compute. If the LACC does
not hold, we may still for aesthetic reasons prefer linear isoboles
over nonlinear ones (explained in section 2.3.3), but the precise
argumentation that leads to these linear isoboles breaks down.

So, apart from aesthetic and perhaps historical reasons, the
relevant question is whether an implicit formulation as general
isobole equation leads in practice, when the LACC is violated, to
better fitting response surfaces than similar explicit formulations.
This will be investigated in section 3. In this section, we will
derive a symmetric explicit null reference model that, for mild
violations of the LACC, still gives close to linear isoboles. We will
adapt the different null reference models to handle cases in which
the two dose-response curves have different maximal effects and
will then illustrate their response surfaces.

2.3.1. Explicit Mean Equation
Unlike the general isobole equation, the two explicit models
f2→1(x1, x2) and f1→2(x1, x2) are asymmetric, that is, the two
compounds cannot be interchanged without leading to different
results when the LACC does not hold. A simple remedy is to
consider a weighted combination of both, as in

fmean (x1, x2) = β (x1, x2) f2→1 (x1, x2)

+ [1− β (x1, x2)] f1→2 (x1, x2) , (12)

with β(x1, x2) ∈ [0, 1] and β(x1, x2) = 1 − β(x2, x1) to enforce
symmetry. Obviously, when the LACC holds, we still have
fmean (x1, x2) = fGI (x1, x2). We aim for a choice of β(x1, x2) such
that under mild violations of the LACC, the explicit formulation
is still close to the implicit one, i.e., fmean (x1, x2) ≈ fGI (x1, x2),
which then also will result in isoboles that are still close to linear.

In Supplementary Material 4, we prove that a simple
arithmetic mean,

fmean (x1, x2) =
1

2

[

f2→1 (x1, x2) + f1→2 (x1, x2)
]

, (13)

does the best job: for mild violations of the LACC it stays close
to the general isobole equation and hence may be an alternative
worth investigating. In the following, we will refer to Equation
(13) as the explicit mean equation. A geometric mean instead of
a simple arithmetic mean also closely matches the general isobole
equation for mild violations of the LACC. Details can be found in
Supplementary Material 7.

2.3.2. Different Maximal Effects
In case one dose reaches an effect that cannot be reached by the
other, there is no equivalence relationship between the two doses
and therefore Loewe Additivity cannot hold. Here we discuss
how to adapt the general isobole equation and the explicit mean
equation to this situation.

Let us first assume that dose x2 of compound 2 leads to an
effect that cannot be reached by any dose x1 of compound 1:

f2(x2) < min
x1

f1(x1) . (14)

This is depicted in Figure 3 in the middle and right panel, where
the first compound reaches a maximal effect of y∞,1 = 0.3 and
the second one a maximal effect of y∞,2 = 0. For the general
isobole equation, Di Veroli et al. (2016) suggests that one would
need an infinite dose of x1 to yield a response as close as possible
to f1(x1), and hence proposes to set the first term in Equation (3)
to zero to arrive at

x2

f−1
2 (y)

= 1 , (15)

with the obvious solution fGI (x1, x2) = f2(x2). The other way
around, we set fGI (x1, x2) = f1(x1) when f1(x1) < minx2 f2(x2).

Following a similar line of reasoning as in Di Veroli et al.
(2016), we propose

f2→1(x1, x2) = f1

(

x1 + x
equiv
1 (x2)

)

= f1

(

x
equiv
1 (x2)

)

= f1
(

f−1
1

(

f2(x2)
))

= f2(x2) , (16)

for the case f2(x2) < minx1 f1(x1), where the second step follows

since x
equiv
1 (x2) dominates x1. Note that in this case f2→1(x1, x2)

still follows from its original definition in Equation (6). Similarly,
when f1(x1) < minx2 f2(x2), we set f1→2(x1, x2) = f1(x1) and
leave f2→1(x1, x2) unchanged. In both cases, the explicit mean
equation still equals the average of f2→1(x1, x2) and f1→2(x1, x2),
which, in case of f2 (x2) < minx1 f1 (x1):

fmean (x1, x2) =
1

2

[

f2 (x2) + f2
(

f−1
2

(

f1 (x1)
)

+ x2
)]

. (17)

Note that this is different to the general isobole equation, which
takes the form fGI (x1, x2) = f2 (x2).

2.3.3. Illustrations of Violations of LACC
As mentioned before and commented by Tallarida (2012) and
Geary (2012), the conditional response curves of experimental
data are often not proportional and therefore, the LACC in
Equation (8) is often violated. Here, we investigate what different
violations of the LACC imply for the null reference models.

Frontiers in Pharmacology | www.frontiersin.org 5 February 2018 | Volume 9 | Article 31

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Lederer et al. Explicit Mean Equation and LACC

FIGURE 3 | Dose-response curves (red and blue) with different parameter settings that all violate the LACC: s1 6= s2 (Left) with s1 = 1 and s2 = 2, y∞,1 6= y∞,2

(Center) with y∞,1 = 0.3 and y∞,2 = 0, and (Right) with s1 6= s2 and y∞,1 6= y∞,2 with the same settings as above. Additionally, all other parameters that are

chosen to be equal for both Hill curves take the values s = 1, y0 = 1, y∞ = 0 and e = 1.

In Figure 3, two Hill curves are depicted in three scenarios
where the LACC is violated: two different slopes s (left) or
two different maximal effects y∞ (middle) or both (right).
It becomes immediately clear that in all scenarios there is
no proportional relationship between the two curves. Figure 4
shows the three null reference models fGI (x1, x2), f2→1 (x1, x2),
f1→2 (x1, x2) and fmean (x1, x2)with theHill curves from Figure 3.
Figure 4A depicts fGI (x1, x2) model while the three explicit
models, f2→1(x1, x2) and f1→2(x1, x2) from Equations (6, 7) and
fmean (x1, x2) from Equation (13), are depicted in Figures 4B–D,
respectively. In each column, the three cases of LACC violation
(Figure 3 are depicted). The contour lines of the fmean (x1, x2) in
Figure 4D are depicted in white and for reference, the contour
lines of fGI (x1, x2) are depicted in gray.

Let us first investigate in detail the first case of violation,
assuming different slope parameters for the conditional
responses, as depicted in the left column of Figure 4. The
fGI (x1, x2) displays straight isoboles, which are not parallel as
they are in Figure 2. The straightness is due to Berenbaum’s
definition of the general isobole equation and becomes obvious
by inspection of Equation (3), which is symmetric in the
fractional terms. This is one of the reasons why this model
has been popular. The two explicit models in the left panel
of Figures 4B,C display a concave or convex curvature to the
point of zero dose concentration. The explicit mean equation in
Figure 4D shows nearly linear isoboles, with a slight curvature
which is almost linear for x1 reaching a larger effect than x2 and
convex for x1 reaching a smaller effect than x2.

The scenario for different maximal effects but the same slopes
is depicted the middle panels of Figure 4 for the fGI (x1, x2)
model as well as for the explicit models f2→1 (x1, x2), f1→2 (x1, x2)
and fmean (x1, x2). The models all have a smaller effect than
in the previous scenario, where the slopes differ. All explicit
models exhibit nonlinear isoboles. f2→1 (x1, x2) and f1→2 (x1, x2)
exhibit a similar concave and convex curvature behavior as in
the scenario of differing slopes. For fGI (x1, x2), f2→1 (x1, x2) and
fmean (x1, x2), the asymptotic behavior is depicted. For fGI (x1, x2)
and f2→1 (x1, x2), these figures display a constant horizontal
response for x1, only decreasing for increasing x2 doses. The
isoboles of fmean (x1, x2), which is formed by the mean of
f2→1 (x1, x2) and f1→2 (x1, x2), are convex for small doses of x1
and then become almost linear for increasing doses of x1.

For the case where both scenarios of a violation are met,
namely different slopes and different maximal effects, we
depict the response surfaces of the null models in the right
column of Figure 4. Here, we see the characteristics from the
two violations combined, namely, non-linear isoboles for the
explicit null reference model, but fmean (x1, x2) exhibiting almost
linear isoboles, together with an asymptotic effect behavior for
Figures 4A,B.

2.4. Material
Two data sets are used throughout this research: The first
data set was created by Mathews Griner et al. (2014) and is
a cancer compound synergy study. We refer to this data set
as the Mathews Griner data. It is composed of 463 different
drug-drug-cell combinations on the cancer cell line TMD8 and
was published along with many other large compound-drug-
cell combination studies on the website https://tripod.nih.gov/
matrix-client/. It is a so-called one-to-all experiment, meaning
that one compound (in this case ibrutinib) is combined with
463 other compounds. In this high-throughput study all 463
compound combinations are screened in a 6 × 6 matrix design
and the effect of the compound combinations is measured as
cell viability. The six different concentrations of ibrutinib and
the paired compound decrease from 2.5 and 125µM four times
with a 4-fold dilution with the sixth dose being zero (Yadav et al.,
2015).

In a synergy modeling study, Yadav et al. (2015) categorized
each record of the Mathews Griner data into three interaction
classes after visual inspection of its dose-response matrix:
synergy, no interaction, antagonism. We only use the 252 dose
response matrices classified as non-interactive.

The other data set used in this study with a labeling of the
records is the anti fungal cell growth experiment on the yeast S.
cerevisiae (strain BY4741) by Cokol et al. (2011) and from here
on referred to as the Cokol data set. In this study 200 different
drug-drug-cell combinations were conducted with 33 different
compounds and growth inhibition was measured. An 8 × 8
factorial design is used with doses linearly increasing from 0 up
to a dose close to the individually measured maximal effect dose
of the compound under investigation.

The categorization of this data set is based on a comparison
of the longest arc length of an isobole relative to the expected
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FIGURE 4 | Three cases of violation of the LACC for the fGI
(

x1, x2
)

(A), f2→1
(

x1, x2
)

(B), f1→2
(

x1, x2
)

(C), and fmean
(

x1, x2
)

(D) model. Contour lines are depicted

in white. In (D) the contour lines of the corresponding fGI
(

x1, x2
)

are depicted in gray for reference. The parameter setting is the following from left to right: (left)

s1 6= s2, here depicted with s1 = 1, s2 = 2, y∞ = 0, or (middle) the maximal effect values differ, y∞,1 6= y∞,2, here shown with s = 1, y∞,1 = 0.3, y∞,2 = 0 or (right)

both, the slopes and the maximal effects are different, here shown with s1 = 1, s2 = 2, y∞,1 = 0.3, y∞,2 = 0. The remaining two parameters of the Hill curve are set

equal for all figures to y0 = 1 and e = 1.

longest linear isobole in a non-interactive scenario. In more
detail, having estimated the response surface of a record, Cokol
et al. (2011) chose the longest contour line and measure its length
and direction (convex or concave). In case of the contour line
being convex the record is categorized as synergistic and the
arc length of the longest contour line determines the strength
of synergy. As the labeling of these records is quantitative, we
consider all records to be non-interactive if their absolute value is

smaller than 0.8. This decision is based on communication with
the authors (Cokol et al., 2011). This leaves us with 82 records.

We received both categorizations after personal
communication with the authors (Cokol et al., 2011; Yadav
et al., 2015). For the purpose of comparing the null reference
models introduced in sections 2.1 and 2.3, we consider these
two classifications as ground truth, given that no molecular
information is available for verification.
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The conditional responses are fitted with Hill curves
individually, with the constraint to share the y0 parameter.
For the fitting, we make use of the drc package (Ritz et al.,
2015). More detailed information is given in Supplementary
Material 5. Records with negative slopes or negative EC50 values
are excluded, which leaves us with 159 records for the Mathews
Griner and 79 for the Cokol data. The main reason for the
exclusion of nearly 40% of the records of the Mathews Griner
data is the fixed dose range applied to all compounds. Many
conditional readouts show barely any response over the entire
dose range. The compounds might therefore have no effect at all
on the cell line or the dose range is too small to cause any effect.

From the fitted conditional responses, we construct two
response surfaces, one for the general isobole equation and
one for the explicit mean equation. Residuals are calculated by
subtracting from each observed response (maximally 36 values
for Mathews Griner and 64 for Cokol) the predicted responses
from the General Isobole and Explicit Mean response surfaces.
We summarize the residuals for each response matrix by their
mean and standard deviation. These capture the bias and mean
squared error, respectively.

3. RESULTS

With the two data sets introduced in section 2.4 we confirm
Geary’s statement about the common violation of the LACC.
Furthermore, we compare the different null reference models by
considering non-interactive records of two different data sets of
compound screenings.

3.1. Violation of the LACC
To support the statement from section 2.3 about the LACC
being often violated, we apply Wilcoxon signed-rank test to the
Mathews Griner data which combines one compound with a set
of other compounds. The first test checks the null hypothesis
that the slopes s from the two fitted conditional responses are
equal. The second tests for equality of the maximal effects y∞.
The results of both tests on s and y∞ are significant with ps =

6.26×10−5 and py∞ = 2.2×10−16, respectively. Thus, the LACC
is often violated due to differing slopes s and maximal effects y∞.

3.2. Quality of Fit
We compare fGI (x1, x2) (Equation 3) and fmean (x1, x2)
(Equation 13) by computing the bias and mean squared error
between the null reference surfaces that are spanned by the null
reference models and the measured response data, excluding the
outliers (see Supplementary Material 5), namely

biasj =
1

N

N
∑

i=1

(

ŷi,j − yi,j
)

(18)

msej =
1

N

N
∑

i=1

(

ŷi,j − yi,j
)2

(19)

with ŷi,j being the estimated response and yi,j the measured
response for dose combination i and record j, and mse short for
mean squared error.

Scatter plots of the bias of both data sets are depicted in
Figure 5. For every record, the bias of fmean (x1, x2) is depicted
on the x- and the bias of fGI (x1, x2) on the y-axis. A striking
observation from Figure 5 is that the bias values of fGI (x1, x2)
are always larger than those of fmean (x1, x2). This holds for
both data sets. For positive bias values, this gives a smaller bias
for fmean (x1, x2) and for negative bias values, a smaller bias in
absolute terms for fGI (x1, x2). We look in detail into the bias,
namely the individual differences of estimated data points to the
measured ones, for each record. For all records of the Mathews
Griner and most records for the Cokol data set, the residuals
of each data point, meaning the read-out for a given dose
combination, are larger for the fGI (x1, x2) model. We suspect
this to be due to the definition of the explicit models, as, by
taking into consideration the effect of the other compound as
well, the spanned surfaces are steeper decreasing if the LACC
is violated. This becomes clear by inspecting the right panel of
Figure 4D, for which the contour lines of the fmean (x1, x2)model
are depicted in white with the contour lines of the fGI (x1, x2)
model depicted in gray: due to the white contour lines being
more contracted to the origin than the gray ones, the response
surface of the explicit fmean (x1, x2) model has a steeper decrease
than the implicit fGI (x1, x2) model. This is also in line with the
negative bias values, which are larger for the fmean (x1, x2) model
in absolute terms. Thus, if the fGI (x1, x2) model spans a surface
below the measured data, the fmean (x1, x2) model then definitely
spans a surface below the fGI (x1, x2) model and therefore below
the measured data.

Additionally, we compare the mean squared errors of the
fGI (x1, x2)model and the fmean (x1, x2)model.We do so using the
Wilcoxon signed-rank test for paired samples. For the Mathews
Griner and the Cokol data, the results of the Wilcoxon signed-
rank tests are significant to reject the null hypothesis of an
equal mean for the alternative hypothesis that the mean squared
error values of the fGI (x1, x2) model are greater. The p-value
for the mean squared error values of both null models on the
Mathews Griner data is pMathews Griner = 1.46 × 10−6 and for
the Cokol data is pCokol = 7.68 × 10−5. Further, in Figure 6,

FIGURE 5 | Bias: mean difference between the responses given by the model

and the measured responses. To better qualify the differences in bias, the

diagonal is depicted. The distribution of the models’ bias values is given in

histograms plotted on the axes.
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FIGURE 6 | Mean squared error between the measured and the expected

responses of the fmean
(

x1, x2
)

and fGI
(

x1, x2
)

model, each drawn in the

according axes. To better qualify the differences in mean squared error, the

diagonal is depicted. The distribution of the models’ mean squared error

values is given in histograms plotted on the axes.

the mean squared error values of both data sets are depicted in
two scatter plots, the Mathews Griner data on the left and the
Cokol data on the right hand side. The mean squared errors
of the fmean (x1, x2) model are drawn on the x-axis and the
mean squared errors of the fGI (x1, x2) model on the y-axis. The
models are considered to perform equally well if their mean
squared error values are equal and therefore lie on the diagonal
axis. As visual aid, this diagonal is drawn in both scatter plots.
Points depicted in the lower triangle of a scatter plot represent
records for which the fGI (x1, x2) model results in smaller mean
squared error values and points in the upper triangle represent
records where the fmean (x1, x2) model performs better. There
are a few outliers depicted in the lower triangle of the mean
squared error values of the Mathews Griner data for records
which yield a mean squared error value above 0.03 with the
fmean (x1, x2) model. Investigating these records reveals a huge
difference in slope parameters of the conditional responses. To
give an example, the slope parameters of the record that results
in a mean squared error value above 0.04 for the fmean (x1, x2)
model are s1 = 1.2 and s2 = 9.6. The f1→2 (x1, x2) model
gives an almost ten times higher mean squared error, which is
caused by the surface being strongly contracted to the origin.
The majority of mean squared error values scatter in the range
of [0, 0.01] and are slightly above the diagonal. In the scatter plot
on the left-hand side of Figure 6, there is a clear tendency of
records to scatter in the upper triangle, supporting the Wilcoxon
signed-rank test result of the fGI (x1, x2) model resulting in larger
mean squared error values.

3.3. Computational Complexity
To further investigate the difference between the implicit
and explicit formulation derived from the Loewe Additivity
principle, we conduct a small benchmarking test. We
compare the computation time of the null reference models
fGI (x1, x2) (Equation 3) and fmean (x1, x2) (Equation 13). For
this, we use the data set from a study conducted by Yonetani
and Theorell (1964) which is believed to have no synergistic or
antagonistic effect (Chou and Talalay, 1984). The data represents

the inhibition of horse liver alcohol dehydrogenase by two
inhibitors, ADP ribose and ADP. The data was used in an analysis
of Chou and Talalay (1977). We fit the conditional parameters
as described in Supplementary Material 5. For benchmarking,
we use the microbenchmark package (Mersmann, 2015). It
runs each calculation per default 100 times. The median time
to compute the explicit formulation of Loewe Additivity is 280
times faster than the implicit one [comparing to fGI (x1, x2)].
Both, f2→1 (x1, x2) and f1→2 (x1, x2), have to be computed.
Further results for the benchmark test on the null reference
models are shown in Figure S1 in Supplementary Material 6.

4. DISCUSSION

With the rise of high-throughput methods, there is a huge
opportunity to investigate compound combinations for
synergistic effects. Especially with a first success in a synergy
study on in vivo mice (Grüner et al., 2016), there is an urge to
develop reliable methods to screen for promising combinations.
Loewe Additivity is one of the most popular principles to
investigate synergistic effects in compound combination studies.
With the mathematical formulation in the first part of this
study we are to our knowledge the first to have developed
the theoretical background and the consistency condition of
Loewe Additivity. Further, this mathematical derivation led to
an explicit formulation of Loewe Additivity which underlines
the arbitrariness of models derived from the Loewe Additivity
principle. As commented upon before (Loewe, 1928; Geary,
2012; Tallarida, 2012), we showed in two data sets that the LACC
is often violated. These violations lead to differing predictions
for different null reference models. This fact is generally ignored
in the literature or even contradicted (Berenbaum, 1985).

Despite the common violation of the LACC, the general
isobole equation is popular. Therefore, it is important to tackle
the biological question of which interaction to expect in the case
the LACC is violated. We introduced the explicit mean equation
which is equivalent to the general isobole equation under the
LACC and spans a similar surface if the LACC is violated.

Most of the synergy analyses focus on a difference in shape
of isoboles at fixed effects, such as the EC50 effect, which,
assuming a Hill curve for conditional response curves, is the
parameter e in this research. Methods, such as the Combination
Index from Berenbaum (1977) or the Median Effect Method
from Chou and Talalay (1984) build upon the assumption of
linear isoboles and have found wide application (Gennings et al.,
2005; Sørensen et al., 2007; Cokol et al., 2011; Chevereau and
Bollenbach, 2015; Chandrasekaran et al., 2016). We want to
emphasize that the argument to fix the isobole to be linear by

making the effect-equivalent doses x
equiv
1 (x2) and x

equiv
2 (x1) from

Equations (4, 5) to be dependent on y, and therefore loosening
the LACC in Equation (8) to a local area, namely the isobole of
the effect y, leads to a circular type of reasoning and does not
solve the ambiguity of the Loewe Additivity if the LACC does
not hold.

In two non-interactive high-throughput data sets we found
our new explicit mean equation null reference model to show
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smaller bias values than those of the general isobole equation
model. This is a consequence of the more contracted surface to
the origin if the LACC is violated. Further, we found the explicit
mean equation to have smaller mean squared errors than the
general isobole equation. These findings provide for an explicit
model to replace the standard implicit model, both based on
the Loewe Additivity principle. Additionally, the explicit model
speeds up the computation time by a factor of roughly 250.
In a large high-throughput experiment with 10,000 records this
would reduce computing time from 20 h to less than 5 min.
We herewith provide a first step into the direction of improving
the biological and numerical issues that follow from the Loewe
Additivity principle.
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