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A commentary on

Establishing zebrafish as a model to study the anxiolytic effects of scopolamine

by Hamilton, T. J., Morrill, A., Lucas, K., Gallup, J., Harris, M., Healey, M., et al. (2017). Sci. Rep.
7:15081. doi: 10.1038/s41598-017-15374-w

Combatting human brain disorders and searching for novel personalized therapies are becoming
major, unmet medical problems (Henney, 2012). Therefore, screening for novel CNS compounds
is critically important for translational biomedicine (Hurko and Ryan, 2005; Denayer et al., 2014).
Important strategies in this field include (1) developing novel, more valid neurobehavioral tests,
and paradigms (Echevarria et al., 2017), (2) creation of high-throughput screening platforms (Filip
et al., 2012), and (3) widening the range of model organisms (Rine, 2014). Zebrafish (Danio rerio)
are rapidly emerging as powerful, high-throughput vertebrate models for CNS drug discovery
(Kalueff et al., 2014a,b; Khan et al., 2017). A recent study establishing zebrafish model for studying
psychotropic effects of scopolamine is an interesting, encouraging development in this direction
(Hamilton et al., 2017).

Scopolamine is a well-studied muscarinic cholinergic antagonist, with multiple effects in
the peripheral and central nervous systems, and various side-effects. The drug has a long
history of use in biomedicine to treat a wide range of conditions, including motion sickness
(Schmäl, 2013; Golding and Gresty, 2015) and recovery from anesthesia (Kolodzie and Apfel,
2009; Norton et al., 2011). However, its exact psychopharmacological profile remains complex
and poorly understood (Fredrickson et al., 2008). As recent clinical evidence shows that
scopolamine is also effective at reducing symptoms of depression and anxiety, the reported
anxiolytic-like effects of this drug in zebrafish seem quite possible (Hamilton et al., 2017).
Specifically, scopolamine was anxiolytic in zebrafish tested in the novel approach and the
novel tank diving tests, and, reaching maximum effect at a 800µM dose, also decreased
zebrafish shoaling (an effect seemingly opposite to expected pro-shoaling response to stress
and/or anxiogenic stimuli) (Hamilton et al., 2017). In contrast to this profile, however, rats
and mice treated with scopolamine consistently display increased anxiety in standard behavioral
tests, thus contradicting cited human studies and presented zebrafish findings (Hamilton
et al., 2017). Furthermore, not all zebrafish data support anxiolytic profile of scopolamine.
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For instance, an earlier study in adult zebrafish (Cho et al.,
2012) reported no anxiolytic effects for scopolamine, also noting
its ability to suppress anxiolytic-like effect of physostigmine, an
acetylcholinesterase inhibitor. Contrary to Hamilton et al. (2017),
but in line with rodent data mentioned above, these results
suggest that zebrafish anxiety can be reduced by cholinergic
signaling, and is partly mediated by muscarinic receptors
(Cho et al., 2012). Taken together, these discrepancies merit
further discussion. Since Scientific Reports do not publish
Commentaries, these considerations will be discussed here, given
their potential importance for further dissecting scopolamine
CNS action in vivo.

Notably, in addition to modulating affective
(anxiety/depression) phenotypes comprehensively evaluated
in zebrafish (Hamilton et al., 2017), scopolamine also has two
other well-established CNS effects—memory-impairing and
hallucinogenic. For instance, scopolamine has long been known
to induce cognitive deficits, consistently reported in both clinical
(Atri et al., 2004; Green et al., 2005) and rodent studies (Lee
et al., 2017, 2018; Skalicka-Wozniak et al., 2018). There is also
rich literature on memory-impairing effects of acutely given
scopolamine in zebrafish in various paradigms (Kim et al.,
2010; Richetti et al., 2011; Cognato Gde et al., 2012; Bortolotto
et al., 2015; Rajesh and Ilanthalir, 2016; Zanandrea et al., 2018).
For example, the drug does not affect general locomotion in
zebrafish, reduces T-maze novel arm exploration (Cognato Gde
et al., 2012; Zanandrea et al., 2018) and opposes lithium- and
nicotine-induced cognitive enhancement (Braida et al., 2014a,b;
Zanandrea et al., 2018). Given the well-known memory-anxiety
interplay in animal models (Kalueff and Murphy, 2007), one
may consider behaviors produced by a hypothetical amnestic
agent in rodent or zebrafish anxiety tests, such as especially
the novel object recognition and the novel tank test (Hamilton
et al., 2017). The latter is a powerful, well-established model for
zebrafish behavioral neurophenotyping, particularly sensitive to
anxiety manipulations (Khan et al., 2017). Since most of such
models are based on novelty exposure, one of the main effects
potentially observed in these paradigms from scopolamine
and related amnestic compounds in any model organism in
general can be reduced object recognition and poor intra-trial
habituation, which may mask itself for anxiolytic-like increased
“exploration” (Kalueff and Murphy, 2007). In essence, animals
under scopolamine may not remember well the object or
area they inspected/visited, thus requiring more additional
exploration bouts in novelty tests and also displaying reduced
social recognition (and, hence, cohesion) in shoaling tests.
Both rodent (Akkerman et al., 2012) and zebrafish (Kyzar and
Kalueff, 2016) data on scopolamine action seem to support this
possibility, and, thus, it is plausible that the similar rationale
(rather than anti-anxiety action per se) can contribute to
seemingly “anxiolytic”-like effects of scopolamine reported in
zebrafish (Hamilton et al., 2017).

Another well-known CNS effect of scopolamine is its
hallucinogenic action (Burillo-Putze et al., 2013). The growing
interest in hallucinogenic psychopharmacology (Kyzar et al.,
2017) has recently been expanded to zebrafish models (Kyzar
and Kalueff, 2016), thus meriting further consideration here.

Can the observed behavioral effects of scopolamine (Hamilton
et al., 2017) be due to its putative hallucinogenic action?
Indeed, scopolamine and other anti-cholinergic drugs, such as
atropine, are traditionally known as “deliriant” hallucinogens
(Burillo-Putze et al., 2013) which evoke strong delusions and
hyperactivation—the profile that also strikingly differs from other
known classes (psychedelics, dissociatives) of hallucinogens.
Clearly, this deliriant hallucinogenic action of scopolamine, if it
exists in zebrafish, may not only result in increased exploratory
locomotor activity in zebrafish reported (Hamilton et al., 2017),
but also disrupt shoaling behavior—another observed phenotype
in this study. Consistent with this notion, social behavior is
disrupted by hallucinogens in many rodent studies as well (see
review in Kyzar and Kalueff, 2016), most likely due to overall
confusion, lethargy, and/or sensory hallucinations. Therefore,
anxiolytic action is not the only reason why zebrafish shoals
may become less cohesive, and multiple other factors (e.g.,
reduced sociality, aberrant sensory function, motor retardation,
hallucinations) acting alone or jointly may affect fish group
behavior in this test. Thus, given the ability of various classes
of hallucinogens to nonspecifically disrupt zebrafish shoaling
regardless of their effects on anxiety (Kyzar and Kalueff, 2016),
this alternative possibility (rather than proposed “anxiolysis”) in
underlying zebrafish shoaling-disrupting behavior under acute
scopolamine seems indeed likely.

Finally, there are clear behavioral limitations of the zebrafish
model which may be relevant to scopolamine action. For
instance, despite the advantages of using zebrafish as a model
to study anxiety-like behavior, all animal models are limited
since they cannot fully recapitulate the complex repertoire of
human behavior (Kalueff et al., 2014a; Stewart et al., 2014, 2015).
Furthermore, it can be difficult to distinguish between various
subtypes of zebrafish anxiety-like behaviors, especially since they
have not yet been fully dissected in zebrafish. Likewise, proper
behavioral analyses of psychotropic effects in zebrafish tests may
require sophisticated 3D-based video-tracking assays (Cachat
et al., 2011; Maaswinkel et al., 2013) rather than less sensitive
2D-based behavioral data. Additionally, as zebrafish demonstrate
robust strain differences in their behavioral and drug responses
(Maximino et al., 2013; Kalueff et al., 2014a,b; Stewart et al., 2014,
2015), this aspect may also be considered when studying complex
psychopharmacology of scopolamine in adult zebrafish.

In summary, while anti-anxiety action of scopolamine in
zebrafish may not be ruled out, several additional factors (e.g.,
amnestic and hallucinatory profile) may confound putative
anti-anxiety-like action of scopolamine in this aquatic model
suggested by Hamilton et al. (2017). Likewise, clinical data
supporting anxiolytic action of scopolamine, discussed in
Hamilton et al. (2017) seem to only partly corroborate zebrafish
findings. On the one hand, since selected human studies
involved chronic or repeated administration of scopolamine,
and the described zebrafish experiments used acute single
doses (Hamilton et al., 2017), it is problematic to make
direct translational comparisons between such findings. On
the other hand, acute scopolamine may cause confusion,
anxiety/fear, agitation, and irritability in humans, most likely
overlapping with (or being part of) its well-known pro-arousal,
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delirium-inducing action. In line with this, US Food and Drug
Administration (FDA) lists restlessness, confusion, agitation,
and hallucinations as potential side-effects of scopolamine
in humans (https://www.accessdata.fda.gov/drugsatfda_docs/
nda/2001/017874_S018%20&%20S027_SCOPOLAMINE_AP.
pdf). Such action not only parallels numerous rodent findings
on anxiogenic-like profile of scopolamine, but, given a strong
similarity of zebrafish and mammalian drug targets (Kalueff
et al., 2014a), may also be part of complex zebrafish behaviors
induced (most likely, in a dose-dependent manner) by this agent.
Comparative analyses of this drug action profile with that of
atropine—another similar cholinergic agent, are also warranted.
Thus, care is necessary when interpreting scopolamine data in
zebrafish, and further behavioral, pharmacological as well as
biomarker (e.g., endocrine, c-fos-, neurochemical) validation is
needed before concluding that acute scopolamine in zebrafish
is anxiolytic (or anxiogenic), and whether this organism is
a valid in-vivo system for detecting an anxiotropic action of
this drug. Such additional validation efforts, in our opinion,

may include using a battery of multiple anxiety-sensitive tests
(reviewed in Kalueff et al., 2014a,b), measuring cortisol stress
responses in scopolamine-treated zebrafish, bidirectionally
modulating their anxiety levels (induced by scopolamine) using
classical “reference” anxiogenic and anxiolytic non-cholinergic
compounds, and applying specific cholinergic manipulations to
increase or decrease cholinergic neurotransmission in zebrafish
treated with acute (and, eventually, chronic) scopolamine, as
well as atropine.
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