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This study compares the accuracy of (Q)SAR/read-across predictions with the

experimental variability of chronic lowest-observed-adverse-effect levels (LOAELs) from

in vivo experiments. We could demonstrate that predictions of the lazy structure-activity

relationships (lazar) algorithm within the applicability domain of the training data have

the same variability as the experimental training data. Predictions with a lower similarity

threshold (i.e., a larger distance from the applicability domain) are also significantly better

than random guessing, but the errors to be expected are higher and a manual inspection

of prediction results is highly recommended.
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INTRODUCTION

Relying on standard animal toxicological testing for chemical hazard identification and
characterization is increasingly questioned on both scientific and ethical grounds. In addition, it
appears obvious that from a resource perspective, the capacity of standard toxicology to address
the safety of thousands of untested chemicals (Fowler et al., 2011) to which human may be exposed
is very limited. It has also been recognized that getting rapid insight on toxicity of chemicals in
case of emergency safety incidents or for early prioritization in research and development (safety
by design) is a big challenge mainly because of the time and cost constraints associated with the
generation of relevant animal data. In this context, alternative approaches to obtain timely and
fit-for-purpose toxicological information are being developed. Amongst others in silico toxicology
methods are considered highly promising. Importantly, they are raising more and more interests
and getting increased acceptance in various regulatory (e.g., ECHA, 2008; EFSA, 2014, 2016; OECD,
2015; Health Canada, 2016) and industrial (e.g., Lo Piparo et al., 2011; Stanton and Krusezewski,
2016) frameworks.

For a long time already, computational methods have been an integral part of pharmaceutical
discovery pipelines, while in chemical food safety their actual potentials emerged only recently
(Lo Piparo et al., 2011). In this field, an application considered critical is in the establishment of
levels of safety concern in order to rapidly and efficiently manage toxicologically uncharacterized
chemicals identified in food. This requires a risk-based approach to benchmark exposure with
a quantitative value of toxicity relevant for risk assessment (Schilter et al., 2014). Since chronic
studies have the highest power (more animals per group and more endpoints than other studies)
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and because long-term toxicity studies are often the most
sensitive in food toxicology databases, predicting chronic toxicity
is of prime importance. Up to now, read-across and Quantitative
Structure Activity Relationships (QSAR) have been themost used
in silico approaches to obtain quantitative predictions of chronic
toxicity.

The quality and reproducibility of (Q)SAR and read-across
predictions has been a continuous and controversial topic in
the toxicological risk-assessment community. Although model
predictions can be validated with various procedures, to review
results in context of experimental variability has actually been
rarely done or attempted. With missing information about the
variability of experimental toxicity data it is hard to judge the
performance of predictive models objectively and it is tempting
for model developers to use aggressive model optimization
methods that lead to impressive validation results, but also to
overfitted models with little practical relevance.

In the present study, automatic read-across like models were
built to generate quantitative predictions of long-term toxicity.
The aim of the work was not to predict the nature of the
toxicological effects of chemicals, but to obtain quantitative
values which could be compared to exposure. Two databases
compiling chronic oral rat Lowest Adverse Effect Levels (LOAEL)
as endpoint were used. An early review of the databases
revealed that many chemicals had at least two independent
studies/LOAELs. These studies were exploited to generate
information on the reproducibility of chronic animal studies and
were used to evaluate prediction performance of the models in
the context of experimental variability.

An important limitation often raised for computational
toxicology is the lack of transparency on published models and
consequently on the difficulty for the scientific community to
reproduce and apply them. To overcome these issues, source
code for all programs and libraries and the data that have been
used to generate this manuscript are made available under GPL3
licenses. Data and compiled programs with all dependencies for
the reproduction of results in this manuscript are available as
a self-contained docker image. All data, tables, and figures in
this manuscript was generated directly from experimental results
using the R package knitR.

MATERIALS AND METHODS

The following sections give a high level overview about
algorithms and datasets used for this study. In order to provide
unambiguous references to algorithms and datasets, links to
source code and data sources are included in the text.

Datasets
Nestlé Database
The first database (Nestlé database for further reference)
originates from the publication of (Mazzatorta et al., 2008).
It contains chronic (>180 days) lowest observed effect levels
(LOAEL) for rats (Rattus norvegicus) after oral (gavage, diet,
drinking water) administration. The Nestlé database consists of
567 LOAEL values for 445 unique chemical structures. TheNestlé
database can be obtained from the following GitHub links:

• original data: https://github.com/opentox/loael-paper/blob/
revision/data/LOAEL_mg_corrected_smiles_mmol.csv

• unique smiles: https://github.com/opentox/loael-paper/blob/
revision/data/mazzatorta.csv

• −log10 transfomed LOAEL: https://github.com/opentox/
loael-paper/blob/revision/data/mazzatorta_log10.csv.

Swiss Food Safety and Veterinary Office (FSVO)

Database
Publicly available data from pesticide evaluations of chronic
rat toxicity studies from the European Food Safety Authority
(EFSA) (EFSA, 2014), the Joint FAO/WHOMeeting on Pesticide
Residues (JMPR) (WHO, 2011), and the US EPA (US EPA,
2011) were compiled to form the FSVO-database. Only studies
providing both an experimental NOAEL and an experimental
LOAEL were included. The LOAELs were taken as they were
reported in the evaluations. Further details on the database are
described elsewhere (Zarn et al., 2011, 2013). The FSVO-database
consists of 493 rat LOAEL values for 381 unique chemical
structures. It can be obtained from the following GitHub links:

• original data: https://github.com/opentox/loael-paper/blob/
revision/data/NOAEL-LOAEL_SMILES_rat_chron.csv

• unique smiles and mmol/kg_bw/day units: https://github.
com/opentox/loael-paper/blob/revision/data/swiss.csv

• −log10 transfomed LOAEL: https://github.com/opentox/
loael-paper/blob/revision/data/swiss_log10.csv

Preprocessing
Chemical structures (represented as SMILES; Weininger,
1988) in both databases were checked for correctness. When
syntactically incorrect or missing SMILES were generated from
other identifiers (e.g., names, CAS numbers). Unique smiles
from the OpenBabel library (O’Boyle et al., 2011) were used for
the identification of duplicated structures.

Studies with undefined or empty LOAEL entries were
removed from the databases. LOAEL values were converted to
mmol/kg bw/day units and rounded to five significant digits.
For prediction, validation, and visualization purposes −log10
transformations are used.

Derived Datasets
Two derived datasets were obtained from the original databases:

The test dataset contains data from compounds that occur
in both databases. LOAEL values equal at five significant
digits were considered as duplicates originating from the same
study/publication and only one instance was kept in the test
dataset. The test dataset has 375 LOAEL values for 155 unique
chemical structures and was used for

• evaluating experimental variability
• comparing model predictions with experimental variability.

The training dataset is the union of the Nestlé and the FSVO
databases and it was used to build predictive models. LOAEL
duplicates were removed using the same criteria as for the test
dataset. The training dataset has 998 LOAEL values for 671
unique chemical structures.
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Algorithms
In this study we are using the modular lazar (lazy structure
activity relationships) framework (Maunz et al., 2013) for model
development and validation. The complete lazar source code
can be found on GitHub.

lazar follows the following basic workflow:
For a given chemical structure lazar

• searches in a database for similar structures (neighbors) with
experimental data,

• builds a local QSAR model with these neighbors and
• uses this model to predict the unknown activity of the query

compound.

This procedure resembles an automated version of read across
predictions in toxicology, in machine learning terms it would be
classified as a k-nearest-neighbor algorithm.

Apart from this basic workflow lazar is completely modular
and allows the researcher to use any algorithm for similarity
searches and local QSAR modeling. Algorithms used within this
study are described in the following sections.

Neighbor Identification
Similarity calculations are based on MolPrint2D fingerprints
(Bender et al., 2004) from the OpenBabel chemoinformatics
library (O’Boyle et al., 2011).

The MolPrint2D fingerprint uses atom environments as
molecular representation, which resemble basically the chemical
concept of functional groups. For each atom in a molecule it
represents the chemical environment using the atom types of
connected atoms.

MolPrint2D fingerprints are generated dynamically from
chemical structures and do not rely on predefined lists of
fragments (such as OpenBabel FP3, FP4, or MACCs fingerprints
or lists of toxocophores/toxicophobes). This has the advantage
that they may capture substructures of toxicological relevance
that are not included in other fingerprints.

From MolPrint2D fingerprints we can construct a feature
vector with all atom environments of a compound, which can be
used to calculate chemical similarities.

The chemical similarity between two compounds A and B
is expressed as the proportion between atom environments
common in both structures A ∩ B and the total number of atom
environments A ∪ B (Jaccard/Tanimoto index, Equation 1).

sim =
|A ∩ B|

|A ∪ B|
(1)

The threshold selection is a trade-off between prediction
accuracy (high threshold) and the number of predictable
compounds (low threshold). As it is in many practical cases
desirable to make predictions even in the absence of closely
related neighbors, we follow a tiered approach:

• First a similarity threshold of 0.5 is used to collect neighbors,
to create a local QSAR model and to make a prediction for the
query compound.

• If any of these steps fails, the procedure is repeated with a
similarity threshold of 0.2 and the prediction is flagged with
a warning that it might be out of the applicability domain of
the training data.

• Similarity thresholds of 0.5 and 0.2 are the default values
chosen by the software developers and remained unchanged
during the course of these experiments.

Compounds with the same structure as the query structure
are automatically eliminated from neighbors to obtain unbiased
predictions in the presence of duplicates.

Local QSAR Models and Predictions
Only similar compounds (neighbors) above the threshold are
used for local QSAR models. In this investigation we are using
weighted random forests regression (RF) for the prediction
of quantitative properties. First all uninformative fingerprints
(i.e., features with identical values across all neighbors) are
removed. The remaining set of features is used as descriptors for
creating a local weighted RF model with atom environments as
descriptors and model similarities as weights. The RF method
from the caret R package (Kuhn, 2008) is used for this purpose.
Models are trained with the default caret settings, optimizing
the number of RF components by bootstrap resampling.

Finally the local RF model is applied to predict the activity
of the query compound. The root-mean-square error (RMSE) of
bootstrapped local model predictions is used to construct 95%
prediction intervals at 1.96*RMSE. The width of the prediction
interval indicates the expected prediction accuracy. The “true”
value of a prediction should be with 95% probability within the
prediction interval.

If RF modeling or prediction fails, the program resorts to
using the weighted mean of the neighbors LOAEL values, where
the contribution of each neighbor is weighted by its similarity to
the query compound. In this case the prediction is also flagged
with a warning.

Applicability Domain
The applicability domain (AD) of lazar models is determined
by the structural diversity of the training data. If no similar
compounds are found in the training data no predictions will be
generated. Warnings are issued if the similarity threshold has to
be lowered from 0.5 to 0.2 in order to enable predictions and if
lazar has to resort to weighted average predictions, because local
random forests fail. Thus, predictions without warnings can be
considered as close to the applicability domain and predictions
with warnings as more distant from the applicability domain.
Quantitative applicability domain information can be obtained
from the similarities of individual neighbors.

Local regression models consider neighbor similarities to the
query compound, by weighting the contribution of each neighbor
is by similarity. The variability of local model predictions is
reflected in the 95% prediction interval associated with each
prediction.

Validation
For the comparison of experimental variability with predictive
accuracies we are using a test set of compounds that occur in
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both databases. Unbiased read across predictions are obtained
from the training dataset, by removing all information from the
test compound from the training set prior to predictions. This
procedure is hardcoded into the prediction algorithm in order
to prevent validation errors. As we have only a single test set no
model or parameter optimizations were performed in order to
avoid overfitting a single dataset.

Results from 50 repeated 10-fold crossvalidations with
independent training/test set splits are provided as additional
information to the test set results.

The final model for production purposes was trained with all
available LOAEL data (Nestlé and FSVO databases combined).

Availability
Public webinterface https://lazar.in-silico.ch (see Figure 1)

lazar framework https://github.com/opentox/lazar (source
code)

lazarGUI https://github.com/opentox/lazar-gui (source
code)

Manuscript https://github.com/opentox/loael-paper/tree/
revision (source code for the manuscript and validation
experiments)

Docker image https://hub.docker.com/r/insilicotox/loael-
paper/ (container with manuscript, validation experiments,
lazar libraries, and third party dependencies)

RESULTS

Dataset Comparison
The main objective of this section is to compare the content of
both databases in terms of structural composition and LOAEL
values, to estimate the experimental variability of LOAEL values
and to establish a baseline for evaluating prediction performance.

FIGURE 1 | Screenshot of a lazar prediction from the public webinterface.
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Structural Diversity
In order to compare the structural diversity of both databases
we evaluated the frequency of functional groups from the
OpenBabel FP4 fingerprint. Figure 2 shows the frequency of
functional groups in both databases. One hundred and thirty-
nine functional groups with a frequency > 25 are depicted, the
complete table for all functional groups can be found in the
supplemental material at GitHub.

This result was confirmed with a visual inspection using the
CheS-Mapper (Chemical Space Mapping and Visualization in
3D, Gütlein et al., 2012) tool. CheS-Mapper can be used to analyze
the relationship between the structure of chemical compounds,
their physico-chemical properties, and biological or toxic effects.
It depicts closely related (similar) compounds in 3D space and

can be used with different kinds of features. We have investigated
structural as well as physico-chemical properties and concluded
that both databases are very similar, both in terms of chemical
structures and physico-chemical properties.

The only statistically significant difference between both
databases is that the Nestlè database contains more small
compounds (61 structures with less than 11 non-hydrogen
atoms) than the FSVO-database (19 small structures, chi-square
test: p-value 3.7E-7).

Experimental Variability vs. Prediction
Uncertainty
Duplicated LOAEL values can be found in both databases and
there is a substantial number of 155 compounds with more than

FIGURE 2 | Frequency of functional groups.
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one LOAEL. These chemicals allow us to estimate the variability
of experimental results within individual databases and between
databases. Data with identical values (at five significant digits) in
both databases were excluded from variability analysis, because it
it likely that they originate from the same experiments.

Intra Database Variability
Both databases contain substances with multiple measurements,
which allow the determination of experimental variabilities. For
this purpose we have calculated the mean LOAEL standard
deviation of compounds with multiple measurements. Mean
standard deviations and thus experimental variabilities are
similar for both databases.

The Nestlé database has 567 LOAEL values for 445 unique
structures, 93 compounds have multiple measurements with a
mean standard deviation (−log10 transformed values) of 0.32
(0.56 mg/kg_bw/day, 0.56 mmol/kg_bw/day) (Mazzatorta et al.,
2008, Figure 3).

The FSVO database has 493 rat LOAEL values for 381 unique
structures, 91 compounds have multiple measurements with a
mean standard deviation (−log10 transformed values) of 0.29
(0.57 mg/kg_bw/day, 0.59 mmol/kg_bw/day) (Figure 3).

Standard deviations of both databases do not show a
statistically significant difference with a p-value (t-test) of
0.21. The combined test set has a mean standard deviation

(−log10 transformed values) of 0.33 (0.56 mg/kg_bw/day, 0.55
mmol/kg_bw/day) (Figure 3).

Inter Database Variability
In order to compare the correlation of LOAEL values in both
databases and to establish a reference for predicted values, we
have investigated compounds, that occur in both databases.

Figure 4 depicts the correlation between LOAEL values from
both databases. As both databases contain duplicates medians
were used for the correlation plot and statistics. It should be
kept in mind that the aggregation of duplicated measurements
into a single median value hides a substantial portion of the
experimental variability. Correlation analysis shows a significant
(p-value < 2.2e-16) correlation between the experimental data in
both databases with rˆ2: 0.52, RMSE: 0.59.

Figure 5 shows the experimental LOAEL variability of
compounds occurring in both datasets (i.e., the test dataset)
colored in blue (experimental). This is the baseline reference for
the comparison with predicted values.

Local QSAR Models
In order to compare the performance of in silico read across
models with experimental variability we used compounds with
multiple measurements as a test set (375 measurements, 155
compounds). lazar read across predictions were obtained
for 155 compounds, 37 predictions failed, because no similar

FIGURE 3 | LOAEL distribution and variability of compounds with multiple measurements in both databases. Compounds were sorted according to LOAEL values.

Each vertical line represents a compound, and each dot an individual LOAEL value. Experimental variability can be inferred from dots (LOAELs) on the same line

(compound).
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FIGURE 4 | Correlation of median LOAEL values from Nestlé and FSVO databases. Data with identical values in both databases was removed from analysis.

compounds were found in the training data (i.e., they were not
covered by the applicability domain of the training data).

In 100% of the test examples experimental LOAEL values were
located within the 95% prediction intervals.

Figure 5 shows a comparison of predicted with experimental
values. Most predicted values were located within the
experimental variability.

Correlation analysis was performed between individual
predictions and the median of experimental data. All correlations
are statistically highly significant with a p-value < 2.2e-16. These
results are presented in Figure 6 and Table 1. Please bear in
mind that the aggregation of multiple measurements into a single
median value hides experimental variability.

For a further assessment of model performance three
independent 10-fold cross-validations were performed. Results
are summarized in Table 2 and Figure 7. All correlations
of predicted with experimental values are statistically highly
significant with a p-value < 2.2e-16. This was observed for
compounds close and more distant to the applicability domain.

DISCUSSION

It is currently acknowledged that there is a strong need for
toxicological information on the multiple thousands of chemicals
to which humanmay be exposed through food. These include for
example many chemicals in commerce, which could potentially
find their way into food (Fowler et al., 2011; Stanton and

Krusezewski, 2016), but also substances migrating from food
contact materials (Grob et al., 2006), chemicals generated
over food processing (Cotterill et al., 2008), environmental
contaminants as well as inherent plant toxicants (Schilter et al.,
2013). For the vast majority of these chemicals, no toxicological
data is available and consequently insight on their potential
health risks is very difficult to obtain. It is recognized that testing
all of them in standard animal studies is neither feasible from
a resource perspective nor desirable because of ethical issues
associated with animal experimentation. In addition, for many
of these chemicals, risk may be very low and therefore testing
may actually be irrelevant. In this context, the identification of
chemicals of most concern on which limited resource available
should focused is essential and computational toxicology is
thought to play an important role for that.

In order to establish the level of safety concern of food
chemicals toxicologically not characterized, a methodology
mimicking the process of chemical risk assessment, and
supported by computational toxicology, was proposed (Schilter
et al., 2014). It is based on the calculation of margins of exposure
(MoE) that is the ratio between the predicted chronic toxicity
value (LOAEL) and exposure estimate. The level of safety concern
of a chemical is then determined by the size of the MoE and
its suitability to cover the uncertainties of the assessment. To be
applicable, such an approach requires quantitative predictions
of toxicological endpoints relevant for risk assessment. The
present work focuses on the prediction of chronic toxicity, a
major and often pivotal endpoint of toxicological databases
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FIGURE 5 | Comparison of experimental with predicted LOAEL values. Each vertical line represents a compound, dots are individual measurements (blue),

predictions (green), or predictions far from the applicability domain, i.e., with warnings (red).

used for hazard identification and characterization of food
chemicals.

In a previous study, automated read-across like models
for predicting carcinogenic potency were developed. In these
models, substances in the training dataset similar to the query
compounds are automatically identified and used to derive a
quantitative TD50 value. The errors observed in these models
were within the published estimation of experimental variability
(Lo Piparo et al., 2014). In the present study, a similar approach
was applied to build models generating quantitative predictions
of long-term toxicity. Two databases compiling chronic oral
rat lowest adverse effect levels (LOAEL) as reference value
were available from different sources. Our investigations clearly
indicated that the Nestlé and FSVO databases are very similar in
terms of chemical structures and properties as well as distribution
of experimental LOAEL values. The only significant difference
that we observed was that the Nestlé one has larger amount of
small molecules, than the FSVO database. For this reason we
pooled both databases into a single training dataset for read
across predictions.

An early review of the databases revealed that 155 out
of the 671 chemicals available in the training datasets had
at least two independent studies/LOAELs. These studies were
exploited to generate information on the reproducibility of
chronic animal studies and were used to evaluate prediction
performance of the models in the context of experimental
variability. Considerable variability in the experimental data was

observed. Study design differences, including dose selection,
dose spacing, and route of administration are likely explanation
of experimental variability. High experimental variability has
an impact on model building and on model validation. First
it influences model quality by introducing noise into the
training data, secondly it influences accuracy estimates because
predictions have to be compared against noisy data where “true”
experimental values are unknown. This will become obvious
in the next section, where comparison of predictions with
experimental data is discussed. The data obtained in the present
study indicate that lazar generates reliable predictions for
compounds within the applicability domain of the training data
(i.e., predictions without warnings, which indicates a sufficient
number of neighbors with similarity > 0.5 to create local random
forest models). Correlation analysis shows that errors (RMSE)
and explained variance (r2) are comparable to experimental
variability of the training data.

Predictions with a warning (neighbor similarity < 0.5 and > 0.2
or weighted average predictions) are more uncertain. However,
they still show a strong correlation with experimental data, but
the errors are ~ 20–40% larger than for compounds within the
applicability domain (Figure 6 and Table 2). Expected errors are
displayed as 95% prediction intervals, which covers 100% of the
experimental data. The main advantage of lowering the similarity
threshold is that it allows to predict a much larger number of
substances than with more rigorous applicability domain criteria.
As each of this prediction could be problematic, they are flagged
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FIGURE 6 | Correlation of experimental with predicted LOAEL values (test set). Green dots indicate predictions close to the applicability domain (i.e., without

warnings), red dots indicate predictions far from the applicability domain (i.e., with warnings).

TABLE 1 | Comparison of model predictions with experimental variability.

Comparison r2 RMSE Nr. predicted

Nestlé vs. FSVO database 0.52 0.59

AD close predictions vs. test median 0.48 0.56 34/155

AD distant predictions vs. test median 0.38 0.68 84/155

All predictions vs. test median 0.4 0.65 118/155

TABLE 2 | Results (mean and standard deviation) from 50 independent 10-fold

crossvalidations.

Predictions r2 RMSE Nr. predicted

AD close 0.6 ± 0.04 0.58 ± 0.02 97 ± 4

AD distant 0.43 ± 0.01 0.8 ± 0.01 380 ± 5

All 0.46 ± 0.01 0.76 ± 0.01 477 ± 4

with a warning to alert risk assessors that further inspection is
required. This can be done in the graphical interface (https://
lazar.in-silico.ch) which provides intuitive means of inspecting
the rationales and data used for read across predictions.

Finally there is a substantial number of chemicals (37), where
no predictions can bemade, because no similar compounds in the
training data are available. These compounds clearly fall beyond
the applicability domain of the training dataset and in such cases

predictions should not be used. In order to expand the domain
of applicability, the possibility to design models based on shorter,
less than chonic studies should be studied. It is likely that more
substances reflecting a wider chemical domain may be available.
To predict such shorter duration endpoints would also be
valuable for chronic toxicy since evidence suggest that exposure
duration has little impact on the levels of NOAELs/LOAELs
(Zarn et al., 2011, 2013).

Lazar Predictions
Tables 1, 2 and Figures 5–7 clearly indicate that lazar

generates reliable predictions for compounds within the
applicability domain of the training data (i.e., predictions without
warnings, which indicates a sufficient number of neighbors with
similarity > 0.5 to create local random forest models). Correlation
analysis (Tables 1, 2) shows, that errors (RMSE) and explained
variance (r2) are comparable to experimental variability of the
training data.

Predictions with a warning (neighbor similarity < 0.5 and
> 0.2 or weighted average predictions) are a gray zone. They
still show a strong correlation with experimental data, but the
errors are larger than for compounds within the applicability
domain (Tables 1, 2). Expected errors are displayed as 95%
prediction intervals, which covers 100% of the experimental
data. The main advantage of lowering the similarity threshold
is that it allows to predict a much larger number of substances
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FIGURE 7 | Correlation of predicted vs. measured values from a randomly selected crossvalidation with MP2D fingerprint descriptors and local random forest models.

than with more rigorous applicability domain criteria. As
each of this prediction could be problematic, they are flagged
with a warning to alert risk assessors that further inspection
is required. This can be done in the graphical interface
(https://lazar.in-silico.ch) which provides intuitive means of
inspecting the rationales and data used for read across
predictions.

SUMMARY

In conclusion, we could demonstrate that lazar predictions
within the applicability domain of the training data have the
same variability as the experimental training data. In such cases
experimental investigations can be substituted with in silico
predictions. Predictions with a lower similarity threshold can still
give usable results, but the errors to be expected are higher and a
manual inspection of prediction results is highly recommended.

Anyway, our suggested workflow includes always the visual
inspection of the chemical structures of the neighbors selected
by the model. Indeed it will strength the prediction confidence
(if the input structure looks very similar to the neighbors selected
to build the model) or it can drive to the conclusion to use read-
across with the most similar compound of the database (in case
not enough similar compounds to build the model are present in
the database).
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