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Malaria is a life-threatening infectious disease caused by parasites of the genus
Plasmodium, affecting more than 200 million people worldwide every year and leading
to about a half million deaths. Malaria parasites of humans have evolved resistance
to all current antimalarial drugs, urging for the discovery of new effective compounds.
Given that the inhibition of deoxyuridine triphosphatase of Plasmodium falciparum
(PfdUTPase) induces wrong insertions in plasmodial DNA and consequently leading
the parasite to death, this enzyme is considered an attractive antimalarial drug target.
Using a combi-QSAR (quantitative structure-activity relationship) approach followed by
virtual screening and in vitro experimental evaluation, we report herein the discovery
of novel chemical scaffolds with in vitro potency against asexual blood stages of
both P. falciparum multidrug-resistant and sensitive strains and against sporogonic
development of P. berghei. We developed 2D- and 3D-QSAR models using a series
of nucleosides reported in the literature as PfdUTPase inhibitors. The best models
were combined in a consensus approach and used for virtual screening of the
ChemBridge database, leading to the identification of five new virtual PfdUTPase
inhibitors. Further in vitro testing on P. falciparum multidrug-resistant (W2) and sensitive
(3D7) parasites showed that compounds LabMol-144 and LabMol-146 demonstrated
fair activity against both strains and presented good selectivity versus mammalian cells.
In addition, LabMol-144 showed good in vitro inhibition of P. berghei ookinete formation,
demonstrating that hit-to-lead optimization based on this compound may also lead to
new antimalarials with transmission blocking activity.
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INTRODUCTION

Malaria is an infectious disease caused by protozoans of the
genus Plasmodium and transmitted through the bite of insect
vectors of the genus Anopheles. Plasmodium falciparum is the
most prevalent and lethal species infecting humans in the African
continent, being responsible for 99% of all malaria-attributed
deaths (World Health Organization [WHO], 2016). Despite
the fact that integrated control interventions have achieved
significant progress in the reducing malaria cases and related
mortality in recent years, malaria still causes 429,000 deaths every
year, being endemic in 91 countries and territories of sub-Saharan
Africa, South-East Asia, Latin America, and the Middle East
(World Health Organization [WHO], 2016).

When compared to viruses and bacteria, these eukaryotic
protozoans present a larger genome, have multiple stages in their
life cycle, and a complex biology, which hinder the development
of vaccines (Hoffman et al., 2015). Consequently, malaria control
strategies largely rely on drug-dependent case management.
Currently, artemisinin-based combination therapy (ACT) is the
recommended official treatment for malaria. However, resistance
to artemisinins has been detected in five countries in the
Greater Mekong sub region of South-east Asia, endangering the
future of P. falciparum elimination (Vogel, 2014; World Health
Organization [WHO], 2016; Thu et al., 2017). Therefore, there
is an urgent need for the discovery and development of new
antimalarial therapies.

The enzyme 2′-deoxyuridine 5′-triphosphate nucleotide
hydrolase (dUTPase) has emerged as a promising biological
target in P. falciparum, and it is responsible for the hydrolytic
cleavage of dUTP (deoxyuridine triphosphate) in dUMP
(deoxyuridine monophosphate) and pyrophosphate (Nyman,
2001). The inhibition of dUTPase may cause dUTP accumulation
and erroneous incorporation of uracil into DNA, leading to
parasite death. Although another enzyme, DNA glycosylase,
could repair the erroneous insertions, the excessive number
of repairs would result in a fatal break of DNA strand
(Whittingham et al., 2005). Given that DNA replication in
Plasmodium takes place in all distinct stages of the parasite
life cycle and given the importance of the enzyme dUTPase
in this process, this enzyme is expressed in both asexual
and sexual stages of the parasite (ring, trophozoite, schizont,
gametocyte, and ookinete), as demonstrated in previous studies
on P. falciparum 3D7 and P. berghei (López-Barragán et al.,
2011; Otto et al., 2014). Thus, dUTPase inhibitors might not only
act against blood-stage parasites, but also could block parasite
transmission/development in mosquitoes. Experimental findings
categorize dUTPase as essential for various organisms, such as
Escherichia coli, Saccharomyces cerevisiae, and Mycobacterium
smegmatis (El-hajj et al., 1988; Gadsden et al., 1993; Pecsi
et al., 2012). The dUTPase of P. falciparum (Pf dUTPase) is an
attractive target for the development of selective inhibitors since
it presents relatively low sequence similarity with its human
ortholog HsdUTPase (28.4% identity) (Whittingham et al., 2005).

Due to the importance of dUTPase in the parasite’s DNA
repair, we decided to use computer-aided drug design (CADD)
approaches for discovering new dUTPase inhibitors. In the last

several decades, CADD approaches have been widely applied in
early stages of drug discovery, making the process faster and more
financially viable (Leelananda and Lindert, 2016). Among these
approaches, quantitative structure-activity relationships (QSARs)
have been extensively used for lead optimization and virtual
screening (Verma et al., 2010). Different QSAR approaches have
been used by our group for identification of new promising hits
for infectious diseases (Melo-Filho et al., 2016; Neves et al., 2016;
Gomes et al., 2017).

In this work, we applied a combi-QSAR approach, combining
2D- and 3D-QSAR models, in a virtual screening campaign of
the ChemBridge database for selection of new antimalarial virtual
hits. Finally, we performed in vitro experimental evaluation
of the potential Pf dUTPase inhibitors against chloroquine-
sensitive and multidrug-resistant strains of P. falciparum, and
in gametocyte to ookinete conversion of P. berghei, aiming to
identify new potential and selective antimalarial hits.

MATERIALS AND METHODS

The steps of the modeling study are briefly presented in
Figure 1. The workflow encompasses the following steps: (i)
data compilation and integration; (ii) data curation; (iii) model
generation; (iv) virtual screening and (v) experimental validation.
Our workflow was built following the best practices of QSAR
modeling and CADD (Tropsha, 2010; Cherkasov et al., 2014).

Dataset Preparation
2D and 3D QSAR models were built using a series of Pf dUTPase
inhibitors reported in the literature (Supplementary Table S1)
(Nguyen et al., 2005, 2006; Whittingham et al., 2005; McCarthy
et al., 2009; Baragaña et al., 2011; Hampton et al., 2011; Ruda
et al., 2011). The data set was prepared and curated according
to the protocol described by Fourches et al. (2010, 2015,
2016). Counterions were removed as chemotypes, and specific
and nitroaromatic groups were standardized using Standardizer
(v. 6.1, ChemAxon, Budapest, Hungary1). Duplicates were
identified using ISIDA Duplicates program (Varnek et al.,
2008) and HiTQSAR (Kuz’min et al., 2008). If values of
properties of identical compounds were equal, one of these
compounds was kept in the data set. However, if properties were
significantly different, all records were removed. After curation,
127 compounds (Supplementary Table S1) with activity against
Pf dUTPase were kept for molecular modeling. The activity
against both Plasmodium and human enzymes was available only
for 45 compounds and used for calculation of selectivity (S)
(Eq. 1). The activity was represented as K i (inhibition constant)
and converted to the corresponding pK i (−logK i). In a similar
approach, selectivity was converted to the logarithmic scale:

S = log
HsdUTPase Ki
PfdUTPase Ki

(1)

Values of S greater than zero indicate selective compounds while
values below zero indicate compounds with poor selectivity.

1http://www.chemaxon.com
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FIGURE 1 | General workflow of the computer-aided design and discovery of new antimalarial hits using Combi-QSAR models for virtual screening followed by
experimental validation. Briefly, the following steps were performed: (1) data integration and compilation; (2) data curation; (3) QSAR models generation and
validation; (4) virtual screening of the ChemBridge database and selection of the compounds with higher predicted potency and selectivity; (5) experimental validation
against P. falciparum asexual blood stages, P. berghei sexual stage, and mammalian COS7 cells; (6) identification of novel antimalarial hits; (7) molecular docking of
the most promising antimalarial hit in plasmodial and human dUTPase.

The data sets were divided into training and test sets using
the Hierarchical Cluster Analysis method (HCA) available in
the SYBYL v.1.2 (SYBYL-X 1.2, Tripos International, St. Louis,
MO, United States). Molecules representing each cluster were
manually selected for test set to maximize the coverage across
the entire range of inhibition activity and selectivity. The final
proportion between training and test set compounds was 3:1.

HQSAR
Hologram QSAR (HQSAR), available on SYBYL-X v.1.2
(SYBYL-X 1.2, Tripos International, St. Louis, MO, United States;
TRIPOS, 2010a), was used to build 2D QSAR models. Holograms
were generated using six distinct fragment sizes (2–5, 3–6, 4–
7, 5–8, 6–9, 7–10 atoms) over a series of hologram lengths
(53–997). Different combinations of fragment distinction were
also considered, such as atoms (A), bonds (B), connectivity
(C), hydrogen atoms (H), chirality (Ch), and hydrogen bond
donor/acceptor (DA).

Conformer Generation and Atomic
Charges Assignment
The structures were converted into 3D format, and initial
conformations were generated using the OMEGA v.2.5.1.4
(Hawkins et al., 2010; OMEGA 2.5.1.4: OpenEye Scientific
Software, Santa Fe, NM, United States2). Two different
methods were used for the calculation of the partial atomic
charges: the empirical method of Gasteiger-Hückel available
on SYBYL-X v.1.2 (SYBYL-X 1.2, Tripos International, St.
Louis, MO, United States) and the semi-empirical AM1-BCC
(Jakalian et al., 1999, 2002) implemented in QUACPAC v.1.6.3.1
(QUACPAC 1.6.3.1: OpenEye Scientific Software, Santa Fe, NM,
United States2). The protonation state of the molecules were
performed at pH 7.4, using QUACPAC 1.6.3 (QUACPAC 1.6.3.1:
OpenEye Scientific Software, Santa Fe, NM, United States2).

2http://www.eyesopen.com
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Molecular Alignment
Compounds were submitted to three different molecular
alignments: (i) alignment based on the morphological similarity
function implemented in Surflex-Sim, accessible in SYBYL-X
1.2 (SYBYL-X 1.2, Tripos International, St. Louis, MO,
United States); (ii) shape-based alignment from ROCS 3.2.1.4
software (Hawkins et al., 2007; ROCS 3.2.1.4: OpenEye
Scientific Software, Santa Fe, NM, United States2); and (iii)
alignment by molecular docking of molecules on Pf dUTPase,
using OEDocking 3.0.1 software (OEDocking 3.2.0.2: OpenEye
Scientific Software, Santa Fe, NM, United States2). For the last
alignment, X-ray crystal structure of Pf dUTPase complexed with
the inhibitor 2′,5′-dideoxy-5′-[(diphenylmethyl)amino]uridine
(PDB ID: 3T64) (Hampton et al., 2011) was imported to Maestro
v. 9.3 (Epik version 3.0, Schrödinger, LLC, New York, NY,
United States, 2014.) and prepared using Protein Preparation
Wizard, where hydrogen atoms were added according to Epik
v. 2.7 (Epik version 3.0, Schrödinger, LLC, New York, NY,
United States, 2014.; Shelley et al., 2007) (pH 7.4 ± 0.5),
and minimized using the OPLS-2005 force field (Banks et al.,
2005). On Make Receptor tool, available on OEDocking 3.0.1
(OEDocking 3.2.0.2: OpenEye Scientific Software, Santa Fe,
NM, United States2), the receptor grid was generated with
dimensions 22.34 Å × 19.65 Å × 25.24 Å and volume
of 11,078 Å3. All compounds of the data set were docked
and the best pose for each molecule was selected for
alignment.

3D-QSAR
Comparative Molecular Field Analysis (CoMFA) and
Comparative Molecular Similarity Indices Analysis (CoMSIA),
available in SYBYL-X v.1.2 (SYBYL-X 1.2, Tripos International,
St. Louis, MO, United States; TRIPOS, 2010b), were used to build
3D QSAR models for Pf dUTPase inhibitors.

CoMFA
The aligned training set molecules were placed in a 3D lattice box
with grid spacing of 2 Å. Then, CoMFA steric and electrostatic
fields were calculated at each grid point with the Tripos force
field using a carbon atom probe with sp3 hybridization (Csp3)
and charge +1.0. The energy cutoff was set to 30 kcal/mol. The
standard deviation coefficient method (SDC) was used for region
focusing with values varying from 0.3 to 1.5.

CoMSIA
The models were generated using the same molecular
alignments used for CoMFA. The aligned compounds
were placed in the 3D lattice box with grid spacing of 2
Å. The steric, electrostatic, hydrophobic, hydrogen bond
donor and acceptor descriptors were calculated at each
grid point. A probe carbon atom with radius of 1.0 Å and
charge +1.0, was used to obtain the similarity indices.
A Gaussian function was used to describe the energy terms
according to the distance between the probe atom and aligned
molecules. The attenuation factor (α) was used on default
value of 0.3.

Generation and Validation of QSAR
Models
Partial least squares regression (PLS) was used for development of
statistical models (Lindberg et al., 1983). The internal validation
of QSAR models was performed using the full cross-validation r2

(q2) leave-one-out (LOO) method. The predictive ability of the
models was assessed by Q2

ext (Tropsha et al., 2003) estimated on
external set compounds that were not used for model building or
selection. The consensus models were obtained by combination
of three QSAR models (HQSAR + CoMFA + CoMSIA). The
models were built and used separately for predictions. The
predicted activity of each compound by the consensus model
was the result of the arithmetic mean of individual models
predictions. The external validation of these models was done
using the same metrics as for individual models.

Virtual Screening
The virtual screening of new potential Pf dUTPase inhibitors
was performed on Hit2Lead library of the ChemBridge database
(ChemBridge Online Chemical Store, 2017). All compounds were
prepared using the same protocol and software used in the
preparation of the modeling dataset. The methods of alignment
and partial charges calculation were the same used in the
best individual CoMFA and CoMSIA models. Then compounds
had their activity and selectivity predicted by the consensus
QSAR models. Two criteria were used for selection of virtual
hits: (i) compounds should have the highest predicted potency
against Pf dUTPase (predicted pK i); (ii) the predicted selectivity
(S) should be greater than zero. Furthermore, some ADMET
properties were predicted for the best virtual hits, such as
physicochemical properties (logP and logS)3), acute oral toxicity
by GUSAR4 (Filimonov et al., 2004; Lagunin et al., 2009, 2011),
carcinogenicity using admetSAR5 (Cheng et al., 2012), and hERG
K+ channel blockage using Pred-hERG6) (Alves et al., 2014;
Braga et al., 2014, 2015).

Molecular Docking
The selected virtual hits were submitted to molecular docking
in Glide (Friesner et al., 2004), available on Maestro v. 9.3.5, to
predict their binding mode in Pf dUTPase and human dUTPase
(HsdUTPase). Ligands were prepared on LigPrep module of
Maestro software, the correct protonation states and energy
minimization were performed on Epik v. 2.7 (pH 7.4 ± 2.0)
using OPLS-2005 force field. The previously prepared structure
of Pf dUTPase, used for docking-based alignment, was used
here. The search space was defined as a box with 10 x 10 x
10 Å3. The box was centered on the geometrical center of co-
crystallized ligand (−7.7431 Å × 27.0662 Å × −3.9483 Å, x, y
and z axes, respectively). The structure of HsdUTPase (PDB ID:
3ARA, resolution of 1.7 Å) (Miyakoshi et al., 2012) was prepared
using the same protocol described for plasmodial enzyme. The
grid was defined with dimensions 10 × 10 × 10 Å3 and was

3http://www.hit2lead.com/
4http://cactus.nci.nih.gov/chemical/apps/cap
5https://omictools.com/admetsar-tool
6http://labmol.com.br/predherg/
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centered on the co-crystallized ligand at 6.3901 Å × 11.1138
Å × −17.3607 Å, x, y and z coordinates. After docking, the
poses of each virtual hit were submitted to rescoring using
the Molecular Mechanics/Generalized Born Surface Area (MM-
GBSA) approach, available on Prime v.3.1 (Prime version 3.1,
Schrödinger, LLC, New York, NY, United States, 2014), using
default conditions.

Experimental Evaluation
Plasmodium Culture
Chloroquine-sensitive (3D7) and multidrug-resistant (W2)
strains were cultured in RPMI 1640 medium supplemented with
0.05 mg/mL gentamycin, 38.4 mM HEPES, 0.2% sodium
bicarbonate, and 10% O+ human serum, as previously
described in a standardized protocol (Trager and Jensen,
1976). Then, erythrocytes were added to the culture to
obtain a 5% hematocrit, and incubated at 37◦C under
5% CO2 atmosphere, with daily exchange of medium.
The parasitemia was monitored daily in smears stained
with Giemsa. Synchronic cultures in the ring stage were
obtained by two consecutive treatments at 48 h intervals
with a 5% solution of D-sorbitol (Lambros and Vanderberg,
1979).

Determination of Growth Inhibition by SYBR Green I
Parasites synchronized at the ring stage, with 0.5% parasitemia
and 2% hematocrit were distributed in each well, separately.
The compounds were tested in triplicates, using 12 point of
concentration, prepared in two-fold dilution (40 µM – ∼0.019
µM) over 72 h. Chloroquine and pyrimethamine were used
as control. Subsequently, the in vitro susceptibility of parasite
to tested drugs was measured by SYBR Green according to
Hartwig et al. (2013). Briefly, 100 µL of lysis buffer (20 mM
Tris, 5 mM EDTA, 0.008% wt/vol saponin, 0.08% vol/vol
Triton X-100, and 0.4 µL/mL of SYBR Green) were added
in each well of a new black 96-well plate and 100 µL
of parasite culture incubated with drugs were added. After
homogenization, the plates were incubated for 1 h in the
dark. Fluorescence was measured at 490 nm excitation and
540 nm emission (CLARIOstar, Labtech BMG). The IC50 was
calculated by plotting the Log doses vs. Inhibition (expressed
as a percentage relative to the control) in Prism 6 (GraphPad
Software Inc.).

Cytotoxicity Assay
Cytotoxicity assays used COS7 cells (fibroblast-like cell lines
derived from monkey kidney tissue), grown in DMEM medium
supplemented with 10% fetal bovine serum and 0.05 mg/mL
gentamicin in atmosphere containing 5% CO2 at 37◦C. Drug
cytotoxicity in COS7 cells was determined in duplicate, using
12 point of concentration, prepared in two-fold dilution (200
µM – ∼ 0.097 µM). After the incubation period (72 h), the
cell viability analysis were done by the MMT reduction method
(3-[4,5-dimethyl-thiazol-2-yl]-2,5-diphenyltetrazolium chloride
(Mosmann, 1983). The optical density was determined at
570 nm (CLARIOstar, Labtech BMG) and the 50% cytotoxicity
concentrations (CC50) was expressed as the percent viability

relative to the control. The selectivity index of the compounds
was determined by the following expression:

S =
COS7 CC50

Pf IC50
(2)

Where COS7 CC50 corresponds to the 50% cytotoxic
concentration on COS7 cells and Pf IC50 is the 50 % inhibitory
concentration on P. falciparum (3D7).

Ookinete Assay
All animal procedures were carried out in accordance to
the Brazilian College of Animal Experimentation (COBEA).
This research protocol was approved by the Ethics Committee
of the Institute of Biomedical Sciences – University of Sao
Paulo, protocol number 132/2014-CEUA. C57BL/6 mice received
an intraperitoneal injection of P. berghei ANKA infected
erythrocytes, and four days after infection, a mouse with
parasitemia between 4 and 6% and gametocytemia > 0.4% was
selected as blood donor for cardiac puncture. Four microliters of
the infected blood was dispensed in 80 µl of ookinete medium
(Blagborough et al., 2012) at 21◦C with DMSO control or with 10
µM of the tested compounds. The assay was incubated at 21◦C
for 24 h and 2 µl of the blood at the bottom of the tubes was
spread onto a glass slide, stained with Giemsa and analyzed under
a direct light microscope. The total number of formed ookinetes
were counted in each slide (triplicate for each condition), and
inhibition was calculated in relation to the total ookinetes formed
in the control condition.

RESULTS AND DISCUSSION

QSAR Modeling
Various combinations of hologram length, fragment size, and
fragment distinction were tested with an aim to build robust
and predictive HQSAR models. The original data set was divided
into training and test sets in a ratio of approximately 3:1
using the HCA method. The three best HQSAR models for
Pf dUTPase inhibition are shown in Supplementary Table S2.
The models displayed very similar statistical features, but the
model with fragment distinction A/C (Supplementary Table S2)
performed slightly better than others in terms of robustness
(q2

LOO = 0.70) and external predictivity (Q2
ext = 0.71). In

addition, the best model presented a Durbin-Watson metric
(Savin and White, 1977) (d) closest to the ideal value (d = 1.99),
indicating that this model is less biased. The Durbin-Watson test
is useful to evaluate the presence or absence of autocorrelation
of residuals from regression analysis. The values range from 0
to 4. Values of d near or equal to 2 indicate no autocorrelation
of residuals. Values of d < 2 or d > 2 indicate that residuals
are positively or negatively auto correlated and predictions are
more biased (Savin and White, 1977). The best HQSAR models
for selectivity (using human dUTPase data) are also presented
in Supplementary Table S2. The best model, with fragment
distinction B/C (Supplementary Table S2), showed good external
predictivity (Q2

ext = 0.83), with d-value close to the reference
value (d = 2.02). The plots comparing the experimental and
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predicted biological activity for the best HQSAR models are
shown in Supplementary Figures S1A,D. These plots demonstrate
a good agreement between experimental data and predictions
from the models.

The HQSAR contribution maps are useful to highlight
the relationships between specific structural fragments and
the biological property/activity. Colors close to the red end
(red, red orange, and orange) indicate fragments with negative
contribution, while colors in the green region (yellow, green
blue, and green) indicate fragments with positive contribution to
biological activity. The common substructure is represented in
cyan (Figure 2).

The contribution maps of the most potent (4) and least potent
inhibitors (127) and of the most selective (20) and least selective
inhibitor (87) are presented in Figure 2. As one can see, the trityl
ring has a positive contribution for both inhibition and selectivity
(compounds 4 and 20, Figure 2). Additionally, the absence of
the trityl group results in drastic decrease in activity against
Pf dUTPase, as observed in compounds 4 and 127 (Figures 2A,B,
respectively), and a clear decrease in selectivity, when we compare
compounds 20 and 87 (Figures 2C,D, respectively). These
observations corroborate previous studies (Whittingham et al.,
2005; McCarthy et al., 2009; Baragaña et al., 2011; Hampton
et al., 2011; Recio et al., 2011; Ruda et al., 2011; Ojha and Roy,
2013), indicating that two of the three phenyl rings from the
trityl group have significant interactions with the hydrophobic
pocket formed by residues Phe46 and Ile117 from Pf dUTPase
(Hampton et al., 2011). In contrast, in the human enzyme, such
residues are replaced by hydrophilic residues Val42 and Gly87.
Therefore, there is no corresponding hydrophobic pocket in
HsdUTPase (Whittingham et al., 2005; Hampton et al., 2011).
In a previous study by Ojha and Roy (2013), some nucleoside
inhibitors were used for QSAR studies and pharmacophore

mapping of Pf dUTPase inhibitors. The results revealed that two
phenyl rings from the trityl group are responsible for stablishing
important hydrophobic interactions and one phenyl ring may
form a π–π stacking interaction with the amino acid residue
Phe46 from Pf dUTPase (Ojha and Roy, 2013).

Two steps are critical for the development of CoMFA and
CoMSIA models: the partial atomic charge assignment and
structural alignment (Doweyko, 2004; Melo-Filho et al., 2014).
In this study, two different charges (Gasteiger-Hückel and
AM1-BCC) and three different molecular alignment approaches
(morphological similarity function on Surflex-Sim, shape-based
superposition on ROCS and alignment accessed by molecular
docking) were evaluated. The Surflex-Sim alignment was
performed using the most potent inhibitors of the data set
(compounds 1 and 2) as templates, which were used for the
flexible alignment of the remaining compounds of the data
set. The shape-based alignment was executed with previously
generated conformers. These conformers were superimposed
to compound 3, which is the co-crystallized inhibitor of
Pf dUTPase, available at Protein Data Bank (PDB code: 3T64)
(Hampton et al., 2011). The superposition was evaluated
by the TanimotoCombo score (Hawkins et al., 2010). Based
on this score, the best conformation of each compound
was selected. In the docking-based alignment, the previously
generated conformers were docked and classified using the
Chemgauss4 score function (McGann, 2011). The best conformer
for each compound was selected based on the Chemgauss4
score. Additionally, conformers were visually inspected for
selection of those with better superposition to the co-crystallized
inhibitor.

The results of the best CoMFA and CoMSIA models are
available at Supplementary Tables S3 and S4, respectively. The
plots comparing the experimental and predicted biological

FIGURE 2 | HQSAR contribution maps for the most potent PfdUTPase inhibitor of the dataset (A, Cpd. 4) and the less potent compound (B, Cpd. 127). The most
selective (C, Cpd. 20) and less selective (D, Cpd. 87) compounds are also displayed. The uracil ring, which is the common substructure, is highlighted in cyan.

Frontiers in Pharmacology | www.frontiersin.org 6 March 2018 | Volume 9 | Article 146

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-00146 March 5, 2018 Time: 17:0 # 7

Lima et al. QSAR-Driven Discovery of Antiplasmodials and Transmission Blockers

activity for the best COMFA and CoMSIA models are
shown in Supplementary Figures S1B,C,E,F. The best CoMFA
models for inhibition and selectivity presented good robustness
(q2

LOO = 0.63 and 0.86, respectively) and good external
predictivity (Q2

ext = 0.75 and 0.61). Furthermore, presented
good d values, indicating a low probability of biased predictions
(d = 1.86 and 1.99, respectively). In general, for CoMFA models,
the shape-based and Surflex-Sim alignments performed better
than the docking-based alignment (Supplementary Table S3).
The best CoMSIA models were obtained using shape-based
alignment and AM1-BCC charges (Supplementary Table S4).
The best CoMSIA model for Pf dUTPase inhibition presented
good robustness and external predictivity (q2

LOO = 0.68;
Q2

ext = 0.78, Supplementary Table S4). The best CoMSIA
model for selectivity, despite its lower internal consistence
(q2

LOO = 0.59), presented an acceptable external predictivity
(Q2

ext = 0.63), as demonstrated on Supplementary Table
S4.

The best CoMFA and CoMSIA models were used to generate
contour maps by using STDEV∗COEFF field type and the
function “contour by actual.” These maps could be useful for
designing new potent and selective Pf dUTPase inhibitors as
they indicate regions in the molecules where certain types of
interactions are favorable and unfavorable for biological activity.
The contour maps from the best CoMFA and CoMSIA models,
for both inhibition and selectivity, are presented in Figures 3, 4,
respectively.

The obtained contour maps show that bulky and hydrophobic
groups in the trityl group region are favorable for both

Pf dUTPase inhibition and selectivity (Figures 3A,C, 4A,C,D).
These results corroborate with the HQSAR contribution maps
and other studies highlighting the importance of the trytil
hydrophobic group for inhibition and selectivity. The trytil
group interacts with the hydrophobic pocket formed by
residues Phe46 and Ile117 which are missing in the human
dUTPase (Hampton et al., 2011). Thus, structural modifications
in trytil group should be further explored in order to
improve the interactions with the hydrophobic pocket and,
consequently, to help the design of novel potent and selective
Pf dUTPase inhibitors. The CoMFA and CoMSIA electrostatic
contour maps also show that electropositive groups in sugar
moiety and uracil group are favorable for inhibition and
selectivity (Figures 3D, 4B,E). Additionally, these maps show
that electronegative groups near the region of the oxygen
atom of the pentose sugar are favorable for Pf dUTPase
selectivity (Figure 4B), while electronegative groups near
the linker between the trityl group and the sugar moiety
(Figures 3B,D, 4E) are unfavorable for both inhibition and
selectivity.

The best individual HQSAR, CoMFA, and CoMSIA models
were combined in a consensus approach (Supplementary
Table S5). Thus, one consensus model for inhibition of
Pf dUTPase and another for selectivity were built. The external
validation of the consensus models was performed using the same
external evaluation set and metrics used for individual QSAR
models. The statistical characteristics of the consensus models
are presented in Table 1. Both models showed good external
predictivity (Q2

ext = 0.85 and 0.75; RMSEP= 0.40).

FIGURE 3 | Contour maps of the best CoMFA and CoMSIA models for PfdUTPase inhibition surrounding the most potent inhibitor (cpd. 1); (A,B) CoMFA steric and
electrostatic contour maps; (C,D) CoMSIA electrostatic and hydrophobic contour maps. Steric fields: green contours indicate regions where bulky groups are
favorable to biological activity; electrostatic fields: red contours indicate regions where electronegative groups are favorable for biological activity, while blue contours
indicate regions where electronegative groups are unfavorable; hydrophobic fields: cyan contours indicate regions where hydrophobic groups are favorable to
biological activity.
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FIGURE 4 | Contour maps of the best CoMFA and CoMSIA models for selectivity surrounding one of the most selective inhibitors (cpd. 20); (A,B) CoMFA steric and
electrostatic contour maps; (C–E) CoMSIA steric, hydrophobic and electrostatic contour maps. Steric fields: green contours indicate regions where bulky groups are
favorable to selectivity; electrostatic fields: red contours indicate regions where electronegative groups are favorable to selectivity, while blue contours indicate
regions where electronegative groups are unfavorable; hydrophobic fields: cyan contours indicate regions where hydrophobic groups are favorable to selectivity.

TABLE 1 | Statistical characteristics of consensus QSAR models for PfdUTPase
inhibition and selectivity.

Model Q2
ext RMSEP

Consensus – PfdUTPase Inhibition∗ 0.85 0.40

Consensus – Selectivity∗ 0.75 0.40

∗Consensus of the best individual HQSAR, CoMFA and CoMSIA models; Q2
ext:

determination coefficient for external set; RMSEP, root mean-square error of
prediction.

Virtual Screening
The virtual screening of new potential Pf dUTPase inhibitors
was performed on Hit2Lead library of ChemBridge database by
prediction of activity and selectivity of the compounds through
the developed and validated consensus QSAR models. Each
consensus prediction was obtained by the arithmetic mean of
the predictions from the best individual HQSAR, CoMFA, and
CoMSIA models (Supplementary Table S6). All duplicates or
compounds used to generate the models were excluded. Finally,
the following criteria were used for selection of the virtual hits:
(i) compounds should have the highest predicted potency against
Pf dUTPase (predicted pK i) and (ii) the predicted selectivity (S)
should be greater than zero. At the end of this process, five virtual
hits were chosen for experimental evaluation.

Inadequate ADMET properties contribute to high failure rates
in late stages of drug development. The early prediction and
optimization of such properties can help the reduction of late-
stage failures and expenses (van de Waterbeemd and Gifford,
2003; Sanders et al., 2017). In this study, the five virtual hits

were evaluated by predicting/analyzing a panel of properties
including logP and logS, oral acute toxicity in rodents (Filimonov
et al., 2004; Lagunin et al., 2009, 2011), carcinogenicity (Cheng
et al., 2012), and binding affinity to hERG (Braga et al., 2015)
(Table 2). All molecules were predicted as non-carcinogenic and
non-blockers of hERG channel. Only LabMol-143 and LabMol-
146 were predicted as positive for acute oral toxicity. LabMol-142
presented a high calculated logP (7.3), while the remaining hits
presented logP below or slightly above 5.

Experimental Evaluation of Selected
Compounds on P. falciparum
Multi-Drug-Resistant and Sensitive
Strains, and on P. berghei Sexual Stages
The five virtual hits selected were evaluated in vitro against
asexual blood-stages of P. falciparum multi-drug-resistant (W2)
and sensitive (3D7) strains. The half maximal inhibitory
concentrations (IC50) for each compound (Table 3) indicate that
three compounds (LabMol-144, LabMol-145, and LabMol-146)
were more potent at inhibiting parasite growth, showing activity
in submicromolar range against both 3D7 and W2 strains.
Furthermore, the cytotoxicity was measured in mammalian
COS7 cells. LabMol-144 and LabMol-146 showed promising
results in terms of selectivity (SI = 11.7 and 6.7, respectively;
Table 3).

The five compounds were also tested against P. berghei sexual
stages using in vitro gametocyte to ookinete conversion assays
(Table 3). LabMol-144, a promising selected compound in terms
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TABLE 2 | Chemical structures, predicted potency against PfdUTPase, predicted selectivity, and some calculated ADMET properties of the virtual hits.

Cpd ID Structure PfdUTPase
inhibition (pKi)a

Selectivity (S)b clogP logS Acute oral
toxicityc

Carcinogenicityd hERGe

LabMol-142 5.68 1.03 7.3 −8.42 No No Non-blocker

LabMol-143 5.52 1.59 5.87 −6.6 Yes No Non-blocker

LabMol-144 5.81 2.64 2.69 −5.36 No No Non-blocker

LabMol-145 5.10 1.14 5.23 −6.74 No No Non-blocker

LabMol-146 5.61 2.31 2.43 −5.04 Yes No Non-blocker

aPrediction based on consensus QSAR model for dUTPase inhibition; bPrediction based on consensus QSAR model for selectivity; logP and logS were extracted from
Hit2Lead library; cAcute oral toxicity predicted using GUSAR; dCarcinogenicity predicted in admetSAR software (Cheng et al., 2012); ePrediction of hERG channel
blockage in Pred-hERG web app (Alves et al., 2014; Braga et al., 2014, 2015).

of IC50 and SI against asexual stages and mammalian cells,
showed inhibition of 44.6% of ookinete formation relative to
control. Although the IC50 range of LabMol-144 and LabMol-
146 are still far from that of chloroquine and pyrimethamine
(Table 3), these compounds represent good starting points
for further optimization studies and development of new
antimalarial drugs. In addition, drug development based on
LabMol-144 may also lead to new antimalarials with transmission
blocking activity and new mechanism of action.

The two most promising compounds, LabMol-144 and
LabMol-146, are similar to the most potent compound from the
training set (cpd. 1) used for developing QSAR models (Tc of
0.72 and 0.84, respectively, Supplementary Table S6). However,
LabMol-144 presents some differences in relation to compound 1.
As demonstrated on Figures 2–4, and based on previous reports
on literature, the presence of hydrophobic groups on trytil region
is favorable for both activity and selectivity against Pf dUTPase
(Whittingham et al., 2005; Hampton et al., 2011; Ojha and Roy,
2013). Thus, LabMol-144 can be a potent and selective inhibitor
of Pf dUTPase due to the addition of two methoxy substituents
on trytil group, which can contribute for improved affinity to the
hydrophobic binding pocket of the enzyme. Other modifications
in LabMol-144 in comparison to compound 1 are the presence
of the oxazolidine ring between the sugar moiety and uracil ring,
and the substitution of nitrogen by oxygen on the linker between
the sugar moiety and the trytil group.

LabMol-144 has higher similarity to the most potent inhibitors
of Pf dUTPase from the training set (compounds 1 to 6, Figure 5)
Tc = 0.58–0.72, and it has a very low similarity to the currently
used antimalarial drugs, Tc = 0.23–0.54 (Figure 5). Added
to the fact that LabMol-144 showed similar activity against
sensitive and multidrug resistant strains of P. falciparum, this
further suggests that the mode of action of nucleosides and
their derivatives is different from current antimalarials. This is
particularly important considering parasite resistance in natural
settings. Therefore, inhibitors of Pf dUTPase, a target different

from the other test antimalarials, could overcome cross-resistance
phenomena, and are very promising scaffolds to be explored
as new antimalarial drugs. Certainly, the activity of compounds
could be caused not only by Pf dUTPase inhibition but by
different mechanisms of action. However, to explore this, further
in vitro enzymatic studies should be performed. Exploring other
mechanisms of action is out of the scope of this paper and should
be considered in the next steps of the project.

Molecular Docking
The most promising compound (LabMol-144, IC50 = 4.23 µM
against W2 strain, and highest predicted pIC50 = 5.81 against
the parasite enzyme) was docked in Pf dUTPase and HsdUTPase
in order to compare the binding modes and to analyze how
differences between the human and parasite enzymes can be
explored for the design of selective inhibitors. The docking
studies suggested a higher affinity of LabMol-144 to Pf dUTPase.
The Glide Score on Pf dUTPase was −7.38 kcal/mol (Figure 6A)
and −6.26 kcal/mol on HsdUTPase (Figure 6C). After the
docking, we performed MM-GBSA calculations to obtain the
free energy of binding, in order to compare the affinities of
the compounds. The results are available on Supplementary
Table S7. These results suggested that LabMol-144 has a
higher affinity to Pf dUTPase, with a twice higher affinity
toward the parasitic enzyme in comparison to the human
ortholog (estimated 1G of binding of −107.8 and −52.8,
respectively).”

As demonstrated on Figures 6A,B, the parasitic enzyme has
the amino acid residues Phe46 and Ile117 in the hydrophobic
region of the active site, while the human counterpart has Val65
and Gly110, respectively (Figures 6C,D). The presence of Phe46
in Pf dUTPase is responsible for an additional π–π stacking
interaction with one ring from trytil group, while Ile117 can
perform two hydrogen bonds with uracil and oxazolidine rings.
These two hydrogen bonds contribute to the exposure of a
hydroxyl group to Tyr112, allowing the molecule to stablish
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TABLE 3 | In vitro evaluation of selected hits against asexual blood stage of P. falciparum 3D7 and W2 strains, cytotoxicity on mammalian cells (COS7), selectivity index,
and inhibition of ookinete stage of P. berghei.

Cpd ID IC50 3D7 (µM) IC50 W2 (µM) CC50 COS7 (µM) SI % conversion inhibition (10 µM)

LabMol-142 >40 >40 >100 ND 10.2 ± 11.9

LabMol-143 >40 >40 >200 ND 0

LabMol-144 7.1 ± 2.53 4.23 ± 1.18 81.7 ± 25.7 11.7 44.6 ± 2.4

LabMol-145 17.1 ± 16.2 15.3 ± 3.29 46.0 ± 13.4 2.7 13.2 ± 24.0

LabMol-146 6.1 ± 1.95 3.20 ± 2.12 52.0 ± 16.4 6.7 7.3 ± 7.3

Chloroquine 0.011 ± 0.0006 0.181 ± 0.027 – – –

Pyrimethamine 0.044 ± 0.009 14.7 ± 3.94 – – –

IC50 3D7: half maximal inhibitory concentration on 3D7 strain; IC50 W2: half maximal inhibitory concentration on W2 strain; CC50 COS7: half maximal cytotoxic
concentration on COS7 cells; SI, selectivity index calculated between CC50 on COS7 and IC50 in 3D7 strain. The data are expressed as mean ± SD of three independent
assays.

FIGURE 5 | Radial plot showing the similarity of the most promising compound discovered (LabMol-144) compared to known antimalarial drugs (red) and six of the
most potent inhibitors of PfdUTPase from the dataset used for QSAR modeling (green). The similarity was calculated using Tanimoto coefficient (Tc) and MACCS
structural key fingerprints.

an additional hydrogen bond with this residue (Figure 6A).
The absence of Phe46 and Ile117 on the human enzyme
(Figure 6C) results in a weaker affinity for Labmol-144. In
HsdUTPase, there are no interactions with Val65 and Gly110,
and consequently, no hydrogen bond with Tyr105. The main

interactions with HsdUTPase are the hydrogen bonds with Gly99
and two structural water molecules (Figures 6C,D).

These results corroborate with our QSAR contribution and
contour maps and also with previous studies (Whittingham et al.,
2005; Hampton et al., 2011; Ojha and Roy, 2013), highlighting
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FIGURE 6 | Molecular docking of LabMol-144 in dUTPase of P. falciparum (A,B) and human (C,D). In 3D representation (A,C), hydrogen bonds are presented as
yellow dashed lines. In 2D interaction diagrams (B,C), hydrogen bonds are presented as magenta arrows and hydrophobic interactions as red lines.

the differences between human and parasite enzymes, and the
importance of hydrophobic interactions with trytil group for
increased potency and selectivity. In future studies, we aim
to perform enzymatic assays against human and plasmodial
enzymes aiming to confirm the findings observed here.
Furthermore, the in vitro results against multi-drug and sensitive
P. falciparum strains and inhibition of P. berghei ookinete
formation are indicative that LabMol-144 is an attractive scaffold
for further hit-to-lead optimization studies for the development
of new antimalarials with transmission blocking activity.

CONCLUSION

In this work, we developed robust and externally predictive
consensus QSAR models, merging 2D- (HQSAR) and 3D-QSAR
(CoMFA and CoMSIA) models for prediction of inhibition and
selectivity against Pf dUTPase. The QSAR models were applied
for virtual screening of the ChemBridge database and allowed the
selection of five new potential selective inhibitors of Pf dUTPase.
The virtual hits were tested in vitro against sensitive (3D7)
and multidrug-resistant (W2) strains of P. falciparum. Two
compounds, LabMol-144 and LabMol-146, showed promising

activity against both strains of P. falciparum and present
chemical scaffolds very dissimilar from current antimalarial
drugs. Thus, inhibitors of Pf dUTPase could be a good alternative
for antimalarial drug combination. In addition, compound
LabMol-144 showed potent in vitro inhibition of P. berghei
ookinete formation, demonstrating that this compound is active
against multiple parasite stages and, therefore, optimization
based on this compound may also lead to new antimalarials
with transmission blocking activity. In future studies, we aim to
perform enzymatic assays against parasite and human enzymes.
Furthermore, we aim to perform hit-to-lead optimization
through structural modifications on the discovered scaffolds,
based on the information gathered from the QSAR contribution
and contour maps, aiming at designing new antimalarial drugs
with transmission-blocking activity.
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