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Neurodegenerative diseases affect millions of individuals worldwide. So far, no disease-
modifying drug is available to treat patients, making the search for effective drugs
an urgent need. Neurodegeneration is triggered by the activation of several cellular
processes, including oxidative stress, mitochondrial impairment, neuroinflammation,
aging, aggregate formation, glutamatergic excitotoxicity, and apoptosis. Therefore,
many research groups aim to identify drugs that may inhibit one or more of these events
leading to neuronal cell death. Venoms are fruitful natural sources of new molecules,
which have been relentlessly enhanced by evolution through natural selection. Several
studies indicate that venom components can exhibit selectivity and affinity for a wide
variety of targets in mammalian systems. For instance, an expressive number of
natural peptides identified in venoms from animals, such as snakes, scorpions, bees,
and spiders, were shown to lessen inflammation, regulate glutamate release, modify
neurotransmitter levels, block ion channel activation, decrease the number of protein
aggregates, and increase the levels of neuroprotective factors. Thus, these venom
components hold potential as therapeutic tools to slow or even halt neurodegeneration.
However, there are many technological issues to overcome, as venom peptides are
hard to obtain and characterize and the amount obtained from natural sources is
insufficient to perform all the necessary experiments and tests. Fortunately, technological
improvements regarding heterologous protein expression, as well as peptide chemical
synthesis will help to provide enough quantities and allow chemical and pharmacological
enhancements of these natural occurring compounds. Thus, the main focus of this
review is to highlight the most promising studies evaluating animal toxins as therapeutic
tools to treat a wide variety of neurodegenerative conditions, including Alzheimer’s
disease, Parkinson’s disease, brain ischemia, glaucoma, amyotrophic lateral sclerosis,
and multiple sclerosis.
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ANIMAL TOXINS

Living organisms have to adapt to the different environments and face competition from other
creatures, as all species are challenged by natural selection (Darwin, 1859). In the course of
evolution, species equipped with specific traits that conferred some kind of benefit regarding their
basic needs have advantage over others. Venoms and toxins are therefore products of natural
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selection. Accordingly, toxins and venoms have evolved
independently and can be found in several different taxa,
including plants, microbes, cnidarians, mollusks, arthropods,
and reptiles. These venoms contain different molecules,
including inorganic ions, proteins, nucleotides and enzymes,
and can trigger a wide variety of effects, such as hemorrhage,
necrosis or neurotoxicity (Fry et al., 2009). Organisms, in most
cases, evolved their venoms as part of predatory and defensive
strategies, on a continuous long term coevolutionary process.
For instance, resistance to snake venom by some of the prey
or predators of snakes arouse several times in the course of
evolution (Biardi and Coss, 2011; Jansa and Voss, 2011). As
analysis of different species reveals a great molecular diversity
regarding physiological elements such as enzymes, channels,
receptors and other potential targets for toxins, it is easy to
understand that evolution can be held responsible for such
diversified composition of venoms targeting these elements.
Toxins present in these venoms are very specific and potent
(Zhang, 2015). Moreover, their components effects are often
synergic, an important adaptation to reduce the amount of
venom dispensed, considering the elevated metabolic cost of
venom production (Nisani et al., 2007, 2012).

Humans have evolved together with venomous animals, and
as such, many animal toxins have coevolved with our species.
Moreover, animal envenomation has been in the past and
still is a worldwide issue and a big cause of mortality and
morbidity (Kasturiratne et al., 2008; Balhara and Stolbach, 2014).
In that way, research on animal venoms and toxins was initially
focused on neutralizing venoms effects and treating animal
envenomation. However, in 1781, the Italian naturalist Felice
Fontana started investigations on the effects of snake venom
against blood coagulation. Later, by the 1890s, the first antivenom
therapy was developed by the scientists Albert Calmette, Césaire
Auguste Phisalix, and Gabriel Bertrand (Calmette, 1894; Phisalix
and Bertrand, 1894). However, as the knowledge about the
physiology of venoms and toxins expanded, from foe to
friend, these substances became valuable resources for scientific
research. For many years now natural toxins have been used
as research tools. Experiments using a pufferfish toxin were

Abbreviations: Aβ, amyloid beta; AChE, acetyl cholinesterase; AD, Alzheimer’s
Disease; ALS, amyotrophic lateral sclerosis; AMPA, α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid; APP, amyloid precursor protein; ASIC, acid-sensing
ion channel; BBB, blood-brain-barrier; Bmk, Buthus martensii kirsch; BV, bee
venom; BVPLA2, bee venom phospholipase A2; CNS, central nervous system;
ECE-1, endothelin-converting-enzyme-1; FDA, Federal Drugs Administration;
GFP, green fluosrescent protein; HD, Huntington’s Disease; HWTX-I, huwentoxin-
I; i.c.v., intracerebroventricular; i.p., intraperitoneal; IFNβ, interferon-β; IL-1,
interleukin-1; iNOS, inducible nitric oxide synthase; LPS, lipopolysaccharide;
MAC-1, macrophage antigen complex-1; MAO-B, monoamine oxidase-B;
MCA, middle cervical artery; MDA, malondialdehyde; mGluR, metabotropic
glutamate receptor; MPP+, 1-methyl-4-phenylpyridinium; MPTP, 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine; MS, multiple sclerosis; NEP, neprilysin; NFT,
neurofibrillary tangles; NMDA, N-methyl-D-aspartate; ODLG, oxygen deprivation
low glucose; PcTX, psalmotoxin-1; PD, Parkinson’s Disease; PGE2, prostaglandin
E2; PLA2, phospholipase A2; PON1, paraxonase-1; PS, presenelin; RGCs, retinal
ganglion cells; ROS, reactive oxygen species; RVV-V, Russian viper venom factor
V; SNpc, substancia nigra pars compacta; SOD, superoxide dismutase; SSM,
Scolopendra subspinipes mutilans; SVHRP, scorpion venom heat resistant peptide;
TNFα, tumor necrosis factor α; UPS, ubiquitin proteasome system; VSSC, voltage
sensitive calcium channel; WT, wild type.

determinant to establish the contribution of Na+ and K+
channels to the action potential (Narahashi et al., 1969). The
isolation of toxins from snake venom, such as α-bungarotoxin
and cobratoxin, allowed the successful purification of nicotinic
receptors and its subsequent cloning (Changeux et al., 1970). The
ω-conotoxin extracted from Conus snails, a fish-eating marine
snail, was also very important for N-type Ca2+ channel research
and subgroups of other toxins generated by biotechnological
engineering permitted studies of several subtypes of voltage-
dependent Ca2+ channels (VDCCs) (Olivera et al., 1987;
McEnery et al., 1991).

Notably, venoms from several species are under
investigation for the treatment of a variety of pathologies,
including cardiovascular disorders, pain, cancer, and several
neurodegenerative diseases (Brunner et al., 1980; Bowersox
et al., 1996; da Silva et al., 2002; Castro et al., 2005; Ye et al.,
2016b). The great diversity of the components contained in the
venom of several animal species, as well as their high specificity
to cell targets, contribute to making the pharmacological
research of toxins an interesting field. Therefore, advances
in the understanding of neurodegenerative disorders and
the consequent emergence of novel drug targets increases
the potential for animal toxins as lead candidates for drug
development. This review will cover the current available
literature regarding the use of natural toxins to develop
therapeutic tools to treat neurodegenerative diseases.

NEURODEGENERATION

Neurodegeneration is the underlying cause of a wide variety
of neurological pathologies, including Alzheimer’s disease (AD),
Parkinson’s disease (PD), Huntington’s disease (HD) and
cerebral ischemia (Macdonald et al., 1993; Lang and Lozano,
1998; Goedert and Spillantini, 2006; Kalogeris et al., 2012).
The pathological mechanisms underlying these diseases are
characterized by loss of tissue structure and cell function in
selected vulnerable neural systems, which may lead to gradual
cognitive and motor deficits, as well as psychiatric disturbance
(Yan et al., 2013). Despite tremendous scientific efforts, the
complexity of cell death processes and the difficulty to determine
disease etiology pose many obstacles to the full understanding of
these diseases and to develop disease-modifying therapies.

Neurons may undergo cell death through a variety of
mechanisms, including apoptosis, necrosis, and autophagic
cell death (Kroemer et al., 2009). The concept of apoptosis
was established in Kerr et al. (1972) and is characterized
by preservation of cellular ATP levels and the induction of
a metabolic pathway leading to cell shrinkage, development
of apoptotic bodies and phagocytosis of these cell fragments
(Kerr et al., 1972; Richter et al., 1996; Elmore, 2007). Notably,
caspases are the central components of the apoptotic response
(Thornberry and Lazebnik, 1998; Shi, 2002; Kroemer et al.,
2009). Conversely, necrosis is an acute form of cell death. It is
characterized by a severe decrease of ATP levels, dispersion of
ion gradients, cell dilatation and, ultimately, cell lysis (Kanno
et al., 2006; Kroemer et al., 2009). The capture of the cytoplasmic
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material for mass degradation within autophagosomes occurs
in a process called autophagic cell death (Levine and Kroemer,
2008; Booth et al., 2014). However, despite being conceptually
different, these cell death mechanisms coexist and share some
common features. Moreover, the neuropathological outcome
for the CNS insults in animal models of excitotoxicity,
cerebral ischemia, target deprivation/axotomy, and in human
neurological disorders is not likely to result from a single process
or causal mechanism. Numerous cell death stimuli can activate
more than one mechanism of cell death depending on the
situation, such as the elemental ‘well-being’ of the cell and the
severity and duration of the stress (Yan et al., 2013).

Among the pathological processes that trigger cell death,
excitotoxicity is particularly relevant, playing a crucial role
in several neurodegenerative diseases. Despite intense research
into the mechanisms underlying excitotoxicity, the intracellular
mechanisms responsible for this type of neuronal cell death
are yet to be fully elucidated. Excessive neuronal activation by
excitatory neurotransmitters, such as glutamate, is considered
to be the primary cause of excitotoxic injury (Garthwaite
and Garthwaite, 1986; Marcaida et al., 1995; Nicholls et al.,
1999; Arundine and Tymianski, 2004; Quillinan et al., 2016).
Glutamate is the major excitatory neurotransmitter in the CNS
(Arundine and Tymianski, 2004; Guerriero et al., 2015). There
are two types of glutamate receptors: ionotropic, including
N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA), and kainate; and mGluRs
(Nakanishi and Masu, 1994). Acute CNS insults, such as ischemia
and traumatic brain injury, induce intense release of glutamate,
triggering overstimulation of glutamate receptors, especially
NMDA receptors, and leading to massive influx of ions, in
particular Ca2+ (Raichle, 1983; Choi, 1994; Quillinan et al., 2016).
Destruction of ionic equilibrium depolarizes plasma membrane
potential and reduces intracellular pH (Pepe, 2000; Azarias et al.,
2011; Surin et al., 2014). Ca2+ captured in the mitochondria
leads to mitochondrial membrane potential depolarization and
disturbance of mitochondrial function (Miyamoto et al., 2005;
Wang and Qin, 2010). The excessive activation of ATP-dependent
ion pumps leads to ATP depletion and energetic stress, in an
effort to reinstate ionic homeostasis (Garland and Halestrap,
1997; Mukherjee et al., 2008). The mechanisms involved in the
metabolic response of neurons to excitotoxicity are complex and
play a fundamental role in the capacity of the neuron to adapt and
reclaim from such an insult.

Neurons are significantly more susceptible to metabolic
stress triggered by excitotoxic events. These events can lead
to an increase in ROS (Vergun et al., 2003). Although
ROS are important intracellular signaling molecules, at high
concentrations they can be cytotoxic, leading to oxidative stress
(Touyz et al., 2003; Griffiths, 2005). ROS are described as a
set of highly reactive molecules derived from oxygen, which
contain unpaired valence electrons (Patten et al., 2010; Bolisetty
and Jaimes, 2013). Included in the concept of ROS are the free
radicals (superoxide, •O2

−, and hydroxyl radical, •OH) and non-
radicals (hydrogen peroxide, H2O2), which originate by both
exogenous and endogenous sources (Wu and Yotnda, 2011;
Sinha et al., 2013). The major sources of ROS production is the

mitochondrial respiratory chain and, in healthy condition, the
production of ROS is equitable by different antioxidant processes
(Gandhi and Abramov, 2012; Dasuri et al., 2013). Oxidative
stress results from a divergence between ROS production and
antioxidant defenses, bringing about overaccumulation of ROS.
Oxidative stress can, therefore, promote structural damage to
DNA, cell membrane injury and alterations in protein structure
and function due to protein oxidation (Gandhi and Abramov,
2012). It has been demonstrated that increased levels of ROS
play an important role in the pathogenesis of neurodegenerative
diseases (Ray et al., 2012; Dasuri et al., 2013). For instance,
increased indices of ROS have been found in the postmortem
brain tissues from individuals with neurodegenerative disorders,
including PD (Giasson et al., 2000a; Dias et al., 2013; Yan et al.,
2013), AD (Butterfield et al., 2002; Yan et al., 2013; Hroudova
et al., 2014; Zuo et al., 2015) and ALS (Beal et al., 1997; Pedersen
et al., 1998). Moreover, ROS-dependent enhanced oxidative
alterations of proteins such as α-synuclein in PD, β-amyloid (Aβ)
and tau in AD and SOD 1 in ALS may also potentiate protein
misfolding and reduce degradation. Thus, the ROS-dependent
changes in protein metabolism increase insoluble aggregates
or accumulation of protofibrils under pathological conditions,
ultimately contributing to neurodegeneration (Giasson et al.,
2000b; Horiguchi et al., 2003). Even in the absence of oxidative
stress, some proteins possess the potential to cause toxicity
leading to cell death. Proteins have to reach a singular
tridimensional structure by a complex folding pathway aiming
to be functionally active, which is determined by the primary
amino acid sequence and the subcellular environment (Anfinsen,
1973). Proteins that are not able to attain the native state
are identified as misfolded and targeted by two degradation
pathways: molecular chaperones or the UPS (Herczenik and
Gebbink, 2008). Damage in the UPS may be caused by the
misfolded protein accumulation in the endoplasmic reticulum or
failure of the enzymes that belong to the ubiquitin conjugation
and deconjugation pathway. As a consequence, damaged USP
leads to the accumulation of protein aggregates inside the
cell (Berke and Paulson, 2003). Besides, misfolded protein can
also be secreted into the extracellular space, leading to the
development of extracellular plaques (Friedrich et al., 2010).
Formation of oligomers and aggregates occur when a critical
concentration of misfolded protein is attained. Depending
on the neurodegenerative disease in question, there may be
accumulation of aggregated proteins, both inside and outside
the cell. This aggregation can generate deleterious cell effects.
All the major neurodegenerative diseases including AD, PD and
HD are also known as protein misfolding disorders and they
show similarities regarding protein aggregation. For instance,
high levels of amyloid β can be observed in the brain of
individuals with AD (Glenner and Wong, 1984), α-synuclein in
PD (Polymeropoulos et al., 1997), and huntingtin in the case of
HD (Davies et al., 1997; DiFiglia et al., 1997). However, although
it is clear that the type of protein that forms the aggregates
are different in each of these neurodegenerative diseases, the
most common consequent abnormality is synaptic dysfunction,
characterized by dendritic spine loss and reduced post synaptic
density, leading to disturbance of network connections and cell
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death (Selkoe, 2002; Picconi et al., 2012; Sepers and Raymond,
2014).

Using model organisms, such as Caenorhabditis elegans, it
has been suggested that, as we age, our body progressively loses
some mechanisms related to the prevention of accumulation
of erroneously folded proteins (Kirstein-Miles and Morimoto,
2010). Corroborating this hypothesis, in the autopsied brain
of elderly, the presence of amyloid plaques, NFTs, Lewy
bodies, synaptic dystrophy, neuronal loss and decreased brain
volume are consistent findings, even though these individuals
were not diagnosed with any neurological disease (Elobeid
et al., 2016). Therefore, the boundary between pathological
neurodegeneration findings and normal aging alterations is
not yet clear. Actually, it is unequivocally accepted that aging
causes neurodegeneration. Aging is associated with various
processes, including loss of protein homeostasis that leads to
the development of aggregates and inclusion bodies, DNA
damage, lysosomal dysfunction, epigenetic changes and immune
dysregulation. These processes, which are consequences of the
interaction between genetic predisposition of an individual and
his/her exposure to the environment, determine the incidence
and prevalence of neurodegeneration, probably in a cell-specific
manner. As a consequence, several diseases might develop in
accordance with the spatiotemporal distribution of the lesions
(Herskind et al., 1996; Brunk and Terman, 2002; Hernandez
et al., 2011). The characterization of all the genetic interactions
might result in new therapeutic possibilities aiming to modulate
both the aging process and age-associated diseases (Johnson
et al., 2015; Lardenoije et al., 2015). However, the cause of most
neurodegenerative diseases cannot be clearly demonstrated and
appear to be sporadic in most cases, posing difficulties for the
development of genetic therapies.

Despite all the knowledge acquired so far, regardless of the
type or cause of cell death, there are no disease-modifying
drugs to treat neurodegenerative diseases. Neuronal cell death
occurs as a result of a series of deleterious events not yet
fully understood. Knowledge of more mechanisms that underlie
neurodegeneration may help the development of alternatives to
abort the damage.

ANIMAL TOXINS TO TREAT
NEURODEGENERATIVE DISEASES

Alzheimer’s Disease
First described more than 100 years ago by the German scientist
Alois Alzheimer, AD is the most prevalent neurodegenerative
disease and the leading cause of dementia (Alzheimer, 1907).
More than 24 million people in the world exhibit some form
of dementia and this number is predicted to double in 20 years
(Ferri et al., 2005). AD is the cause of 60–80% of dementia cases
and mostly affects people over 65 years of age, leading to death
in about 7–10 years of symptoms onset (Plassman et al., 2007).
AD is characterized by severe brain atrophy and progressive
neuronal death, affecting cognitive brain areas and leading to
severe memory impairments, behavioral changes, language and
speaking impairment, attention deficits and overall cognitive

decline (Johnson et al., 2008; Holtzman et al., 2011). AD has
many etiological factors and, in most cases, reliable diagnostics
can only be obtained post-mortem (Castellani et al., 2010).
A meta-analysis study showed that 9% of individuals assessed for
dementia are in fact suffering from other treatable conditions,
such as depression, delirium, side effects from drugs, drug abuse,
thyroid dysfunction and vitamin deficiency (Clarfield, 2003).
Likewise, many of AD features, such as plaques and tangles,
can also be observed in the post mortem brain of individuals
that do not exhibit dementia (Elobeid et al., 2016). Also, the
differences between AD induced cognitive decline and normal
aging cognitive changes can be very subtle, making it difficult
to establish an early disease diagnosis. The vast majority of AD
symptomatic cases (99%) begins after 65 years of age and are
referred as late onset or sporadic AD (Holtzman et al., 2011).
Although genetic factors may contribute to the risk of developing
late onset AD, distinctions can be made between sporadic AD
cases and early onset familial AD. Some of the first insights
for understanding AD pathogenesis came from the study of
familial AD. Familial AD accounts for a small percentage of cases,
∼1%, and is transferred from one generation to the next as an
autosomal dominant heritage (Guerreiro et al., 2012). Mutations
on the genes encoding for APP (Goate et al., 1991), Presenilin-1
(PS1) (Sherrington et al., 1995) and Presenilin-2 (PS2) (Levy-
Lahad et al., 1995; Rogaev et al., 1995) are the cause of most
familial cases of AD, with the onset of symptoms occurring
between 30 and 60 years of age. Despite the well characterized
mutations that lead to familial AD, as mentioned previously,
most AD cases are sporadic. Several risk factors have been shown
to contribute to non-familial AD, including aging (Ferri et al.,
2005), lack of cognitive reserve (Roe et al., 2007), diminished
physical activity (Podewils et al., 2005), smoking habit (Anstey
et al., 2007), obesity (Lee, 2011) and diabetes (Biessels et al.,
2006).

At the cellular level, the major hallmarks of AD are the
formation of Aβ plaques and NFTs of hyperphosphorylated tau
protein that can be observed specially in the basal forebrain,
frontal lobe, hippocampus and cerebral cortex of both human
cases and animal models (Duyckaerts et al., 2009; De-Paula
et al., 2012; Taipa et al., 2012; Armstrong, 2014; Garin
et al., 2015). However, no strict correlation has been found
regarding the number of plaques and AD cognitive decline,
although synaptic loss is pointed as the major correlate of
cognitive impairment (Terry et al., 1991). NFTs are intracellular
structures composed of hyperphosphorylated tau protein, a
microtubule-associated protein that normally binds tubulin and
stabilize microtubules, but that dissociates from tubulin and
tends to self-aggregate when it is hyperphosphorylated (Kidd,
1963; Anderton et al., 1987). Oxidative stress, mitochondrial
dysfunction, excitotoxicity, neuroinflammation and impaired
cholinergic transmission are also key pathological features of the
disease (Coyle et al., 1983; Hynd et al., 2004; Moreira et al.,
2007; Rojo et al., 2008). As many of these features also overlap
with other disorders and occur in healthy individuals, developing
accurate biomarkers and models for the disease is a challenging
task. The great majority of AD animal models are based on
transgenic animals, especially mice. Therefore, the lack of a
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robust sporadic AD animal model is probably a major pitfall
delaying the development of disease-modifying drugs.

Currently, Memantine, an NMDA receptor antagonist that
aims to reduce neuronal death triggered by excitotoxicity, and
other four different inhibitors of acetylcholinesterase (AChE)
that slightly ameliorates AD’s cholinergic deficits, are the only
drugs to treat AD patients that is approved by the United States
Food and Drug Administration (FDA). Still, none of these drugs
delay disease progression. The development of novel molecules
targeting different aspects of AD pathology through the use of
natural toxins could be a promising approach, taking advantage
of these toxins selectivity for different enzymes, channels and
subunits (Table 1).

Snake-venom-derived toxins have been widely investigated for
potential therapeutic applications in AD and other pathologies.
These venoms are mainly divided in two groups: neurotoxins and
dendrotoxins. The dendrotoxins are isolated from the African
mambas (Dendroaspis genus), some of which are best known to
act as potassium channels blockers (Koh et al., 2006). Displaying
much lower toxicity than the other components of Dendroaspis
angusticeps (green mamba) venom, the fasciculins are known
to inhibit AChE activity through binding to a peripheral site
of this enzyme, potentiating acetylcholine action and producing
generalized muscle fasciculation (Mebs, 1989). Therefore, these
toxins could be useful to relief acetylcholine deficits in disorders
such as AD. Some efforts have been made in order to determine
fasciculin-AChE complex structure and help the design of novel
molecules with AChE inhibitory activity. Recent results from
bioinformatics modeling revealed similar toxins with AChE
potential inhibitory activity, supporting green mamba fasciculins
as candidates for the development of AChE inhibitors to be used
in AD (Harel et al., 1995; Waqar and Batool, 2015).

The Indian viper Daboia russelli russelli produces a venom
containing abundant PLA2 isoforms, procoagulant enzymes
(factor X and V activators) haemorragins, nucleases, proteases,
hyaluronidases and several other compounds (Tsai et al., 1996).

A recent study has demonstrated that the factor V (RVV-V)
component destabilizes Aβ aggregates on in vitro cultures of
human SH-SY5Y cells incubated with Aβ42/Aβ40 peptides
(Bhattacharjee and Bhattacharyya, 2013). The compound
also protected cells against Aβ-induced toxicity. Further
investigations discarded proteolysis as a mechanism for this
effect, indicating an Aβ aggregate destabilizing activity. Using
RVV-V as a template, novel small peptides were synthesized,
retaining anti-Aβ-aggregating activity. Moreover, it was reported
that one of the peptides has a half-life of 24 h (Bhattacharjee and
Bhattacharyya, 2013). Although other previous antiaggregation
molecules have been validated in animal models but failed to
progress toward clinical use, subsequent studies employing these
peptides could hold potential as novel therapeutic tools (Van
Dam and De Deyn, 2006).

Metalloproteases have an important role in regulating many
physiological processes. ECE1 and NEP are two metalloproteases
whose activity degrade Aβ in the brain (Nalivaeva et al., 2012).
Different inhibitors of these enzymes have been used several
times for different purposes (Lin et al., 2006; Smollich et al., 2007),
although stimulators of their activity are much harder to find,
except for a few compounds tested in vitro, such as green tea
polyphenols (Ayoub and Melzig, 2006) and kynurenic acid (Klein
et al., 2013). Enhanced ECE1 and NEP activities are thought
to have beneficial effects against AD pathology as demonstrated
by genetically induced increased expression of ECE1 and NEP
on the APP (Choi et al., 2006) and APP/PS1 transgenic mouse
models of AD (El-Amouri et al., 2008). A recent study identified
the peptide K-49-P1-20 contained in the structure of myotoxin
II, a PLA2 present in the venom of another viper: Bothrops
asper. The synthetic peptide was effective to stimulate ECE-1
and NEP activities on the bradykinin-based quenched fluorescent
substrate assay, probably via positive allosteric regulation (Smith
et al., 2016). Moreover, results from liquid chromatography-
mass spectrometry analysis indicates that ECE-1 cleavage of
endogenous Aβ40 present in the cerebrospinal fluid obtained

TABLE 1 | Animal toxins to treat Alzheimer’s disease.

Toxin/Substance Species of origin Effects Experimental model Reference

Fasciculins Dendroaspis (snake) Inhibits AChE Bioinformatics modeling Mebs, 1989; Harel et al., 1995;
Waqar and Batool, 2015

RVV-V Daboia russeli russeli
(viper)

Reduces Aβ plaque deposition SH-SY5Y cell culture Bhattacharjee and
Bhattacharyya, 2013

K-49-P1-20 peptide
(isolated from Myotoxin
II PLA2)

Bothrops asper (viper) Enhances ECE-1 and NEP
activities promoting Aβ

clearance

HEK293 cell culture El-Amouri et al., 2008;
Smith et al., 2016

SVHRP Buthus martensii
karsch (scorpion)

Increases BDNF levels and
neurogenesis
Anti-inflammatory
Reduces Aβ plaques

Caenorhabditis elegans CL4176,
CL2006, Cl2355 strains

Wang et al., 2014;
Zhang et al., 2016

PhTx3-1
PhTx4-5-5

Phoneutria nigriventer
(spider)

Memory improvement
Neuroprotective

Mice i.c.v. Aβ administration
Hippocampal slices ODLG model
Primary corticostriatal neuronal
culture

Gomes et al., 2013;
Silva et al., 2016

BVPLA2 Apis mellifera
(Honey bee)

Reduces Aβ plaque deposition
Cognitive improvement
Anti-inflammatory

3xTg-AD mice Ye et al., 2016b
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from a subject with AD is increased in the presence of K-49-P1-
20 peptides, further confirming a potential role for management
of Aβ in AD (Smith et al., 2016).

Scorpion toxins are another group of animal toxins with
potential therapeutic applications. The Buthus martensii karsch
(Bmk) scorpion venom has been used in Chinese medicine for
the treatment of nervous system disorders for 1000s of years
(Wang et al., 2009). Increased neurogenesis, neuron maturation
and expression of brain derived neurotrophic factor (BDNF)
are reported after treating cultures of neural stem cells with the
SVHRP (Wang et al., 2014). Moreover, anti-inflammatory effects
of Bmk extracts have also been reported when tested in human
chondrocyte and macrophage cultures (Kim et al., 2005). These
evidences support a possible role of Bmk venom components
such as SVHRP for targeting other neurodegenerative diseases
such as AD. Subsequent research provided positive results
regarding SVHRP therapeutic use in AD, using the transgenic
Caenorhabditis elegans Aβ-expressing model (Zhang et al., 2016).
Dose-dependent improvements related to reduced oxidative
stress, reduced Aβ plaque deposition and Aβ-induced toxicity
were observed following SVHRP treatment, indicating that this
compound has potential therapeutic effects.

The venom obtained from spiders, wasps and bees have also
been the subject of many studies. Even though spiders are one
of the largest group of venomous animals with approximately
37,000 species, a very small fraction of spider toxins have been
characterized so far (Escoubas and Bosmans, 2007). Most of the
studies have investigated spider venom toxins for therapeutic
applications against cancer, cardiovascular diseases and mostly
for analgesic and antinociceptive effects (Pineda et al., 2014).
However, there are few studies investigating potential uses of
spider toxins in neurodegenerative disorders. Spider venoms
contains inorganic ions, free acids and amino acids, glucose,
biogenic amines, neurotransmitters and larger protein toxins,
and, so far, their main targets are K+, Ca2+ and Na+ channels
(Escoubas et al., 2000b). The venom of the Brazilian spider
Phoneutria nigriventer has been widely studied since the first
reports concerning the isolation of different fractions containing
several types of toxins. The PhTx3-1 toxin was shown to reduce
memory-deficits induced by i.c.v. administration of Aβ25−35
in Swiss mice, an effect probably attributed to blockage of
transient outward potassium currents (Figure 1) (Gomes et al.,
2013). Furthermore, a recently published study described a
toxin also isolated from Phoneutria nigriventer, PhKv, that
was able to induce antinociception by inhibition of AChE
via intrathecal administration in mice (Rigo et al., 2017).
Further studies will be important to demonstrate whether
PhKv anti-AChE activity could be beneficial in AD. Another
Phoneutria toxin, PhTx4-5-5, showed neuroprotective activity
against Aβ and glutamate-induced excitotoxicity by blockage
of NMDA receptors in mice corticostriatal neuronal cultures
(Figure 1) (Silva et al., 2016). Glutamate excitotoxicity is
regarded as an important cell death trigger not only in AD,
but also in other neurodegenerative diseases such as HD.
Corroborating the hypothesis that Phoneutria nigriventer toxins
are also valid therapeutic options to treat HD, PhTx4-5-5 was
shown to protect corticostriatal neuronal cultures obtained

from a mouse model of HD, the BACHD mice (Silva et al.,
2016).

The hymenoptera order of insects comprises all species
capable of stinging such as bees, wasps and ants. The most
studied venoms are those from the Apis genus which contain
a variety of active components such as peptides (e.g., melittin,
apamin), enzymes (e.g., PLA2 and hyaluronidases), biogenic
amines and others (Son et al., 2007; Matysiak et al., 2011).
There are several proposed mechanisms of action for bee
venom (BV) and its composing toxins regarding its different
therapeutic applications. For instance, BV has anti-inflammatory,
antiapoptotic, antioxidative, and antiglutamate induced toxicity
actions and is also capable of restoring normal neurotransmitter
signaling (Awad et al., 2017). The use of BV to treat
dementia-related disorders has been investigated. Lower levels
of proinflammatory molecules and increased levels of pERK and
BDNF have been observed following BV treatment of an animal
model of vascular dementia induced by bilateral common carotid
artery occlusion (Cai et al., 2016). LPS intra peritoneal (i.p.)
administration induced Aβ accumulation, neuroinflammation
and memory loss on male imprinting control region mice
(Gu et al., 2015). Administration of BV i.p. inhibited LPS-
induced amyloidogenesis, neuroinflammation and memory loss
by inhibiting the NF-κB pathway (Gu et al., 2015). More recently,
it has been demonstrated that 6 months weekly treatment
of 3xTg-AD mice with BV derived PLA2 (BVPLA2) evoked
dramatic reductions of the Aβ deposits in the hippocampus with
enhancement of cognitive function (Ye et al., 2016b). Elevated
glucose metabolism, reduced microglial activation and CD4+
T cell infiltration were also other positive outcomes reported
in this study. Furthermore, BVPLA2 was at least as effective as
Donepezil (a FDA AD approved drug) in ameliorating cognitive
and inflammatory processes with lesser adverse effects such as
weight loss (Ye et al., 2016b). Indeed, as discussed earlier, PLA2
are key enzymes targeting inflammatory associated processes and
many authors have also proposed a focus on BVPLA2 therapeutic
potential (Chung et al., 2015; Lee and Bae, 2016). The expectation
is that further research will provide deeper understanding of
BV components and mechanisms underlying their therapeutic
effects. So far, the observed anti-inflammatory, neuroprotective
and antiaggregate activities support the place of BV components
as potential tools for treating neurodegeneration.

Parkinson’s Disease
Parkinson’s disease is the second most prevalent
neurodegenerative disease, mainly affecting people over the
age of 55. PD is characterized by progressive neurodegeneration
in the substantia nigra pars compacta (SNpc), affecting mainly
dopaminergic neurons. Moreover, cytoplasmic inclusions called
Lewis bodies are observed in the brain of individuals with PD
(Lang and Lozano, 1998). Neurodegeneration is the direct cause
of PD symptoms, which include bradykinesia, resting tremor
and rigidity (Dauer and Przedborski, 2003; George et al., 2009).
In addition to these motor alterations, individuals with PD may
also exhibit cognitive impairment and psychiatric disturbance
(Beitz, 2014). When more than 50% of the SNpc neurons
die, the clinical symptoms become evident (Marsden, 1990;
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FIGURE 1 | Neuroprotective mechanisms elicited by Phoneutria nigriventer venom. The venom of the spider Phoneutria nigriventer contains a mixture of toxins that
affect ion channel function, decreasing neuronal cell death and ameliorating neurotransmission alterations. The PhTx3-1 toxin is capable of blocking transient
outward K+ currents (KvIA), improving behavioral parameters associated with memory. The PhTx4-5-5 toxin has neuroprotective activity against glutamate-induced
excitotoxicity by blocking NMDA receptors. The PhTx3–3 and PhTx3–4 toxins block N- and P/Q-type voltage-dependent Ca2+ channels (VDCC), thus inhibiting
Ca2+ influx, glutamate release and ROS formation.

Ross et al., 2004). As in the case of AD, PD can be sporadic or
hereditary. Notably, familial PD accounts for only 10% of the
cases. In addition to genetic predisposition, several other factors
contribute to disease pathology, including age-related alterations
and environmental toxins (Castrioto et al., 2014). Moreover,
only rare cases of familial PD are caused by the mutation of a
single gene. Mutations in about 13 PD genes have already been
linked to the pathogenesis (Kumar et al., 2012). The genes that
are mutated in PD encode proteins that have been shown to
play an important role in the disease, including α-synuclein. The
presence of toxic aggregated forms of α-synuclein is regarded
as a main factor contributing to pathology and having a critical
role in microglia-mediated neuroinflammation (Polymeropoulos
et al., 1997; Mhyre et al., 2012). In fact, more recently, it has

become more evident the central role of chronic inflammation
and glial activation as crucial factors inducing the dopaminergic
neurodegeneration underlying PD pathogenesis (Loeffler et al.,
1994; Cicchetti et al., 2002; Ghosh et al., 2007; McGeer and
McGeer, 2008; Hirsch and Hunot, 2009; Qian et al., 2010).

The gold standard therapy for PD patients consists of a
combination of carbidopa and levodopa. Levodopa helps to
reestablish dopamine levels in the striatum and is effective in
reducing motor impairment and disability, whereas carbidopa
inhibits the peripheral metabolism of levodopa, thereby allowing
its therapeutic concentrations to be achieved in the brain
without disabling peripheral adverse effects (Miyasaki et al., 2002;
Gazewood et al., 2013). This treatment is usually started when
patients begin to experience functional impairment. Although
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the discovery of levodopa revolutionized PD treatment, after
5 years of therapy, 50% of patients experience motor response
complications, associated with involuntary movements called
dyskinesias, which are difficult to control and significantly
impair quality of life (Miyasaki et al., 2002; Stowe et al.,
2008). The alternative treatment consists of dopamine agonists,
MAO-B inhibitors and catechol O-methyltransferase inhibitors,
which improve motor symptoms and functional status, but are
less effective than levodopa and also generate an increase in
dyskinesias (Stowe et al., 2008; Stathis et al., 2015). Nevertheless,
there are no disease-modifying drugs to treat PD patients
and most current treatments are symptomatic and none delay
dopaminergic neuron degeneration. The ideal approach to treat
PD patients should prevent dopaminergic neuronal cell loss and,
thereby, slows or even halts disease progression.

Molecules from BV are currently under investigation as
neuroprotective tools to treat PD. It has been shown that chronic
release of proinflammatory cytokines by activated astrocytes and
microglia exacerbates dopaminergic neuron degeneration in PD.
These findings corroborate the hypothesis that inflammatory
processes are potential interventional targets in PD and other
neurodegenerative diseases (Teismann and Schulz, 2004; Wang
et al., 2015). Recent studies suggest that BV could lessen PD-
related neuroinflammation (Figure 2). One of the first studies
indicating BV therapeutic potential in PD showed that BV
injection suppresses neuroinflammatory responses in an MPTP-
induced mouse model of PD (Kim et al., 2011). MPTP-induced
mouse is the most widely used animal model to study this
disease. Administration of MPTP to mice leads to dopaminergic
cell death in the SNpc and induces a severe and irreversible
PD-like syndrome (Przedborski and Vila, 2003; Meredith and
Rademacher, 2011). Increased number of activated microglia
is also observed in the SNpc and striatum of this mouse
model, contributing to secondary dopaminergic PD neuronal
cell loss (McGeer et al., 1988, 2003; McGeer and McGeer,
2008). In this study, BV was subcutaneously administered into
the acupuncture point in mice (Kim et al., 2011), the most
commonly used method for applying BV (Ezzo et al., 2001;
Lee et al., 2008; Kim and Jeon, 2014). Acupuncture is a
technique used to treat certain illness through stimulation of
specific anatomical points using needles, laser or small electrical
currents (Lao et al., 2003). A previous study showed that
BV acupuncture pretreatment effectively protects dopaminergic
neurons against MPTP toxicity by inhibiting Jun activation (Doo
et al., 2010). BV reduces microglial activation, which is evidenced
by decreased MAC-1 levels, a microglia activation marker, and
iNOS expression in the SNpc (Kim et al., 2011). Thus, this study
suggests that the dopaminergic neuroprotective effect elicited
by BV treatment of MPTP PD model appears to be mainly
due to a decrease in neuroinflammation via the suppression of
proinflammatory factors, such as cyclooxygenase-2 and PLA2,
tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1) (Kim
et al., 2011). Consistent with these results, other studies have
shown that BV treatment reduces microglial activation and
the infiltration of CD4 T effector cells into the SNpc (Chung
et al., 2012, 2015; Ye et al., 2016a). Additionally, BV treatment
significantly increases the proportion of regulatory T cells

(T reg) in vivo and in vitro and T reg depletion abrogates the
neuroprotective effects of BV (Chung et al., 2012). T regs play
an important role in the regulation of the immune response
of peripheral CD4 T cells, thus being a crucial step in the
maintenance of tolerance in healthy conditions (Sakaguchi et al.,
2008). In addition, adoptive transfer of T regs to MPTP-
treated mice prevents PD-related neuronal degeneration through
attenuation of microglial activation and neuroinflammatory
responses (Reynolds et al., 2007). Therefore, these studies suggest
that the neuroprotective effects of BV treatment are mediated
in part by the modulation of the adaptive immune response by
increasing the proportion of functional T regs (Chung et al.,
2012). Subsequently, the same research group demonstrated that
BVPLA2, the major BV compound, is capable of inducing T reg
expansion, promoting survival of dopaminergic neurons. The
results also showed that BVPLA2 directly binds to mannose
receptor on dendritic cells and, consequently, promotes secretion
of PGE2, which results in Treg differentiation in the MPTP model
of PD (Chung et al., 2015) (Figure 2).

BVPLA2 has a wide variety of pharmacological properties,
including anti-HIV activity, myotoxicity and neurite outgrowth
induction (Fenard et al., 2001; Nakashima et al., 2004). Moreover,
in a human A53T α-Syn mutant transgenic mice (A53T
Tg) the expression of α-synuclein was reduced, as well as
microgliosis in spinal cord and the M1/M2 ratio through
the treatment with BVPLA2 (Ye et al., 2016a). It has been
shown that the phenotype of activated microglia (M1/M2)
controls the repair and regeneration response following nerve
injury (Kigerl et al., 2009; David and Kroner, 2011). Several
studies classify microglia into two different polarizations: M1
and M2. The first is related to proinflammatory action and
release of cytokines such as TNF-α. On the other hand, M2 is
important for homeostasis, with anti-inflammatory action and
producing cytokines such as IL-10 (Orihuela et al., 2016; Tang
and Le, 2016). However, several other studies show opposite
results and do not support this notion that M1 is pro and
M2 is anti-inflammatory (Gautier et al., 2012; Miller et al.,
2012). At the behavioral level, BV treatment ameliorates motor
coordination and balance of A53T Tg mice in a modified
pole test (Ye et al., 2016a). Previous studies have also shown
the beneficial actions of BV treatment on the pathological
functioning of the circuits underlying motor PD symptoms
(Maurice et al., 2015; Kim et al., 2016). Therefore, these
findings suggest that BVPLA2 is a relevant pharmacological tool
in PD.

Another specific component of BV, apamin, was also
studied in isolation. Previous studies reported that the peptide
apamin protects cultured mesencephalic dopaminergic neurons
(Salthun-Lassalle et al., 2004; Toulorge et al., 2011). Employing
the MPTP-induced PD model, which was exposed to either BV or
apamin treatment via intraperitoneal injections, it was possible to
observe that the BV protective effect is not restricted to acupoint
stimulation. High doses of the BV peptide apamin lead to the
same level of protection of the cellular bodies of dopaminergic
neurons and also diminish inflammatory cytokines, which can
be deleterious. However, this protection cannot be seen at the
axonal level when only apamin is used, whereas BV grants safety
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FIGURE 2 | Neuroprotective mechanisms triggered by bee venom in Parkinson’s disease mouse models. The administration of bee venom (BV) or its isolated
compounds to different PD mouse models leads to decreased neurodegeneration by reducing oxidative stress, neuroinflammation and apoptosis. BV antioxidant
effect is highlighted by its capacity to decrease the levels of reactive oxygen species (ROS), reduce lipid peroxides and restore the antioxidant pool of brain tissue by
increasing both glutathione peroxidase (GSH) level and brain PON1 activity. Several studies indicate that BV anti-inflammatory effect is the main mechanism
contributing to neuroprotection. BV directly binds to the mannose receptor on dendritic cells and promotes secretion of PGE2, which binds to type T lymphocyte
prostaglandin E2 (EP2) receptor, leading to Foxp3 expression. Consequently, it promotes T regulatory lymphocytes (T reg) differentiation, which induces
neuroinflammation suppression by decreasing the number and level of activation of both astrocytes and microglia. The shrinkage of inflammatory cells leads to
decreased release of proinflammatory factors, such as tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1). BV also promotes neuroprotection by reducing
apoptosis, as it decreases Bax gene expression levels, caspase-3 activation, and DNA fragmentation.
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of this site, suggesting that other molecules might be involved in
the axonal protection phenomena (Alvarez-Fischer et al., 2013).

Interestingly, a study compared the neuroprotective effect
of BV and Pramipexole on the progressive neuronal damage
and motor dysfunctions observed in a subchronic MPTP mouse
model of PD. Pramipexole is a potent and selective D3 dopamine
receptor agonist that is clinically important for managing
early stage PD (Mierau and Schingnitz, 1992; Bennett and
Piercey, 1999). Furthermore, Pramipexole has been shown to
exert a neuroprotective effect against MPTP-induced damage
to the nigrostriatal dopamine system in mice (Anderson et al.,
2001). Significant astrocytic activation is observed following
MPTP subchronic administration and both BV and Pramipexole
effectively reduce activation of astrocytes in SNpc, decreasing
death of dopaminergic neurons. Moreover, both BV and
Pramipexole ameliorate motor deficits, whereas, in primary
cultured astrocytes, only BV reduces MPP+-induced astroglial
activation. Taken together, these observations suggest that both
BV and Pramipexole effectively reduce PD-associated pathologies
and thus the neuroprotective effects of BV are associated with
reduced astrocytic activation (Kim et al., 2016).

The neuroprotective effect of BV acupuncture therapy was
also evaluated in neurodegeneration induced by rotenone.
Rotenone, a natural insecticide, is extremely lipophilic and easily
crosses the blood-brain barrier (BBB) (Talpade et al., 2000).
A Parkinsonism rat model can be created by chronic exposure
to rotenone leading to motor deficits and dopaminergic neuronal
loss (Deng et al., 2010). This study further indicates that BV
therapy has a neuroprotective effect that is mediated through
inhibition of neuroinflammation, oxidative stress and apoptosis.
BV powerful antioxidant effect is highlighted by its capacity to
reduce lipid peroxides and restore the antioxidant pool of brain
tissue by increasing both glutathione peroxidase level and brain
paraoxonase-1 (PON1) activity, preventing neuronal injury.
BV also decreases Bax gene expression levels and suppresses
apoptotic pathways, which is further demonstrated by decreased
DNA fragmentation and suppressed caspase-3 activation induced
by rotenone (Khalil et al., 2015) (Figure 2).

Based on all these findings, clinical studies were performed
to test whether BV could provide an effective option to treat
neurodegenerative diseases, including PD (Mirshafiey, 2007).
One of these studies explored the benefits of both acupuncture
and bee venom acupuncture as adjuvant therapies for idiopathic
PD (Cho et al., 2012). Forty-three adults with idiopathic
Parkinson’s disease were recruited and assessed using the Unified
Parkinson’s Disease Rating Scale, the Parkinson’s Disease Quality
of Life Questionnaire, the Beck Depression Inventory, the Berg
Balance Scale, and the time and number of steps required
to walk 30 m. Subjects were stimulated twice a week for
8 weeks. In this pilot study, both acupuncture and bee venom
acupuncture showed promising results as adjuvant therapies for
Parkinson’s disease (Cho et al., 2012). In another monocentric
double-blinded, randomized controlled pilot study, 40 PD cases
were evaluated regarding the potential disease-modifying effects
of BV monthly injections. The results obtained in this study
indicate that BV treatment does not have any clear effect on PD
symptomatology, but highlights the importance of further studies

using higher doses and higher administration frequency of BV
(Hartmann et al., 2016).

In addition to BV, some other animal venoms are also being
investigated as potential therapeutic strategies for PD treatment.
For instance, it has been shown that the venom of the Chinese
scorpion Bmk protects dopaminergic neurons in the SNpc and
improves the related behavior deficits in PD models (Xu et al.,
2015). At early stage PD, the scorpion venom peptide, SVHRP,
protects against oxidative stress. The antioxidant actions and the
protection of mitochondria by SVHRP were studied by using the
6-OHDA rat model for early PD (Yin et al., 2014). 6-OHDA is
an oxidative stress neurotoxin that increases oxidative damage
and decreases antioxidant ability in midbrain (Kirik et al., 1998).
SVHRP was found to be successful in reversing the abnormal
activities of MAO-B, SOD, and MDA in the mitochondria of
neurons in the midbrain, and in improving the antioxidant
ability in an early stage PD rat model (Yin et al., 2014). In
addition, SVHRP preserves the function of axons and promotes
up-regulation of Bax and down-regulation of Bcl-2 (Wang and
Qin, 2010; Yin et al., 2014; Xu et al., 2015).

Snake venom has also been studied as a therapeutic tool
to treat PD. The neuroprotective activity and ability to induce
neuritogenesis of a peptide isolated from the Bothrops atrox
venom fraction Ba-IV was investigated using PC12 cells
treated with the dopaminergic neurotoxin MPP+. This peptide,
which had its sequence identified as Glutamic acid–Valine–
Tryptophan, is able to significantly reduce cell death and
this protective effect is associated with decreased activity of
two apoptotic proteases, caspase-9 and caspase-3. In addition,
neurites outgrowth was observed in this Parkinson’s cellular
model after peptide treatment, indicating that the underlying
mechanism of protection might include a neurotrophic effect
(Martins et al., 2015).

Considering all these evidences, it is clear the importance
and the great potential of these animal venoms as prospective
pharmacological tools to treat PD (Table 2).

Brain Ischemia
Ischemia is caused by deficient blood supply to tissues due
to obstruction of the arterial flow. Most ischemic episodes
are caused by thromboembolic or atherothrombotic vaso-
occlusive disease and the major risk factors are age, hereditary
factors, tobacco smoking, hyperlipidemia, hypertension, physical
inactivity, obesity, and diabetes mellitus (Kalogeris et al., 2012).
Clinically, the most significant event is brain ischemia, as
neuronal cells are more sensitive to reduction in blood supply
due to their intense metabolic activity (Kristian, 2004). Brain
ischemia is followed by irreversible damage already detectable
at less than 20 min after the ischemic event and, in most cases,
resulting in severe brain damage, which is the leading cause of
death and long-term disability worldwide (Ordy et al., 1993). The
primary consequence of brain ischemia is a reduction in energy
substrates, including glucose and oxygen. Consequently, ATP
synthesis through glycolysis and oxidative phosphorylation slows
or even stops, promoting a rapid decline in cellular ATP levels
(Silver et al., 1997). Furthermore, the interruption of oxidative
phosphorylation causes an increase in the release of ROS
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TABLE 2 | Animal toxins to treat Parkinson’s disease.

Toxin/Substance Species of origin Effects Experimental model Reference

Bee Venom Apis mellifera
(Honey bee)

Anti-inflammatory
Reduces microglial activation and
CD4+
T cells infiltration
Improves motor coordination and
balance
Reduces apoptotic markers
Reduces oxidative stress

MPTP mouse model
A53T Tg mice
Rotenone-induced
parkinsonism model

Doo et al., 2010;
Kim et al., 2011;
Chung et al., 2012, 2015;
Khalil et al., 2015
Ye et al., 2016a

BVPLA2 Apis mellifera
(Honey bee)

Promotes T reg cells expansion
Neuroprotective for dopaminergic
neurons
Reduces α-synuclein expression
Reduces activation of microglia and
macrophages

A53T Tg mice Chung et al., 2015;
Ye et al., 2016a;
Kim et al., 2016

Apamin Apis mellifera
(Honey bee)

Neuroprotective
Anti-inflammatory
Improves motor function

Rat mesencephalic
dopaminergic neuronal culture
MPTP PD model

Salthun-Lassalle et al., 2004;
Toulorge et al., 2011;
Alvarez-Fischer et al., 2013

Bee Venom Apis mellifera
(Honey bee)

Improves scores of Unified PD
Rating Scale, Berg Balance Scale
and 30 m walking time

Clinical Trial Cho et al., 2012
Hartmann et al., 2016

SVHRP Buthus martensii
karsch (scorpion)

Antioxidant
Antiapoptotic
Neuroprotective for SNpc
dopaminergic neurons
Behavior improvements

6-OHDA rat model Yin et al., 2014;
Xu et al., 2015

Tripeptide (Glutamic
acid–Valine–Tryptophan)

Bothrops atrox (snake) Antiapototic
Enhances neurite outgrowth

PC12 MPP+ in vitro model Martins et al., 2015

(Abramov et al., 2007). Finally, when respiration is inhibited but
glycolysis persists, protons and lactate generated during glycolysis
accumulate, causing rapid intracellular acidification (Silver et al.,
1997). Thus, ischemia invariably causes depletion of cellular ATP,
intracellular acidification and generation of ROS, triggering a
sustained rise of glutamate extracellular concentration (Phillis
et al., 1996). This cascade of events culminates in a large
elevation of intracellular Ca2+ in neurons and astrocytes, which
triggers the death of neurons (Schubert et al., 1994; Rossi et al.,
2007).

Ischemia treatment consists in the use of thrombolytics,
aiming to lyse the arterial thrombus to restore blood flow to
poorly perfused areas (thrombolysis) and to reduce the intrinsic
vulnerability of the brain tissue to ischemia. However, the
ischemia-treatment time interval determines therapy success.
The exposure to a short but severe ischemia delays cell death
and affects only a reduced number of neurons, whereas when
ischemia last for a long period of time, broader and more
rapid cellular destruction is observed, resulting in either focal
or global ischemia, with the last leading to death in most
cases (Lipton, 1999). Although thrombolytics help the prognosis,
treatment is still far from satisfactory, mainly due to the
limited therapeutic time window of approximately 3 h and the
potential side effect of intracranial hemorrhage. To date, no
neuroprotective drug has proven to be effective in phase III
clinical trial studies. In addition, the heterogeneity of the disease
makes it difficult to draw conclusions from the different studies.
Therefore, the search for efficient drugs is an urgent unmet
need.

Compelling evidences indicate that increased extracellular
glutamate levels and exacerbated cytosolic Ca2+ overload are the
main causes of neuronal injury during cerebral ischemia (Choi,
1994; Wheeler et al., 1994; Choi, 1995). Thus, drugs able to block
these two events constitute potentially effective pharmacological
strategies against the harmful consequences of ischemia. Studies
investigating several animal venoms revealed a large amount of
toxins capable of specifically blocking different Ca2+ channels
types (Uchitel, 1997). Among the venoms, the ω-conotoxins
from the venom of the fish-eating marine snail Conus magus
deserve especial attention. One of the ω-conotoxins is MVIIC,
which is comprised of 26 amino acids and is a member of the
Ca2+ channels blockers toxin family (Hillyard et al., 1992; Liu
et al., 1996). In vitro studies evaluating cerebral and spinal cord
ischemia demonstrated that MVIIC significantly reduces Ca2+

influx and attenuates the release of glutamate (Liu et al., 1996;
Imaizumi et al., 1999). Based on these results, an in vivo study
using a rat model of spinal cord ischemia confirmed that MVIIC
is capable of decreasing glutamate release and Ca2+ influx into
the cell (Oliveira et al., 2014). Moreover, MVIIC treatment also
preserves neuronal integrity, reduces cell death and hemorrhagic
process, and leads to enhanced performance in behavioral tests
(Oliveira et al., 2014).

MVIIA, which is an N-type Ca2+ channel blocker, is
another ω-conotoxin that has been extensively studied for
its neuroprotective properties. Notably, the development of a
synthetic version of MVIIA, the SNX-111, facilitated further
studies (Olivera et al., 1987). The first studies showed that
SNX-111 is effective in preventing neuronal damage after
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transient global ischemia in rat even when administered up
to 24 h after the ischemic insult (Valentino et al., 1993).
Using a transient focal ischemia rat model, which was subject
to 2 h MCA occlusion, it was demonstrated that SNX-111
drastically ameliorates brain damage and reduces infarct size
(Zhao et al., 1994). Also employing a focal cerebral ischemia rat
model, it was shown that SNX-111, administered intravenously
at 5 mg/kg/h from 20 min prior to occlusion until 2 h post
occlusion, significantly reduces extracellular glutamate level
through inhibition of its presynaptic release. This result was
associated with a reduction in the cortical size infarction and
neuroprotection (Takizawa et al., 1995). Similar results were
observed in a focal cerebral ischemia rabbit model and in a global
ischemia rat model (Buchan et al., 1994; Perez-Pinzon et al.,
1997). Taking into account all these studies, pharmacokinetic
studies were conducted in rats and cynomologus monkeys to
determine SNX-111 disposition following 24 h of continuous,
constant-rate intravenous infusion (Bowersox et al., 1997).
However, despite all these positive results in vitro and in vivo,
when clinical trials were performed to evaluate ZNX-111 effect on
ischemia-induced brain injury and chronic pain, positive results
were only obtained in the case of chronic pain. Based on these
results, the FDA approved the use of SNX-111, which is also
known as Ziconotide (Prialt R©; Elan Pharmaceuticals, Inc.), for the
management of severe chronic pain in patients whom intrathecal
therapy is authorized, and who are intolerant of or refractory
to other treatments (Heading, 2001; McGivern, 2007; Smith and
Deer, 2009).

Besides MVIIC and MVIIA, another ω-conopeptide called
GVIA, from snail Conus geographus, has also been evaluated for
its neuroprotective properties. In vitro experiments showed that
GVIA inhibits excessive release of glutamate during ischemia by
blocking N-type Ca2+ channel and that this inhibition generates
significant protective effect in neurons (Madden et al., 1990;
Wang et al., 1992). Regardless of these neuroprotective effects,
GVIA has not been extensively studied because its characteristic
irreversible binding to the N-type VGCCs limits its clinical
potential utility (Wang et al., 1992).

Toxins contained in spider venom have also been shown
to inhibit ion channels. For instance, the spider Phoneutria
nigriventer venom contains a mixture of toxins that affect ion
channels and that have been investigated for the treatment
of neurodegenerative processes (Figure 1). The Phoneutria
nigriventer venom fraction PhTx3 contains a broad-spectrum
neuronal Ca2+ channel blocker that also inhibits glutamate
uptake (Reis et al., 1999). The neuroprotective effects of PhTx3,
GVIA and MVIIC were evaluated employing hippocampal slices
and mouse cholinergic septal neuronal cell line (SN56 cells),
which were subjected to ischemia by oxygen deprivation and low
glucose insult. The results from this study indicate that PhTx3
completely rescues neuronal cell death, although both snail toxins
afford only partial cell protection (Pinheiro et al., 2006). After
this study, the neuroprotective potential of some of the individual
components present in the PhTx3 fraction were evaluated. The
results demonstrated that the PhTx3 components, PhTx3–3 and
PhTx3–4, inhibit Ca2+ influx, glutamate release, and exocytosis
in nerve endings (Guatimosim et al., 1997; Miranda et al., 1998;

Reis et al., 1999). Next, the in vitro action of PhTx-3-3 and
PhTx3-4 on brain injury induced by oxygen deprivation and low
glucose insult was investigated using slices of rat hippocampus.
In addition to confirm that PhTx-3-3 and PhTx3-4 inhibit the
increase of glutamate release, this study showed that these toxins
prevent neuronal cell death and rescue the neurotransmission
alterations observed in hippocampus CA1 when applied before
and after the onset of ischemia (Figure 1) (Pinheiro et al.,
2009).

Studies have demonstrated that, apart from excitotoxicity,
activation of the Ca2+ permeable ASICs is largely responsible for
the development of acidosis-mediated, glutamate-independent
ischemic brain injury (Astrup et al., 1977; Xiong et al., 2004).
Postsynaptic ASIC1a is the dominant ASIC subtype in both
human and rodent brains and, therefore, its modulation is a
potential therapeutic target for ischemia (Li et al., 2010). One of
the most potent blockers of ASIC1a is PcTX, which is obtained
from the venom of the South American tarantula, Psalmopoeus
cambridgei. Using a rat model of transient focal ischemia, the
first studies investigating this venom confirmed the crucial role of
ASIC1a in the pathogenesis of ischemia and the neuroprotective
effect of PcTX (Pignataro et al., 2007). It was found that PcTX
is able to reduce infarct volume, even if administered after
permanent occlusion of the middle cerebral artery, suggesting
that ASIC can be activated in the absence of reperfusion.
Additionally the intranasal administration of PcTX is nearly
as effective as PcTX i.c.v. administration (Xiong et al., 2004;
Pignataro et al., 2007). Another study confirmed the beneficial
action of PcTX in a newborn piglet model of asphyxia-induced
cardiac arrest. Treatment with PcTX reduces striatonigral and
striatopallidal neuronal injury, attenuates increased protein
kinase A-dependent phosphorylation of DARPP-32 and NMDA
receptor NR1 subunit and decreases nitrative and oxidative
damage to proteins (Yang Z.J. et al., 2011). The aforementioned
studies used whole venom from the spider Psalmopoeus
cambridgei. However, it has already been demonstrated that
PcTx1, a 40-residue peptide that constitutes a very minor
proportion (∼0.4%) of this venom, is the most selective blocker
of ASIC1a (Escoubas et al., 2000a). Moreover, recombinant
PcTx1 and PcTx1a are equipotent regarding neuroprotection in
a conscious hypertensive rat model of transient MCA occlusion
(Saez et al., 2011). In addition, animals submitted to conscious
stroke that were treated with PcTx1 display intact neuronal
architecture, increased number of neurons, and reduced number
of caspase-3 positive cells, indicating that this peptide is efficient
to prevent apoptosis and foster neuronal survival (McCarthy
et al., 2015).

Several other animal toxins have also been shown to be
capable of reducing ischemic injury. HWTX-I, an N-type Ca2+

channel blocker, is the most abundant toxic component in
the crude venom of the Chinese bird spider Ornithoctonus
huwena (Liang et al., 1993). Using a rat model of global cerebral
ischemia-reperfusion injury, it was demonstrated that HWTX-I
modulates the expression and activity of many apoptosis pathway
components, including SOD, glutathione peroxidase, Fas, TNFα,
caspase-8 and caspase-3 (Wang et al., 2007). Snakes, such
as Bothrops atrox and Bothrops brazili, have in their venoms
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serine proteinases capable of promoting angiogenesis through
the PI3K/Akt pathway (Bhat et al., 2016). Also by activating
the PI3K/Akt pathway, rLj-RGD3, a recombinant toxin from
the salivary gland of the Lampetra japonica fish, protects against
cerebral ischemia/reperfusion damage (Lu et al., 2016). rLj-RGD3
significantly ameliorates pathological changes in the brain and
inhibits neuronal apoptosis by increasing the expression of FAK,
p-FAK and Bcl-2 proteins and decreasing the expression of
caspase-3 (Lu et al., 2016).

Therefore, many studies have searched for new and effective
treatments for ischemia using animal toxins as pharmacological
tools (Table 3). Ischemia involves a complex pathogenic cascade
of events, which includes energy depletion, excitotoxicity,
acidosis, and peri-infarct depolarization, and thus the ideal
treatment might need to make use of combined therapies maybe
employing two or more toxins.

Glaucoma
Degeneration of RGCs is a key feature of major ophthalmologic
conditions such as glaucoma, diabetic retinopathy and retinal
ischemia. The second most common cause of blindness is
glaucoma. The disease is characterized by degeneration of RGCs
and atrophy of intracranial optic nerves, lateral geniculate
nucleus and visual cortex (Gupta et al., 2006). Glaucoma shares
several common mechanisms with other neurodegenerative
diseases, including oxidative stress, impaired axonal transport,
neuroinflammation, excitotoxicity and even deposition of Aβ,
α-synuclein and phosphorylated tau in the retina (Gauthier and
Liu, 2016; Ramirez et al., 2017). Thus, although glaucoma was
originally regarded as an eye disease, more recently, it has been
suggested that it could be considered a CNS degenerative disease
(Weber et al., 2000; Yucel et al., 2003; Gupta et al., 2006). Elevated
intra-ocular-pressure is a hallmark of the disease and also the
only modifiable factor for therapeutically targeting the pathology
(Gauthier and Liu, 2016). The exact mechanisms underlying
disease progression are still largely unknown.

Recent studies have demonstrated that spider venom
compounds hold potential to treat glaucoma (Table 4). For
instance, it has been shown that components of the Brazilian
spider Parawixia bistriata venom are neuroprotective. Using a
rat glaucoma model based on ischemia/reperfusion of retina,
it was shown that the compound called FrPbAII promoted
neuroprotection of the retinal cell layers and was also capable
of crossing the BBB (Beleboni et al., 2006). Parawixin 1,
another compound purified from the venom of Parawixia
bistriata, similarly to FrPbAII, has neuroprotective effects
demonstrated on retina ischemia/reperfusion glaucoma models
(Fachim et al., 2015). Also from Parawixia bistriata venom,
PbTx1.2.3, has protected neurons from degeneration in the
ischemia/reperfusion retina model, probably through anti
excitotoxic activity (Fontana et al., 2003). These results strongly
suggest that Parawixia bistriata venom components are potential
therapeutic tools.

The venom of Phoneutria nigriventer has also been studied
for retina neuroprotection. Excessive influx of Ca2+ through
VGCCs triggers the activation of degradative enzymes, increases
the levels of ROS and free radicals and promotes oxidative

stress in the cell (Siesjo, 1992). It is therefore easy to assume
that blockage of VGCCs could hold therapeutic potential.
Indeed, PhTx3-3 and PhTx3-4 toxins purified from Phoneutria
nigriventer venom, blockers of N-P/Q Ca2+ channels, protect rat
retinal slices submitted to the oxygen deprivation and low glucose
(ODLG) ischemic insult model (Figure 1) (Agostini et al., 2011).
Subsequent research demonstrated that PhTx3-3 has an in vivo
neuroprotective effect over rat retinas challenged with NMDA
induced injury. Results showed reduced glutamate release as
well as reduced levels of ROS, free radicals, oxidative stress
and degradative enzymes following pretreatment with PhTx3-3
(Binda et al., 2016). These results suggest a role for Phoneutria
nigriventer venom toxins as potential therapeutic agents for
managing neurodegenerative retinopathies, encouraging further
studies.

Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis is a neurodegenerative disease
characterized by progressive degeneration of upper and lower
motoneurons and that is ultimately fatal (Rowland and Shneider,
2001). The sporadic form of the disease accounts for most
of the cases (∼90%), indicating that no obvious genetic
component is responsible for triggering the disease. Meanwhile,
the remaining 10% of the cases are attributed to genetic
mutations constituting the familial cases of ALS (Greenway
et al., 2006; Abhinav et al., 2007). The major symptoms are
general muscle spasticity, fasciculation, atrophy and paralysis,
leading to death by respiratory failure in 3–5 years from
symptoms onset (Walling, 1999). Some studies suggest an
association of increased risk to develop ALS and cigarette
smoke (Weisskopf et al., 2009), exposure to chemical and metal
contaminants (Yu et al., 2014; Roberts et al., 2016), and exposure
to radiation and electromagnetic fields (Phillips et al., 1998).
Athletes have a higher risk to develop the disease, although
there are controversial results regarding physical activity and
ALS incidence (Beghi et al., 2010; Huisman et al., 2011). In that
regard, several genes previously recognized as ALS risk factors are
also related to exercise, which could explain these controversial
data (Chen et al., 2004). Riluzole is the only currently available
pharmacotherapy to treat ALS patients, extending life expectancy
in about 3 months. Although Riluzole mechanism of action is
not completely understood, it has been shown that it probably
involves inhibition of ionic channels such as Na+, K+, and Ca2+

channels (Bensimon et al., 1994; Bellingham, 2011).
Within the familial cases of ALS, mutations on the SOD1

gene are the most common (Dangoumau et al., 2014; Zarei
et al., 2015). Treatment of symptomatic SOD1 mutant mice
(hSOD1G93A) with BV promotes extended survival, improved
motor function, reduced microglial activation and improved
mitochondrial integrity (Yang et al., 2010). Further research
demonstrated that melittin, isolated from BV, also decreases
pathological inflammation, improves motor function and reduces
neuronal cell death and α-synuclein misfolding (Yang E.J. et al.,
2011). Other studies report the efficacy of BV in reducing
expression of inflammatory mediators in the lungs, liver, spleen
and kidneys of hSOD1G93A mice. Moreover, these effects might
be modulated by the selection of specific acupuncture points
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TABLE 3 | Animal toxins to treat brain ischemia.

Toxin/Substance Species of origin Effects Experimental model Reference

ω-conotoxin MVIIC Conus magus (snail) Neuroprotective
Reduces Ca2+ influx and glutamate
release
Reduces hemorrhage
Improves performance in behavioral
tests

Spinal cord neuronal cell culture
Spinal cord ischemia rat model

Liu et al., 1996;
Imaizumi et al., 1999;
Oliveira et al., 2014

ω-conotoxin MVIIA/SNX-111 Conus magus (snail) Neuroprotective
Reduce neuronal damage
Reduce infarct size
Reduce glutamate release

Rat cerebral transient focal
ischemia model
Rabbit cerebral focal ischemia
model
Rat global ischemia model

Valentino et al., 1993;
Zhao et al., 1994;
Takizawa et al., 1995;
Buchan et al., 1994;
Perez-Pinzon et al., 1997

ω-conotoxin GVIA Conus geographus
(snail)

Neuroprotective
Reduces glutamate release

Rat cortical neuronal culture
hypoxia model
Rabbit spinal cord transient
ischemia model

Madden et al., 1990;
Wang et al., 1992

PhTx3 (Tx3-3 and Tx3-4) Phoneutria nigriventer
(spider)

Neuroprotective
Reduce Ca2+ and glutamate
release
Restore normal neurotransmission

Rat hippocampal slices ODLG
model
SN56 cells ODLG model

Pinheiro et al., 2006;
Guatimosim et al., 1997;
Miranda et al., 1998;
Reis et al., 1999

Psalmotoxin-1 (PcTX) Psalmopeous
cambridgei (spider)

Reduces infarct volume, neuronal
damage and oxidative stress
Reduces excessive NMDA NR1
subunit and DARPP-32
phosphorylation
Antiapoptotic

Rat cerebral transient focal
ischemia model
Piglet model of asphyxia-induced
cardiac arrest
Hypertensive rat model of transient
MCA occlusion

Escoubas et al., 2000a;
Xiong et al., 2004;
Pignataro et al., 2007;
Saez et al., 2011;
Yang Z.J. et al., 2011;
McCarthy et al., 2015

Huwentoxin-I (HWTX-I) Ornithoctonus huwena
(spider)

Antiapoptotic Rat global ischemia-reperfusion
model

Wang et al., 2007

Serine proteases Bothrops asper
and brazili
(snakes)

Promote angiogenesis Endothelial, Fibroblast and HEK293
cell culture
Agarose plug transplantation assay

Bhat et al., 2016

rLj-RG Lampetra japonica (fish) Neuroprotective
Antiapoptotic

Rat middle cerebral artery occlusion
model

Lu et al., 2016

TABLE 4 | Animal toxins to treat glaucoma.

Toxin/Substance Species of origin Effects Experimental model Reference

FrPbAII
Parawixin 1
PbTx1.2.3

Parawixia bistriata
(spider)

Neuroprotective Rat retinal cells culture
ischemia/reperfusion model

Fontana et al., 2003;
Beleboni et al., 2006;
Fachim et al., 2015

PhTx3-3
PhTx3-4

Phoneutria nigriventer
(spider)

Neuroprotective
Reduce ROS, oxidative stress
and degradative enzymes

Rat retinal cells culture
ODLG model
In vivo NMDA intravitreal
administration in rats

Agostini et al., 2011;
Binda et al., 2016

(Lee et al., 2014, 2015). Another in vitro study used NSC43
motor neuronal cells transfected with either WT or a GFP-
hSOD1G58R construct to assess BV treatment effects (Kim et al.,
2013). GFP-hSOD1G58R overexpression induced formation of
SOD1 inclusions and inhibited proteasome activity. Both effects
were reverted by BV treatment, although no autophagic pathway
was activated (Kim et al., 2013).

Finally, some studies have demonstrated that the SSM venom
has a positive effect on various diseases, including cancer, stroke
and epilepsy (Gomes et al., 1983; Cai et al., 2013). However, in
most studies, SSM extract and not isolated toxins was tested.
SSM extract was also investigated in ALS pathology. Treatment
with SSM extract significantly protected hSOD1G93A mice lumbar
spinal cord cells from neurodegeneration (Cai et al., 2013).

Thus, compounds found in BV and SSM venom are potential
therapeutic tools to treat ALS (Table 5).

Multiple Sclerosis
In contrast to the other neurodegenerative diseases, MS is an
autoimmune disease, remarkably characterized by pathologic
inflammation and increased immunologic activity (Katz Sand,
2015; Pawate and Bagnato, 2015). MS is often described as
a T cell-mediated disease, as a common MS feature is that
Th-17 CD4+ cells cross the BBB and cause neuronal damage
such as axon demyelination and neuronal cell death (Kebir
et al., 2007). Th-17 lymphocyte cells secrete interleukin-17, an
inflammatory mediator that is inhibited by IFNβ. Indeed, the
approval of therapeutic administration of IFNβ to MS patients in
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TABLE 5 | Animal toxins to treat amyotrophic lateral sclerosis.

Toxin/Substance Species of origin Effects Experimental model Reference

Bee venom
Mellitin

Apis mellifera (Honey bee) Increase survival
Improve motor function
Anti-inflammatory
Neuroprotective
Reduce α-synuclein misfolding

hSOD1G93A mice
hSOD1G58R mice

Yang et al., 2010;
Yang E.J. et al., 2011;
Kim et al., 2013

SSM venom extract Scolopendra subspinipes
mutilans (centipede)

Neuroprotective hSOD1G93A mice Cai et al., 2013

1993 was a landmark for disease treatment (Paty and Li, 1993).
Men are twice as likely to be affected by the disease and the
main symptoms are gait problems, visual impairment, fatigue,
sexual and bladder dysfunctions (smooth muscle dysfunctions),
dementia and others (Halbreich, 1993). MS pathogenesis is
complex and can be classified according to disease progression.
A recent review has summarized the current classification of
the five MS subtypes: Relapse remitting MS, clinically isolated
syndrome, radiologic isolated syndrome, primary progressive
MS and secondary progressive MS (Lublin, 2014). The majority
of MS cases (∼80%) are relapse remitting, which means that
acute periods of disease exacerbation are followed by periods of
complete recover and stability.

All MS available treatments are aimed toward reducing
relapse frequency and severity, avoid permanent disability and
delay or even prevent progression to secondary progressive MS,
although so far no curative drug has been developed (Ontaneda
et al., 2012; Kamm et al., 2014). Approved drugs are glatiramer
acetate, teriflunomide, natalizumab, fingolimod, mitoxantrone,
and different isoforms of IFNβ. Corticosteroids have also long
been applied for treating the inflammatory and immunomediated
character of the disease (Ontaneda et al., 2012; Kamm et al.,
2014).

Fortunately, current pharmacotherapy for MS is constantly
expanding, even though only modest improvements are achieved
through these drugs, which implicates in an ongoing need for
novel therapeutic options. Venom based therapy in MS has
been explored in several studies showing some positive evidences
(Table 6). ShK, a sea anemone (Stichodactyla helianthus) toxin
blocker of Kv1.3 channels, which are crucial for activated T
lymphocytes action, has shown beneficial effects on autoimmune
encephalomyelitis, a MS rat model (Norton et al., 2004). Scorpion
venom components have long been described as therapeutic

options to treat the disease. Impaired nerve conduction was
reversed by scorpion venom treatment (Adam et al., 1966;
Bostock et al., 1978). Furthermore, a case report describes that
a 43 year old man affected by MS for 3 years was bitten by a
scorpion and several improvements in MS symptoms took place
until the man was completely asymptomatic for the following
2 months (Breland and Currier, 1983). Kaliotoxin, isolated from
scorpion venom, is also a highly selective blocker of Kv1.3
channels. Positive results in the experimental encephalomyelitis
model are also available for this toxin blocking lymphocytes T
action (Breland and Currier, 1983; Beeton et al., 2001).

In some MS lesions, penetration of fibrinogen into the brain
through damaged parts of the BBB contributes to the pathological
process of the disease. Increased fibrin deposition on lesion
sites has been reported in subjects with MS (Adams et al.,
2004). Experimental evidences suggest that preventing fibrin
deposition enhances nervous system regeneration capability
(Akassoglou et al., 2000). Batroxobin, a toxin from the South
American viper Bothrops atrox moojeni, reduces circulating
levels of fibrinogen through conversion to an insoluble form.
Treatment with batroxobin suppressed clinical signs of auto
immune encephalomyelitis in rats by preventing fibrin deposition
(Inoue et al., 1996; Iwai et al., 1999). Several other snake venoms
are also rich in anti-fibrinogen components such as ancrod and
crotalase, from the venoms of Calloselasma rhodostoma and
Crotalus adamanteus, respectively, providing further research
substrates for MS applications (Bell, 1997; Dempfle et al.,
2000). Finally, regarding snake derived compounds, CAM-
NTX, a modified derivative of cobratoxin, induces resistance to
experimental allergic encephalomyelitis and reduces lymphocyte
brain infiltration on a guinea pig model (Hinman et al., 1999).
Altogether, this evidence suggests a possible role for snake venom
therapy in MS.

TABLE 6 | Animal toxins to treat multiple sclerosis.

Toxin/Substance Species of origin Effects Experimental model Reference

Shk Stichodactyla helianthus
(sea anemone)

Blocks pathological
T-lymphocyte cells activation

Autoimmune
encephalomyelitis rat

Norton et al., 2004

Kaliotoxin Scorpion venom Blocks pathological
T-lymphocyte cells activation

Autoimmune
encephalomyelitis rat

Breland and Currier, 1983;
Beeton et al., 2001

Bee Venom Apis mellifera
(Honey bee)

Ameliorates disease symptoms
Reduces inflammatory markers

Autoimmune
encephalomyelitis rat

Karimi et al., 2012

Bee Venom Apis mellifera
(Honey bee)

Reduces fatigue
Improves motor function
(coordination, strength, balance)

Clinical Trials Hauser et al., 2004;
Castro et al., 2005;
Wesselius et al., 2005
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BV and its components are also under investigation as
drug candidates against MS. On the preclinical experimental
encephalomyelitis rat model, administration of BV decreased
disease symptoms and serum levels of TNF-α and nitrate
(Karimi et al., 2012). Clinical evaluations of BV therapy have
also been carried out with inconclusive results so far. In
2001, a clinical trial with 51 MS subjects receiving at least
weekly shots of BV was completed. Although the study showed
some limitations as difficulty to determine whether observed
improvements came from BV therapy or periods of disease
relapse, and the fact that two different sources of BV had to
be used throughout the experiment, the study was completed
with positive outcomes (Hauser et al., 2004). An overall analysis
of symptoms improvement showed that 68% of the subjects
declared some kind of positive effect from BV therapy. Most
noticeable improvements were reduced fatigue, increased energy
levels for everyday activities, improved balance and coordination,
muscular strength, and bladder control (Hauser et al., 2004).
Later on, in 2005, two other clinical studies investigated BV
therapy (Castro et al., 2005; Wesselius et al., 2005). The first
study had a total of nine MS subjects enrolled. Although four
of the nine cases experienced some worsening of neurological
symptoms, the five remaining cases informed some subjective
amelioration of disease symptoms. No intense side effects were
reported from BV therapy (Castro et al., 2005). The second study
was a larger randomized crossover study conducted with 26 MS
subjects receiving bee stings three times a week for 24 weeks
(Wesselius et al., 2005). Again, BV therapy was well tolerated
with no significant adverse side effects. However, the number
of new gadolinium-enhancing lesions, an important diagnostic
criterion for evaluating MS progression, was unchanged by BV
therapy. Furthermore, relapse rate, fatigue, muscular disability
and overall life quality were also unchanged after BV treatment
(Wesselius et al., 2005). In sum, these data indicate that BV
therapy efficacy might be dependent on the protocol used (e.g.,
number of shots per week), the study subjects (i.e., relapse-
remitting vs. secondary-progressive cases), and the models used.
Although side effects have not been a concern, it cannot be ruled
out as limitations for BV therapy until further data from larger
studies are collected.

PERSPECTIVES FOR FUTURE USE OF
ANIMAL TOXINS

Venoms are fruitful natural sources of new molecules, which
have been relentlessly enhanced by evolution through natural
selection. Generally, venom components possess peculiar
characteristics such as low-molecular mass, stability, high
potency, apart from selectivity and affinity for a wide variety of
targets in mammalian systems (Jones and Bulaj, 2000; Casewell
et al., 2013). The studies discussed in this review highlight toxins
exhibiting potential for either decreasing or even inhibiting the
progression of neurodegenerative processes. However, despite all
these studies about the application of animal toxins as therapeutic
tools to treat neurodegenerative processes, few molecules were
tested in clinical trials. In this review, we mentioned BV clinical

trials in subjects with PD (Cho et al., 2012; Hartmann et al.,
2016) and SNX-111 in subjects with cerebral ischemia (Heading,
2001; Smith and Deer, 2009). The low representativeness of these
studies is due to several reasons. First, the scientific evidences
showing benefits of a particular toxin in a neurodegenerative
disease are not, in most cases, sufficiently strong to justify
the studies in humans. Most of the studies described are still
preliminary, and often were performed without the correct
controls and/or using just one animal model. Among the studies
that have compared the effectiveness of a toxin and another
drug used as positive control, we could highlight the studies
investigating BV and the dopamine agonist pramipexole in a PD
model (Kim et al., 2011); a study that compares BVPLA2 with
donepezil, a FDA-approved drug that inhibit cholinesterase in
an AD model (Ye et al., 2016b); as well as studies comparing the
performance of Phoneutria nigriventer toxins to Conus toxins in
ischemia models (Pinheiro et al., 2006, 2009). Second, the animal
models employed to study neurodegenerative diseases possess
several limitations, mainly due to our restricted knowledge about
disease etiology (Dauer and Przedborski, 2003; Jucker, 2010).
Most neurodegenerative diseases are a consequence of sporadic
factors or the sum of neuropathological events, making it difficult
to develop an animal model that recapitulates all the complex
clinical features of human diseases. For instance, most animal
models are generated through genetic mutation, recapitulating
familial neurodegenerative diseases, which only represent a small
fraction of the cases. Thus, without employing reliable animal
models, it is difficult to select and test toxins to be used in clinical
trials. The third reason for this lack of success is that many of
the studies described here used crude venom without evaluating
the compounds in isolation, which restricts the knowledge about
the neuroprotective mechanisms and hinder studies aiming
to enhance compound pharmacological properties. In most
cases, the methodological approach to separate the different
compounds present in venom can be daunting. In addition,
we have to consider the difficulty to obtain biologically active
fractions. Research involving animal venoms is not a trivial task
and there are many bioanalytical challenges to overcome, as well
as the intrinsically time-consuming process of elucidation the
occurrence of synergistic actions between components present
in the poison (Bliss, 1939). The fourth reason is that the amount
of venom obtained from animals is insufficient to perform all
the necessary experiments and tests. As mentioned previously,
venoms are extremely potent and, thus, small amounts are
sufficient for animals’ need, such as defending themselves from
predators or attacking prey. Although most research with animal
toxins uses native proteins that are obtained directly from
animals, an alternative approach would be synthesis either by
recombinant expression or chemical production (Zhao et al.,
1994; Perez-Pinzon et al., 1997; Lu et al., 2016; Smith et al.,
2016).

Recombinant proteins are produced by employing the
recombinant DNA technique, whereby the DNA sequence
encoding the protein of interest is inserted into a plasmid
and subsequently introduced into a host organism, such as
bacteria or yeast, which will be induced to express the gene
of interest. This method enables the production of proteins
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that are the same or similar to the original, facilitating the
acquisition of large quantities and/or with superior activity
(Cohen et al., 1973; Harris et al., 1986; Kopetzki et al., 1989).
However, production of recombinant proteins is not an easy
assignment and depends on the proper selection of suitable
hosts and vectors. Besides, there is no guarantee to obtain a
structurally active protein at the end of the process. Toxins are
molecules that possess many cysteine and disulfide bridges that
are important for protein proper folding, which makes their
production even more difficult with aggregation often limiting
the yield of properly folded proteins (Fahnert, 2012). These
problems occur because, in most cases, the primary host of choice
for the production of recombinant proteins is bacteria, mainly
Escherichia coli. Undoubtedly, the production of recombinant
proteins in prokaryote systems has revolutionized biochemistry.
Bacterial protein expression systems are popular because they
are easy to culture, fast growing and yield large quantities of
recombinant protein. However, if eukaryotic post-translational
modifications (like disulfide bridges) are indispensable for
protein folding and activity, a prokaryotic expression system
may not be convenient (Rosano and Ceccarelli, 2014; Stefan
et al., 2015). In that case, mammalian or insect cells may be a
more suitable system for recombinant protein production. These
systems are able to facilitate protein proper folding and enable
post-translational modifications, which are important for full
biological activity. Despite these advantages, these expression
systems are not widely used due to their high cost, complicated
technology, and potential for contamination with proteins from
mammalian cell viruses (Khan, 2013). Chemical synthesis of
proteins, especially using established solid-phase techniques is a
fast and effective technique, and can be employed to overcome
some of the disadvantages of current protein production methods
using cell systems (Marglin and Merrifield, 1970; Borgia and
Fields, 2000; Kent, 2003). However, this methodology also has
its limitations, such as aggregation of growing peptide chains,
numerous secondary reactions and low yields of long peptides
(>25–30 residues) (Nilsson et al., 2005).

Despite all the limitations of the studies performed and the
difficulties in obtaining toxins, either from the native source or by
artificial methods, their neuroprotective abilities are undeniable.
Moreover, many drugs approved during the past decades are
based on animal’s toxins or their compounds. Some successful
examples are Prialt R© (ziconotide), which is a synthetic version

of ω-conotoxin MVIIA found in the venom of the fish-eating
marine snail, Conus magus, and used to treat severe chronic
pain (Heading, 2001; McGivern, 2007); angiotensin I-converting
enzyme inhibitors, derived from the venom of the South
American Lancehead snake (Bothrops jararaca), which was the
lead compound used for the development of anti-hypertensive
drugs such as Captopril R© and its analogs (Rocha et al., 1949;
Ferreira et al., 1970; Cushman and Ondetti, 1980); the inhibitor
of platelet aggregation drug Aggrastat R© (tirobifan), derived from
the venom of the saw scaled viper Echis carinatus (Garsky
et al., 1989); Integrilin R© (Eptifibatide), an anticoagulant drug
derived from the venom of the southeastern pygmy rattlesnake
(Sistrurus miliarius barbouri) (Platelet Glycoprotein IIb/IIIa in
Unstable Angina: Receptor Suppression Using Integrilin Therapy
(PURSUIT) Trial Investigators, 1998; Hashemzadeh et al., 2008);
and Byetta R© (exenatide) derived from the venom of the Gila
monster (Heloderma suspectum) and used as treatment for
diabetes type II (Nielsen et al., 2004; Triplitt and Chiquette,
2006). Therefore, it is possible that in the near future animal
toxins might offer new and effective therapeutic options,
facilitating the development of disease-modifying drugs to treat
neurodegenerative diseases.
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