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Numerous bacteria utilize molecular communication systems referred to as quorum

sensing (QS) to synchronize the expression of certain genes regulating, among other

aspects, the expression of virulence factors and the synthesis of biofilm. To achieve this

process, bacteria use signaling molecules, known as autoinducers (AIs), as chemical

messengers to share information. Naturally occurring strategies that interfere with

bacterial signaling have been extensively studied in recent years, examining their potential

to control bacteria. To interfere with QS, bacteria use quorum sensing inhibitors (QSIs)

to block the action of AIs and quorum quenching (QQ) enzymes to degrade signaling

molecules. Recent studies have shown that these strategies are promising routes to

decrease bacterial pathogenicity and decrease biofilms, potentially enhancing bacterial

susceptibility to antimicrobial agents including antibiotics and bacteriophages. The

efficacy of QSIs and QQ enzymes has been demonstrated in various animal models

and are now considered in the development of new medical devices against bacterial

infections, including dressings, and catheters for enlarging the therapeutic arsenal

against bacteria.

Keywords: quorum sensing (QS), bacterial virulence, biofilm, quorum sensing inhibitors, quorum quenching
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INTRODUCTION

Quorum sensing (QS) is a molecular mechanism by which bacteria communicate to collectively
adapt their behavior according to cell density and the surrounding environment (Figure 1). This
communication system enables bacteria to undertake processes that are costly and non-effective
at low cell density but that become useful for the whole community at high cell density such as
virulence factor synthesis, biofilm formation, and protease and siderophore production (Heilmann
et al., 2015). QS consists in the production and sensing of small extracellular molecules, known as
autoinducers (AIs), that are released in proportion to cell density (Papenfort and Bassler, 2016).
In Gram-positive bacteria, autoinducing peptides (AIPs) were widely studied and reported to
induce QS. AIPs are specific to species and strains and have been described in Staphylococcus
spp., Clostridium spp., or Enterococcus spp., among others, AIPs (Figure 2; Monnet et al., 2016).
Many Gram-negative bacteria, including Pseudomonas spp., Acinetobacter spp., or Burkholderia
spp., were reported to use a different class of autoinducers: the acyl-homoserine lactones (AHLs)
(Schuster et al., 2013). AHLs are composed of a lactone ring and an aliphatic acyl chain varying in
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FIGURE 1 | Quorum sensing and quorum quenching in a wounded tissue. The skin usually harbors a natural and commensal flora which is not pathogenic (Upper

Left). When a wound or a lesion occurs, bacteria colonize the wounded tissue and further develop being in a favorable environment (Upper Right). While growing,

bacteria produce communication molecules (autoinducers). If the molecules are not degraded (Bottom Left), bacteria can synchronize their behavior to secrete

virulence factors and produce biofilms which may prevent efficiency of antibiotic or phage therapy. The wound is infected. If the autoinducers are degraded (Bottom

Right) bacteria do not synchronize their behavior and remain harmless and defenseless. The wound remains colonized but no infection occurs.

length and modifications (Schuster et al., 2013). A wide
variety of other signaling molecules was also identified (Hawver
et al., 2016), including fatty acids used by Xanthomonas spp.,
Burkholderia spp., Xylella spp. (Zhou et al., 2017), ketones (Vibrio
spp. and Legionella spp.; Tiaden and Hilbi, 2012), epinephrine,
norepinephrine and AI-3 (enterohemorrhagic bacteria; Kendall
and Sperandio, 2007) or quinolones (Pseudomonas aeruginosa;
Heeb et al., 2011). Finally, AI-2, a furanosyl borate diester, is used
by both Gram-negative and Gram-positive bacteria (Chen et al.,
2002; Figure 2). Most Gram-negative bacteria combine several
QS systems to integrate different signals either hierarchically, as
P. aeruginosa in which four QS systems (las, rhl, iqs, and pqs) act

in a network (Lee and Zhang, 2015), or in parallel, as in Vibrio
harveyi in which three systems are integrated into one regulatory
cascade (Plener et al., 2015).

Interferences with QS are termed quorum quenching (QQ)
(Figure 1). QQ was discovered as a naturally occurring
phenomenon first described in 2000 with the identification
of a QQ enzyme able to degrade AHL signals from Erwinia
carotovora (Dong et al., 2000). The enzymatic hydrolysis of
AHL led to the disruption of the QS signal. The disruption of
bacterial communication can be achieved by several processes:
(i) interfering with the production or perception of AIs via small
molecules referred to as quorum sensing inhibitors (QSIs) (Tang
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FIGURE 2 | Representation of autoinducer molecules. The left circle represents autoinducing peptides used by Gram-positive bacteria such as Staphylococcus spp.,

Clostridium spp., Enterococcus faecalis (Monnet et al., 2016). The right circle gives an overview of the different molecules used in Gram-negative quorum sensing:

acyl homoserine lactones (AHLs) (Schuster et al., 2013), quinolones (PQS), 4-hydroxypalmitate methyl ester (3-OH-PAME) (Flavier et al., 1997), fatty acids (DSF) (Zhou

et al., 2017), epinephrine, and norepinephrine (Kendall and Sperandio, 2007). In the middle, the different forms of AI-2, a furanosyl diester, used by both Gram-positive

and Gram-negative bacteria are depicted (Chen et al., 2002).

and Zhang, 2014), (ii) scavenging of AIs by quorum quenching
antibodies (Park et al., 2007), and macromolecules such as
cyclodextrins (Kato et al., 2006, 2007; Morohoshi et al., 2013),
or (iii) by extracellular hydrolysis of the AIs using QQ enzymes
(Fetzner, 2015; Figure 3). Several antagonist peptides have been
identified among natural compounds or designed to quench
Gram-positive bacteria and many QSIs, mainly targeting Gram-
negative QS and AI-2 mediated QS, have also been reported
(Tang and Zhang, 2014; Singh et al., 2016). Such compounds can
be natural products, like polyphenols isolated from tea or honey,
ajoene from garlic, eugenol from clove or many others produced
by marine organisms and fungi (Tang and Zhang, 2014; Delago
et al., 2016), or they can be synthetic, such as 5-fluorouracil (5-
FU) or azithromycin (Ueda et al., 2009; Swatton et al., 2016).
Many QQ enzymes and macromolecules (Amara et al., 2011;
Fetzner, 2015) as well as natural or synthetic QSIs (Dembitsky
et al., 2011; Galloway et al., 2011; Stevens et al., 2011; Kalia, 2013;
Delago et al., 2016) have been reported to date and exhaustively
reviewed. Patents associated with these compounds (Pan and
Ren, 2009; Romero et al., 2012; Jiang and Li, 2013) as well as
routes to access novel molecules (Scutera et al., 2014) have also
been discussed. The mechanisms used by the different QSIs are
not always known and most probably differ from one QSI to
another (Defoirdt et al., 2013). Some molecules inhibiting QS
such as azithromycin are also considered as antibiotics as they

can inhibit bacterial growth above a certain concentration (Nalca
et al., 2006).

Currently identified QQ enzymes mainly target AHLs and
AI-2 mediated QS: phosphotriesterase-like lactonases (PLLs),
lactonases, acylases, and oxidoreductases degrade AHL signals
(Fetzner, 2015) and oxidoreductases target AI-2 (Dong et al.,
2000; Weiland-Bräuer et al., 2016). As QS induces noxious traits
such as biofilm formation or virulence, the disruption of bacterial
communication appears as a promising strategy to prevent
bacteria from synchronizing their virulent behavior. Therefore,
QQ approaches may have applications in numerous fields such
as agronomy, water engineering, and the marine industry and is
particularly relevant in health care (Bzdrenga et al., 2017).

In the current context of the rise of antibiotic tolerance and
resistance, novel therapeutic approaches are needed (Kaye and
Pogue, 2015). The ability of QQ approaches to inhibit bacterial
virulence and biofilm is appealing as this latter is associated with
increased antibiotic tolerance (Stewart and William Costerton,
2001). Biofilm formation is triggered via QS and consists in
a heterogeneous multi-cellular structure attached to a solid
surface, embedded in an extracellular matrix (de la Fuente-Núñez
et al., 2013). The extracellular matrix, made of polysaccharides,
proteins and extracellular DNA, may prevent some antibiotics
from successfully penetrating the cells, inducing antibiotic
tolerance (Otto, 2006). The bacterial cells embedded in the
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FIGURE 3 | Representation of quorum quenching agents. Quorum sensing inhibitors, mainly acting against AHL or AI-2-based QS, are depicted in the orange circle

(Tang and Zhang, 2014). Antibiotics such as azithromycin can be used as QSI at sub-inhibitory concentrations (Swatton et al., 2016). Purple circle represents the QQ

peptides used to inhibit Gram-positive QS (Singh et al., 2016). Blue circle represents molecules used to scavenge AIs such as cyclodextrins or derivatives (Morohoshi

et al., 2013) and antibodies scavenging AHL (Fab RS2-1G9) or AIP (AP4-24H11) (Park et al., 2007). Green circle depicts QQ enzymes that disrupt AHLs (SsoPox,

Pvdq, and AiiA), the quinolone PQS (HOD) and AI-2 signals (QQ-2) (Fetzner, 2015).

matrix also have a slower growth rate and an altered metabolism
which further reduces antibiotic efficiency (Olsen, 2015). In
addition, biofilm environments combine high cell density and
high selection pressure increasing the rate with which resistant
cells appear through mutations or gene transfer (Driffield et al.,
2008). Biofilms also shelter persistent cells, a non-inheritable trait
denoting a subpart of cells present in any bacterial population
that will survive antibiotic treatment as a result of being in a
different physiological state at the time of the treatment (Brauner
et al., 2016). Bacteria in biofilms are considered to be 100–1,000
times more tolerant to antimicrobial compounds as compared to
their planktonic lifestyle (Olsen, 2015). Biofilms can also be at
the source of infections: it is considered that between 65 and 80%
of infections are biofilm associated infections, either by directly

infecting the tissue such as lung infection in the case of cystic
fibrosis or via a contaminated device such as a catheter (Lebeaux
et al., 2013). Hospital-acquired infections (HAIs) affect between
6 and 10% of health care patients in developed countries, the
most frequent type of infections being urinary tract infections
(Klevens et al., 2007; Lobdell et al., 2012). Eliminating biofilms
in health care devices and environment is a challenge to limit
and treat HAIs. It is, therefore, essential to develop alternative
or complementary treatments to conventional antimicrobial and
antibiotic products. To this end, QQ and phage therapy are
increasingly studied (Kostakioti et al., 2013; Rémy et al., 2016a).

This review highlights the latest findings and
biopharmaceutical perspectives of QQ as well as its potential
complementarity with antimicrobial agents, antibiotics and
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bacteriophages. The eukaryotic models used to prove the
efficiency of QQ as a successful anti-virulence and anti-biofilm
strategy and the medical applications with QQ devices are also
summarized.

QUORUM SENSING AND THE SENSITIVITY
TO ANTIMICROBIAL AGENTS

As QS involves a global change in bacterial gene expression
and cell physiology, the relationship between QS and antibiotic
tolerance is multi-faceted. For example, the addition of AHLs to
a logarithmic culture of P. aeruginosa was shown to increase the
number of persister cells in the population after treatment with
carbenicillin and ciprofloxacin (Möker et al., 2010). Furthermore,
transcriptomic analysis with the QS transcription regulator
MvfR (PqsR) in P. aeruginosa PA14 revealed that QS induces
the expression of peroxidases which provide protection against
reactive oxygen species (H2O2) and β-lactam antibiotics (Maura
et al., 2016). In another study using P. aeruginosa PAO1, VqsM, a
global regulator that induces QS, was shown tomediate antibiotic
tolerance by inducing the expression of nfxB, an antibiotic
resistance regulator, providing increased tolerance to quinolones,
tetracycline, and kanamycin via regulation of mexC-mexD-oprJ
operon expression (Poole et al., 1996; Liang et al., 2014).

Although some physiological aspects may be involved in QS-
mediated tolerance to antibiotics, many reports focus on the
importance of biofilm in antibiotic tolerance of bacteria (Høiby
et al., 2010), causing many difficulties for treatments of clinical
infections (Høiby et al., 2011). Those effects have been frequently
observed with P. aeruginosa (Strateva and Yordanov, 2009) in
bothmodel and clinical strains (Hill et al., 2005) as well as in other
species such as Klebsiella pneumoniae (Vuotto et al., 2014, 2017)
and Staphylococcus aureus (Savage et al., 2013). The particular
conditions that the biofilm mode of growth provides to bacteria
favors the development of different defense mechanisms and
phenotypes: physical barrier, modification of gene expression,
and cellular physiological states (e.g., persister cell) (de la Fuente-
Núñez et al., 2013). In P. aeruginosa, the rhl, and las QS
systems are essential for biofilm formation and their disruption
is correlated with a higher sensitivity to the host immune system
and antimicrobial compounds (Davies et al., 1998; Shih and
Huang, 2002; Bjarnsholt, 2005b). Moreover in P. aeruginosa,
another QS system, the pqs system, has been demonstrated
to mediate a programmed cell death inducing extracellular
DNA release which promotes biofilm formation and antibiotic
tolerance, benefitting the rest of the cell population (Hazan
et al., 2016). In clinical isolates of Acinetobacter baumannii, the
presence of levofloxacin or meropenem antibiotics was reported
to induce the overexpression of an efflux pump which stimulates
the release of AHL and thus enhances the formation of QS-
mediated biofilm, increasing antibiotic tolerance (He et al., 2015).

Regarding the important role of QS in biofilm formation
and antibiotic tolerance, combination therapy with QQ was
investigated. In P. aeruginosa, the use of a pharmacological
compound, benzamide-benzimidazole, inhibiting the QS
regulator MvfR (PqsR) decreased biofilm formation and restored

antibiotic susceptibility (Starkey et al., 2014; Maura and Rahme,
2017). Baicalin hydrate and hamamelitannin, an AHL-targeting
QSI and a peptide-based QSI, enhanced biofilm disruption
in both Gram-negative (P. aeruginosa and Burkholderia
cepacia complex) and Gram-positive (S. aureus) bacteria and
showed synergistic effects in cotreatment with tobramycin and
clindamycin or vancomycin respectively both in vitro and in
vivo (Brackman et al., 2011b). From aminoglycosides (Jakobsen
et al., 2012; Stenvang et al., 2016) to quinolones (Guo et al.,
2016), polypeptides (Furiga et al., 2016; Bulman et al., 2017),
cephalosporins (Maura and Rahme, 2017), and glycopeptides
(Das et al., 2016), the efficiency of a large range of antibiotics is
enhanced by the addition of QSIs.

Taken together these results suggest that using QSIs is a
potential way of increasing antibiotic sensitivity and thereby
lower antibiotic active doses. Additionally, similar trend and
efficiency have also been observed with a lactonase QQ enzyme
and the antibiotic ciprofloxacin in a mice model (Gupta et al.,
2015). Combining antimicrobial agents and QQ was showed to
have encouraging synergistic effects, highlighting that QQ is a
good strategy to decrease antibiotics use and fight against the
increasing problem of antibiotic resistance. Nevertheless, if QQ
can help to prevent and treat infections, it cannot be used on its
own to treat acute infections by antibiotic resistant strains.

RELATIONSHIP BETWEEN QUORUM
SENSING AND THE SENSITIVITY TO
BACTERIOPHAGES

Recently, interest has considerably increased in phage therapy
as a way of treating infections caused by multi-drug resistant
bacteria (Pires et al., 2017). Bacteriophages are themost abundant
bacterial predators on the planet and they are still used to treat
bacterial infections in Eastern Europe (Brüssow and Hendrix,
2002). Although bacteriophages represent an interesting solution
to circumvent antibiotic resistance, bacteria have also developed
resistance mechanisms to counteract phage actions (Labrie et al.,
2010). Firstly, phage entry can be decreased by extracellular
matrix production, or by modifying the phage receptor structure
or expression (Chapman-McQuiston andWu, 2008; Labrie et al.,
2010). Once inside the cell, phage DNA can be recognized
and degraded by restriction enzymes or the adaptive inducible
CRISPR-Cas (clustered regularly interspaced short palindromic
repeat and CRISPR associated proteins) system (Barrangou et al.,
2007; Labrie et al., 2010). Other potential metabolism adaptations
could also provide bacteriophage resistance (Qin et al., 2017).
As the risk of phage infection rises with cell density (Abedon,
2012), QS-mediated resistance would provide protection during
high risk conditions while limiting the overall fitness cost of those
mechanisms (Hall et al., 2011).

The relationship between QS and bacteriophage sensitivity
was originally observed in P. aeruginosa (Glessner et al., 1999),
but the ability of QS to regulate phage defense mechanisms in
Escherichia coli was only demonstrated years later (Høyland-
Kroghsbo et al., 2013). The authors showed that AHLs induced
a reduction in the phages lambda and chi adsorption rate
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by reducing the number of receptors at the cell surface. In
Vibrio cholerae, a deficiency in AI synthase genes, and thereby
in QS induction, reduced phage resistance which could be
restored by the addition of exogenous AIs, AI-2, and CAI-1
(Hoque et al., 2016). This increased phage resistance upon QS
activation was explained by the downregulation of O-antigen
synthesis which decreased phage adsorption and by an increase
in hemagglutinin protease production which was shown to
inactivate phages (Hoque et al., 2016). Similarly, the addition
of synthetic AHLs to a Vibrio anguillarum QS deficient strain
improved phage resistance (Tan et al., 2015). Indeed, AHL
production was negatively correlated with phage receptor ompK
expression. Recently, it was shown in Serratia marcescens that
the CRISPR-Cas immune system was also under QS regulation
(Patterson et al., 2016). Both the acquisition of immunity and
DNA degradation mechanism coordinated by this system were
negatively impacted by the absence of QS signal in a synthase
mutant. Besides, by analyzing former datasets (Bowden et al.,
2013; Gao et al., 2015), the authors suggested that this type of
regulation might occur in Pectobacterium atrosepticum as well
as in Burkholderia glumae. Similar QS control of CRISPR-Cas
system was demonstrated in P. aeruginosa PA14 in which the
expression of the CRISPR-Cas genes is down-regulated in a
strain deleted for both AI synthase genes lasI and rhlI (Høyland-
Kroghsbo et al., 2017). To evaluate whether QQ would increase
phage sensitivity, QSI effects were investigated on resistance
mechanisms and on phage susceptibility phenotypes. The use
of penicillic acid increased P. aeruginosa sensitivity to phages
by increasing the proportion of sensitive viable cells in the
population (Qin et al., 2017). Finally, the QSI baicalin was
shown to inhibit the QS stimulation of CRISPR-Cas system in
P. aeruginosawhich could prevent the use of this adaptive system
by bacteria in case of phage infection (Høyland-Kroghsbo et al.,
2017).

In light of these findings, the use of QQ compounds is a highly
promising way to develop new therapeutic applications. Indeed,
their use in combination with phage therapy treatments could
increase bacterial sensitivity to phages by synergistic effects. In
addition, disturbing the QS of one species was demonstrated to
induce a reduction in total biomass in multimicrobial cultures
under phage infection, leading to the consideration that QQ
combined with phage therapy could as well be efficient against
polymicrobial infections (Mumford and Friman, 2017). To
prove the efficiency of QQ as antivirulent agent proper in vivo
assays and proof of concepts on animal models should be
performed.

ANTIVIRULENCE ACTIVITY OF QUORUM
QUENCHERS IN VIVO

In order to evaluate the role of QS in pathogenicity several models
have been developed over the past few years. Three models, from
a simple unicellular model to complex models, commonly used
to assess the benefits of QQ and studies conducted on humans
are summarized below.

AMOEBAL INFECTION MODELS

Free-living amoebae are eukaryotic organisms found either in
a resting (cyst) or a vegetative (trophozoite) form feeding on
bacteria among other organisms (algae or fungi). In this way,
they use phagocytosis coupled with lysosomal digestion which
is close to macrophage bacterial elimination pathway (Greub
and Raoult, 2004; Matz and Kjelleberg, 2005; Hilbi et al., 2007).
Considering these close interactions, amoeba were considered
to test bacterial production of virulence factors (Cosson et al.,
2002; Clamens et al., 2017), biofilm (Matz et al., 2004, 2005), and
secretion systems (Pukatzki et al., 2002, 2006; Matz et al., 2008).
Classically, the evaluation of bacterial virulence in amoebae relies
on the capacity of amoebae to grow or not to grow in the
presence of pathogenic bacteria (Cosson et al., 2002; Pukatzki
et al., 2002). The link between virulence factors and QS in
different bacterial species was evaluated using this approach and
was extensively described for P. aeruginosa. QS-deficient mutants
of P. aeruginosa had a decreased virulence toward the amoeba
Dictyostelium discoideum (Cosson et al., 2002; Pukatzki et al.,
2002). Although this model is fast and convenient for large scale
experiments such as screening assays, the use of this model is
limited, as both culture conditions and amoeba species may
strongly affect the results (Weitere et al., 2005). Despite these
limitations the amoeba model was recently used to test a QQ
enzyme based on the well-characterized assay with P. aeruginosa
and D. discoideum (Clamens et al., 2017). The over-production
of P. aeruginosa PA14 aliphatic amidase AmiE resulted in a
disruption of QS and reduction of virulence in a D. discoideum
plate killing assay (Clamens et al., 2017).

CAENORHABDITIS ELEGANS INFECTION
MODELS

The roundworm Caenorhabditis elegans is a widely used
multicellular organism model to study microbial virulence (Tan
et al., 1999b; Garsin et al., 2001; Alegado et al., 2003; Ermolaeva
and Schumacher, 2014). Like amoebae, C. elegans is a convenient
model for high throughput evaluation of QS impact on bacterial
virulence (Tan et al., 1999b; Garsin et al., 2001; Rasmussen et al.,
2005; O’Loughlin et al., 2013). However, in contrast to amoebae,
C. elegans has an innate immune system which results in a
closer comparison with the human immune response (Ermolaeva
and Schumacher, 2014) and is particularly relevant for studying
pathogenicity. Classically, C. elegans is fed using the bacteria of
interest and the survival rate is followed. Two types of assays can
be performed: (i) a fast killing assay which leads to worm death
in a few hours to assess the presence of toxins, and (ii) a slow
killing assay with death occurring after several days to evaluate
bacterial colonization (Tan et al., 1999a; Köthe et al., 2003; Park
et al., 2017).

In order to decipher the importance of QS in virulence,
many experiments were dedicated to study the pathogenicity
of bacterial mutants impaired in AI synthesis or perception.
QS inactivation in different P. aeruginosa strains resulted in
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a decrease in worm mortality (Darby et al., 1999; Tan et al.,
1999b; O’Loughlin et al., 2013; Mukherjee et al., 2017). The
C. elegans model was also used to show the link between QS
and virulence of other various Gram-negative bacteria including
Chromobacterium violaceum (Swem et al., 2009), E. coli (Lee
et al., 2011), Yersinia pseudotuberculosis (Atkinson et al., 2011),
B. cepacia (Köthe et al., 2003), Burkholderia cenocepacia (Deng
et al., 2012), or Burkholderia pseudomallei (Song et al., 2005).
Moreover, the link between QS and pathogenicity was also shown
for Gram-positive bacteria such as Enterococcus faecalis (Garsin
et al., 2001; Sifri et al., 2002) and S. aureus (Sifri et al., 2003).
Considered as a whole, these studies highlight that QS triggers
virulence in many bacteria.

In addition to genetic mutations, the roundworm model
was used, alongside traditional in vitro tests, to prove the
efficiency of QSIs as well as QQ enzymes or bacteria (Table 1).
Though the impact on survival may vary according to the
assay used and the culture conditions, all the QQ agents tested
were shown to efficiently decrease virulence in both Gram-
positive and negative bacteria and thus enhancing C. elegans
survival up to 100% notably with the QQ enzyme BpiB09
targeting AHLs (Bijtenhoorn et al., 2011). The QSI having
the more drastic effect on C. elegans survival after infection
with P. aeruginosa PAO1 is 4-nitro-pyridine-N-oxide, a non-
toxic chemical compound, which almost fully restored worm
survival (Rasmussen et al., 2005). The most efficient natural QSIs
are extracts from Conocarpus, Callistemon vinimalis, or Bucida
buceras with a restoration of survival up to 87% (Adonizio et al.,
2008; Table 1). Moreover, a synergistic effect with antibiotics was
reported for the QSIs baicalin and hamamelitannin (Brackman
et al., 2011b).

Caenorhabditis elegans is a highly valuable invertebrate model
enabling high throughput screening (for bacterial mutants or
QQ compounds) and gives a very deep insight into virulence
regulation, modulation by QQ agents and, in general, by anti-
infective molecules (Kong et al., 2016). In most cases, QQ with
either QSI or enzymes seems to be able to reduce mortality
due to a wide range of bacteria in C. elegans and thus gives
a relevant proof of concept of QQ as antivirulent agent in a
multicellular organism. However, it also has some limitations,
such as the living parameters of the worm which differ from
bacterial ones (e.g., growth temperature around 20◦C), and the
physiopathology of the roundworm which is very different from
the human one. Furthermore, as for amoebae, the influence
of assay conditions on the outcome of the assay have been
highlighted by several studies (Mahajan-Miklos et al., 1999; Tan
et al., 1999a; Gallagher and Manoil, 2001).

MURINE INFECTION MODELS

Mammalian models, such as rats or mice, are commonly used
to decipher the impact of QS in bacterial infections. Indeed,
mutations or deletions of QS related genes were shown to
reduce the mortality or severity of the infections in the lungs
(Pearson et al., 2000; Wu et al., 2001; Lesprit et al., 2003; Sokol,
2003), wound burns (Rumbaugh et al., 1999; Tan et al., 1999b),
peritonitis (Sifri et al., 2002), the prostate (Nelson et al., 2009),
and the intraperitoneal foreign body model (Christensen et al.,

2007), with the exception of Staphylococcus epidermidis (Xu et al.,
2006). In the vast majority of cases, QQ approaches result in a
decrease in mortality, accelerate recovery and reduce bacterial
colonization.

In lung infectionmodels, P. aeruginosa colonization or related
mortality was reduced by furanones (Hentzer et al., 2003; Wu,
2004), sub-minimal inhibitory concentrations of azithromycin
(Hoffmann et al., 2007), garlic extract (Bjarnsholt, 2005a), and
also by the inhalation of the lactonase SsoPox (Hraiech et al.,
2014). In skin wound models, a wide range of QSIs reduced
S. aureus pathogenicity (Cirioni et al., 2013; Simonetti et al.,
2016; Muhs et al., 2017; Todd et al., 2017). Similar inhibition
of pathogenicity was observed with an AIP-targeting antibody
(Park et al., 2007). Treatment with QS inhibiting peptide
strongly reduced S. epidermidis colonization in a graft associated
infection (Balaban et al., 2003). The efficiency of QQ was
also demonstrated in a burn wound infection model with P.
aeruginosa and an AHL degrading enzyme (Gupta et al., 2015)
or PqsR (MvfR) inhibitors (Lesic et al., 2007) and, in an excision
injury model, with the use of tea polyphenols as QSIs (Yin
et al., 2015). Moreover, the combination effect of QQ molecules
and antibiotics in vivo was demonstrated against both Gram-
positive and negative bacteria. Indeed, for B. cenocepacia, the
combination of baicalin and tobramycin allowed to reduce lung
colonization by 2 and 1 log of CFU compare to control and
antibiotic alone respectively (Brackman et al., 2011a). The use
of ciprofloxacin and a lactonase to treat P. aeruginosa wound
burn infection enabled to reduce mortality and global bacterial
dissemination to internal mice organs (Gupta et al., 2015).
Furthermore, the cotreatment with a QSI and an antibiotic
also drastically reduced colonization of artificial foreign body
(e.g., catheter or implants) by S. aureus (Cirioni et al., 2013;
Simonetti et al., 2016), S. epidermidis (Balaban et al., 2003), and
P. aeruginosa (Christensen et al., 2012; Das et al., 2016). Those
examples increased the interest of reducing antibiotic tolerance
by QQ either in infected organs or medical device associated
infections.

Murine models are useful and common tools to investigate
the QQ impact on bacterial infections thanks to their adaptive
and innate immune systems together with a physiology closely
related to human beings. Furthermore, they are usually necessary
and required as preclinical tests before starting human trials.
At this stage of drug development, QQ seems to demonstrate
great efficiency to reduce either morbidity or deleterious impacts
for a wide variety of infections. However, murine models are
less prone to screening steps because of practical and ethical
problems unlike C. elegans or amoeba (van der Worp et al.,
2010). Furthermore, some physiological aspects of a pathology
are not fully mimicked in murine models like wound healing
or inflammation (van der Worp et al., 2010; Seok et al., 2013;
Abdullahi et al., 2014).

CLINICAL TRIALS IN HUMANS WITH
QUORUM SENSING INHIBITORS

So far, only previously approved or commercialized QSIs were
used in clinical trials, even if their primary use and approved
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TABLE 1 | C. elegans survival rate upon quorum quenching of several virulent bacteria.

Bacteria Strain QQ agent (concentration) Survival rate

QQ/control

(Time)*

References

QUORUM SENSING INHIBITORS (QSI)

B. cepacia LMG16656

LMG18828

Baicalin hydrate (100µM) ≈50/≈25% (48 h)

≈35/≈15% (48 h)

Brackman et al., 2011b

C. violaceum ATCC31532 Chloro lactone (20µM) 100/0% (48 h) Swem et al., 2009

E. coli O157:H7 Broccoli extract (0,5% v/v) 50/21,5% (8 days) Lee et al., 2011

P. aeruginosa PAO1 4-nitro-pyridine-N-oxide (100µM) 95/0% (5 h) Rasmussen et al., 2005

Garlic extract (2% v/v) 60/0% (5 h) Rasmussen et al., 2005

Extract from Conocarpus, Callistemon viminalis or

Bucida buceras (1 mg/mL)

84–87/0% (4 h) Adonizio et al., 2008

Curcumin (3µg/mL) 28/0% (100 h) Rudrappa and Bais, 2008

2,5-piperazinedione (100µg/mL) 66/0% (84 h) Musthafa et al., 2012a

Phenylacetic acid (200µg/mL) 53/0% (84 h) Musthafa et al., 2012b

Clove oil (1,6% v/v) 62/0% (96 h) Husain et al., 2013

Fractionated methanol extract of Terminalia chebula

Retz. (0,5 mg/mL)

50/0% (72 h) Sarabhai et al., 2013

Menthol (800µg/mL) 58/0% (96 h) Husain et al., 2015a

Methanol extract of Trigonella foenum-graceum

(1mg/mL)

48/0% (96 h) Husain et al., 2015b

Oleanolic aldehyde coumarate (200µM) 48/20% (4 h) Rasamiravaka et al., 2015

Mangifera indica methanol leaf extract (800µg/mL) 72/0% (4 8 h) Husain et al., 2017

PAO1

ATCC9027

Baicalin hydrate (100µM) ≈30/≈10% (48 h)

≈50/≈25% (48 h)

Brackman et al., 2011b

PA14 Extract from Conocarpus, Callistemon viminalis or

Bucida buceras (1 mg/mL)

53–90/0% (4 h)

57–60/0% (58 h)

Adonizio et al., 2008

Meta-bromo-thiolactone (50µM) 77/≈20% (24 h) O’Loughlin et al., 2013

Pa1 (clinical

isolate)

Tea polyphenols (3,125 mg/mL) 63/20% (48 h) Yin et al., 2015

S. aureus Mu50 Hamamelitannin (250µM) ≈55/≈15% (48 h) Brackman et al., 2011b

V. anguillarum LMG441 3,4-dichloro-cinnamaldehyde (10µM) ≈90/71% (48 h) Brackman et al., 2011a

V. harveyi BB120 3,4-dichloro-cinnamaldehyde (10µM) ≈80/49% (48 h) Brackman et al., 2011a

Vibrio vulnificus LMG16867 3,4-dichloro-cinnamaldehyde (20µM) ≈80/15% (48 h) Brackman et al., 2011a

QUORUM QUENCHING ENZYMES

B. cepacia complex 46 strains AiiA, lactonase from Bacillus sp. 240B1 100/0–100% (5

days)**

Wopperer et al., 2006

P. aeruginosa PAO1 AiiD, acylase from Ralstonia strain XJ12B ≈85/5% (4 h) Lin et al., 2003

PvdQ, acylase from P. aeruginosa PAO1 ≈75/0% (4 h)

≈60/≈35% (72 h)

Papaioannou et al., 2009

BpiB09, short chain dehydrogenase reductase 100/0% (4 h) Bijtenhoorn et al., 2011

MomL, lactonase from Muricauda olearia Th120

(0,5 U/mL)

≈95/≈50% (24 h)

≈90/≈40% (48 h)

Tang et al., 2015

Y. pseudotuberculosis YpIII AiiA, lactonase from Bacillus subtilis Reduce biofilm

infection

severity***

Atkinson et al., 2011

(Continued)
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TABLE 1 | Continued

Bacteria Strain QQ agent (concentration) Survival rate

QQ/control

(Time)*

References

QUORUM QUENCHING BACTERIA

B. cenocepacia LGM16656 Rhizosphere, water, mucus or intestines of flounders

isolated bacteria

Increased survival

(48 h)***

Christiaen et al., 2014

P. aeruginosa PAO1 Pseudomonas, Pseudoalteromonas, Delftia,

Arthrobacter, …

Increased survival

(48 h)***

Christiaen et al., 2014

*Survival or not paralyzed at given time.

**Estimated from score and strains dependent.

***No survival rate (only increased in survival rate or other).

biological activity did not relate to bacterial QS at all, but
rather to their bactericidal, antimicrobial activities (antibiotics)
or their cytotoxicity (anti-cancer molecules) (Walz et al., 2010;
van Delden et al., 2012).

In the early 2000s, azithromycin (Figure 3) was used in
clinical trials to treat cystic fibrosis (Wolter et al., 2002; Saiman
et al., 2003) and pulmonary transplanted patients (Gerhardt et al.,
2003). This macrolide antibiotic improved patient’s quality of life
but did not lead to a decrease of bacterial load (Saiman et al.,
2003). At the same period, the ability of azithromycin at non
bactericidal concentrations to disrupt bacterial signaling in P.
aeruginosa was demonstrated in vitro (Tateda et al., 2001). Later,
the impact of azithromycin on P. aeruginosa QS in ventilator-
associated pneumonia patients was evaluated (van Delden et al.,
2012). The authors described beneficial anti-virulence effects of
azithromycin in a high-risk group of patients, yet results were not
significant enough.

Garlic is also known for its QQ properties (Rasmussen et al.,
2005) and was used in a trial to treat cystic fibrosis patients,
although, no clear evidence has emerged of the curative effect of
garlic extract on patient health (Smyth et al., 2010).

Finally, the anti-cancer drug (Longley et al., 2003), 5-FU,
a pyrimidine analog (Figure 3), was demonstrated to inhibit
QS-regulated virulence in P. aeruginosa in vitro (Ueda et al.,
2009) and was further used for the coating of functionalized
catheters, which were shown to be efficient during clinical trials
(Jacobsen et al., 2008; Walz et al., 2010).

In the end, very few QQ molecules reached human clinical
trials but they tend to demonstrate some beneficial effects of QSIs.
Although many proofs of concept were performed in animal
models, further efforts have to be dedicated to the validation
of this approach in clinical phases to confirm its therapeutic
relevance.

USE OF QUORUM QUENCHING
MOLECULES IN MEDICAL DEVICES

Medical devices are involved in numerous HAIs (Neoh et al.,
2017). Multi-drug resistant and/or biofilm forming bacteria
are mainly responsible for HAIs causing severe medical
complications, high morbidity and risk of mortality. Considering

the ability of QQ to prevent bacterial virulence (Grandclément
et al., 2016), the development of novel medical devices
using QQ agents is of outmost interest. New generations
of catheters (Mandakhalikar et al., 2016), dressings (Rémy
et al., 2016a; Bzdrenga et al., 2017), aerosols (Hraiech
et al., 2014), contact lenses (Jain et al., 2016), implantable
devices (Francolini et al., 2017), or orthopedic and trauma
devices (Moriarty et al., 2016) are currently being developed
(Table 2).

QSIs were first considered for the functionalization of
catheters. Covalently-attached furanones were shown to decrease
biofilm formation by S. epidermidis ATCC 35984 and to control
infection for 65 days in an in vivo sheep model (Hume et al.,
2004). 5-FU was used to coat a central venous catheter and was
demonstrated to be efficient and comparable to classically used
chlorhexidine/silver sulfadiazine coated catheters in a clinical
study involving 960 adult patients in 25 US intensive care
units (Jacobsen et al., 2008; Walz et al., 2010). Although the
link to QS was not made by the authors, the 5-FU coated
catheters showed reduced contamination levels, by Gram-
negative bacteria, as compared to the traditional coating which
could be a clue as to interference with AHL dependent QS in
this study. Poly(ethylene glycol)-based coating containing the
QSI DHP (5-methylene-1-(prop-2-enoyl)-4-(2-fluorophenyl)-
dihydropyrrol-2-one) was recently shown to reduce S. aureus
strain 38 and P. aeruginosa MH602 colonization (Ozcelik et al.,
2017). Combinations of DHP and furanone derivatives were
also covalently attached onto glass surfaces and significantly
reduced the adhesion of S. aureus SA38 and P. aeruginosa
PAO1 (Taunk et al., 2016). A delivery system based on varnishes
releasing the QSI thiazolidinedione-8 (TZD-8) was used on
catheters and were active against Candida albicans biofilms
(Shenderovich et al., 2015). Notably, honey polyphenols were
introduced into a scaffold of selenium nanovectors for quenching
P. aeruginosa PAO1 in vitro and in vivo (Prateeksha et al.,
2017).

For agr-based QS in S. aureus, inhibiting peptides were
also successfully incorporated into biomaterials. Macrocyclic
peptides were loaded into non-woven polymer nanofibers by
electrospinning and showed to retain biological activity against
S. aureus after releasing over a 3 week period (Kratochvil
et al., 2017). Click chemistry was also considered for covalently
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TABLE 2 | Quorum quenching based medical devices.

QQ strategy QQ agent Application References

QSI 5-FU Catheters Jacobsen et al., 2008; Walz et al., 2010

Furanones Catheters Hume et al., 2004

DHP Coatings Ozcelik et al., 2017

TZD-8 Urinary catheters Shenderovich et al., 2015

Furanone and DHP derivatives Implanted medical devices Taunk et al., 2016

Peptides TrAIP-II Colonization-resistant materials Kim et al., 2017

Macrocyclic peptides Nanofiber coatings Kratochvil et al., 2017

FS3 Prosthesis Cirioni et al., 2013

RIP Dacron graft Balaban et al., 2003

QQ Enzymes PLL SsoPox from S. solfataricus Coatings, membranes, aerosols Ng et al., 2011; Hraiech et al., 2014;

Guendouze et al., 2017

Acylase from A. melleus Catheters and other coated devices Ivanova et al., 2015b; Grover et al., 2016

Acylase from A. melleus and α-amylase from

B. amyloliquefaciens

Catheters Ivanova et al., 2015a

Lactonase from Bacillus sp. ZA12 Topical treatments Gupta et al., 2015

Acylase from porcine kidney Nanofibers Lee et al., 2017

AI-2 processing kinase LsrK Capsules Rhoads et al., 2017

Natural compounds Polyphenols of honey Nanovectors Prateeksha et al., 2017

5-FU, 5-fluorouracil; Furanone, 3-(10-bromohexyl)-5-dibromomethylene-2(5H)-furanone; DHP, 5-methylene-1-(prop-2-enoyl)-4-(2-fluorophenyl)-dihydropyrrol-2-one; TZD-8,

Thiazolidinedione-8; TrAIP-II, a truncated autoinducer peptide (AIP-II) with the exocyclic tail replaced by and acetyl group; FS3, RNA-III inhibiting peptide (RIP) analog (YAPWTNF-NH2).

coating surfaces with pro- and anti-QS peptides, AIP-I and
TrAIP-II respectively and showed efficacy against S. aureus
strains (Kim et al., 2017). The synergy of QS inhibiting peptide
FS3 with antibiotics was also demonstrated, with daptomycin
being highly effective against staphylococcal infections when
combined with a FS3-coated prosthesis (Cirioni et al., 2013).
Similarly, for several strains of S. epidermidis, the RNAIII-
Inhibiting peptide (RIP) was efficient in reducing infection
when incorporated into a Dacron graft (Balaban et al.,
2003).

Although QS inhibiting materials were obtained after covalent
immobilization of QSIs or peptides, QQ enzymes were also
thoroughly investigated as these compounds, acting on secreted
autoinducers, do not need direct contact with the cells to
disrupt communication. Acylase from Aspergillus melleus was
successfully incorporated into polyurethane coatings and silicon
catheters reducing biofilm formation of P. aeruginosa ATCC
10145 and PAO1 respectively (Ivanova et al., 2015b; Grover et al.,
2016). Combination of the acylase with α-amylase from Bacillus
amyloliquefaciens delayed biofilm development of both P.
aeruginosa ATCC 10145 and E. coli ATCC 25922 for up to 7 days
in an in vivo rabbit model (Ivanova et al., 2015a). Acylase from
porcine kidney was also immobilized on carboxylated polyaniline
nanofibers for the development of nanobiocatalysts limiting
biofilm formation of P. aeruginosa PAO1. Topical treatment
involving lactonase from Bacillus sp. ZA12 was also investigated
in a burn infection model on mice using P. aeruginosa PAO1
(Gupta et al., 2015). Application of a lactonase-containing
gel after 106 bacteria burn infection prevented systemic

spread, decreased mortality, and showed synergistic effect with
ciprofloxacin.

Because enzyme stability is a major bottleneck in the
development of bio-based materials, catalysts from extremophile
environments were considered. Particularly, PLL SsoPox from
Sulfolobus solfataricus was found to be a highly attractive way
of quenching bacterial virulence (Rémy et al., 2016a; Bzdrenga
et al., 2017). This highly robust enzyme (Hiblot et al., 2012;
Rémy et al., 2016b), was first immobilized onto nanoalumina
membranes while retaining strong efficacy for reducing virulence
factor secretions, pyocyanin and elastase of P. aeruginosa PAO1
(Ng et al., 2011). The variant enzyme SsoPox-W263I was further
shown to significantly reduce the virulence of 51 clinical isolates
of P. aeruginosa from diabetic foot ulcerations and kept its
efficiency toward PAO1 after immobilization into polyurethane
coating via glutaraldehyde crosslinking (Guendouze et al.,
2017). The in vivo use of this variant was also reported
through intratracheal administration and drastically enhanced
the survival rate in a rat pneumonia model infected by P.
aeruginosa PAO1 (Hraiech et al., 2014).

In addition to the studies using AHL-based QS quenchers,
a recent report described the use of the AI-2 processing kinase
LsrK. This enzyme was attached to a capsule of biological
polymers chitosan and alginate supplemented with ATP substrate
and reduced AI-2 mediated QS (Rhoads et al., 2017).

QQ-based devices have raised special attention considering
that they could prevent HAIs by limiting bacterial virulence and
biofilm formation. However, further efforts have to be dedicated
to validate the proof of concepts in vivo and in clinical phases.
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The efficacy of these devices has to be demonstrated not only in
model bacterial strains but also on genetically and phenotypically
diverse clinical isolates. Although the development of medical
devices is less constrained than for drugs, further regulatory
concerns have to be considered to confirm the potential of the
techniques for therapeutic applications. Nevertheless, the wide
spectrum of both QSI andQQE as well as the numerous examples
of their medical relevance would pave the way to the emergence
of innovative devices.

CONCLUSIONS AND PERSPECTIVES

Over the past 15 years, many studies have demonstrated that
QQ molecules and QQ approaches have great potential as
anti-infective agents against a broad range of bacteria. This is
evidenced by the numerous studies demonstrating the benefit
of these approaches in functionalizing medical devices. To
date, little is known about potential resistance mechanisms
that bacteria could develop to overcome QQ (Defoirdt et al.,
2010; García-Contreras et al., 2013). The apparition of resistance
phenomenon results from the natural process of evolution in a
context of selection pressure which favors the growth of resistant
strains. This is the case for antibiotics that apply high selection
pressure, through growth inhibition, for sensitive strains (Davies
and Davies, 2010). If some QSIs such as azithromycin lead
to severe growth inhibition, others have only moderate or no
effect on growth rate (García-Contreras et al., 2015). Apparition
of QQ resistant bacteria is possible but its rate might be
slower as compared to antibiotic resistance and will depend on
the type of QQ (QSIs or QQEs) and its impact on bacterial
growth (García-Contreras et al., 2016). QQ resistant strains
have already been reported either from laboratory experiments
or from clinical samples, notably strains with lower uptake or
higher efflux of QSIs (Maeda et al., 2012). Nevertheless, little
is known on how QQ resistant strains would over grow QQ
sensitive strains nor on how the population would evolve. Most
studies performed to address this question were performed
in vitro and using QS mutants or QSIs, the results obtained
so far were not consistent (Griffin et al., 2004; Gerdt and
Blackwell, 2014; García-Contreras et al., 2016). To limit QQ
resistance, QQ agents should be carefully chosen to keep growth
deleterious effects minimal. Many QSIs have toxic activities and
need to enter the cells in order to be active. QQ enzymes may
represent ideal candidates combining a minimal, if any, selection
pressure and potent inhibitory effects on biofilm formation and
virulence (Guendouze et al., 2017). Further studies involving

QQ enzymes should be performed to evaluate potential QQ
resistance mechanisms using QQ enzymes. Nonetheless, QQ is a
promising strategy to extend the therapeutic arsenal available to
treat bacterial infections in complement to classical antimicrobial
agents and antibiotics or reemerging bacteriophages.

The broad effect of QS on the physiology of bacteria shows
that QQ would be an appropriate strategy not only to reducing
bacterial virulence but also in terms of restoring antibiotic
tolerance by decreasing biofilm formation and in terms of
decreasing bacterial phage resistance, paving the way for future
combination therapies.

Remarkably, the disruption of bacterial signaling, a
communication system central to microbial communities
(McFall-Ngai et al., 2013), has implications that go beyond
the single bacteria physiology. Indeed, the gut microbiota of
fishes fed with probiotic bacteria, producing QQ enzymes,
was modified and the population of pathogenic Aeromonas
hydrophila was reduced (Zhou et al., 2016). In another approach,
a recent study showed the ability of E. coli overproducing AI-2
to counter the impact of streptomycin-induced gut dysbiosis
potentially underlining the role of quorum sensing in the context
of complex microbiota (Thompson et al., 2015). More studies
are needed to delineate the effects induced by QQ strategies
at both the single bacterial species level and in the context of
communities. Future investigations will determine the breadth
of the action of QQ molecules and their potential in being used
as therapy, combination therapy and as coating agents in medical
devices.
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