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Ginseng, one of the oldest traditional Chinese medicinal herbs, has been used widely

in China and Asia for thousands of years. Ginsenosides extracted from ginseng, which

is derived from the roots and rhizomes of Panax ginseng C. A. Meyer, have been used

in China as an adjuvant in the treatment of diabetes mellitus. Owing to the technical

complexity of ginsenoside production, the total ginsenosides are generally extracted.

Accumulating evidence has shown that ginsenosides exert antidiabetic effects. In vivo

and in vitro tests revealed the potential of ginsenoside Rg1, Rg3, Rg5, Rb1, Rb2,

Rb3, compound K, Rk1, Re, ginseng total saponins, malonyl ginsenosides, Rd, Rh2,

F2, protopanaxadiol (PPD) and protopanaxatriol (PPT)-type saponins to treat diabetes

and its complications, including type 1 diabetes mellitus, type 2 diabetes mellitus,

diabetic nephropathy, diabetic cognitive dysfunction, type 2 diabetes mellitus with fatty

liver disease, diabetic cerebral infarction, diabetic cardiomyopathy, and diabetic erectile

dysfunction. Many effects are attributed to ginsenosides, including gluconeogenesis

reduction, improvement of insulin resistance, glucose transport, insulinotropic action, islet

cell protection, hepatoprotective activity, anti-inflammatory effect, myocardial protection,

lipid regulation, improvement of glucose tolerance, antioxidation, improvement of

erectile dysfunction, regulation of gut flora metabolism, neuroprotection, anti-angiopathy,

anti-neurotoxic effects, immunosuppression, and renoprotection effect. The molecular

targets of these effects mainly contains GLUTs, SGLT1, GLP-1, FoxO1, TNF-α, IL-6,

caspase-3, bcl-2, MDA, SOD, STAT5-PPAR gamma pathway, PI3K/Akt pathway,

AMPK-JNK pathway, NF-κB pathway, and endoplasmic reticulum stress. Rg1, Rg3, Rb1,

and compound K demonstrated the most promising therapeutic prospects as potential

adjuvant medicines for the treatment of diabetes. This paper highlights the underlying

pharmacological mechanisms of the anti-diabetic effects of ginsenosides.
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INTRODUCTION

Ginseng, as a perennial herb of the genus Panax (Araliaceae
family) with fleshy roots (Hu, 1977), has been widely used as a
traditional Chinese Medicine for thousands years. The ginseng
that is widely used as medical herbs includes Panax ginseng
C. A. Mey (ginseng) and Panax quinquefolium L (American
ginseng). Ginseng is mainly distributed in northeast China and
Korean. Korean ginseng is shaped like ginseng in northeast
China and almost has same effects. American ginseng is native
both eastern American and Canada and is considered to have
some similar efficacy and ingredients with ginseng. As one
of the best-selling herbs in the world, ginseng and American
ginseng are well documented in the China Pharmacopeia and
the US Pharmacopeia, respectively. Ginseng (Panax ginseng C.
A. Mey) has a wide range of their therapeutic functions anti-
stress, health promotion, maintaining and enhancing central
and immune systems, preventing certain chronic diseases, as
well as aging deterrent properties. American ginseng seems to
be more effective in cardiovascular disease treatment (Wang
et al., 2015b) Traditional Chinese doctors believe that the
feature of American ginseng (P. quinquefolium L) tends to be
cold while ginseng (Panax ginseng C. A. Mey) tends to be
warm. The present research focus on ginseng (Panax ginseng
C. A. Mey), which is a perennial herb, with a root height
of 30–60 cm, hypertrophic, fleshy, yellow-white, cylindrical or
spindle-shaped, with a slightly-branched, short, upright rhizome
(reed) (Figure 1). Currently, dry ginseng root is used worldwide
to treat diabetes (Gui et al., 2016), cancer-related fatigue
(Yennurajalingam et al., 2015), cardiovascular disease (Kim,
2012), stroke (Rastogi et al., 2014), and other diseases.

Ginsenoside is a triterpenoid saponin predominantly
extracted from P. ginseng C. A. Meyer. Ginsenoside, the
active ingredient in ginseng, is widely used in clinical practice
as the main component of injections, granules, common
tablets, dispersible tablets, capsules, and mixtures; thus, it has
become a target of extensive research. The Japanese natural
medicine chemist Shibata first identified the structures of
various ginsenosides in 1965 (Shibata et al., 1965). Owing to the
complexity of the extraction of ginsenoside monomers, most
extractions of ginseng yield the total ginsenosides. At present,
few manufacturers produce ginsenoside. This also limits the
clinical use of ginsenosides.

Recent studies have shown that ginsenosides can be used
to treat early chronic kidney disease (Xu et al., 2017), non-
small-cell lung cancer (Leem et al., 2018), septic acute lung

Abbreviations: Ach, acetylcholine; AChE, acetylcholinesterase; AMP, activated

protein kinase; BUN, blood urea nitrogen; JNK, c-Jun NH2-terminal kinase;

DN, Diabetic nephropathy; DM, diabetes mellitus; FBG, fasting blood glucose;

FOXO1, Forkhead transcription factor 1; GLP-1, lucagon-like peptide-1; CHOP,

homologous protein; IDF, International Diabetes Federation; LDL-C, low-density

lipoprotein cholesterol; MDA, malondialdehyde; MGR, Malonyl ginsenosides;

NAFLD, Non-alcoholic fatty liver disease; Scr, serum creatinine; SGLT1, sodium-

glucose cotransporters 1; SOD, superoxide dismutase; TC, total cholesterol; TG,

triglyceride; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; TNF-

α, tumor necrosis factor-alpha; TNF-β, tumor necrosis factor-β; IL-2, interleukin-

2; IL-6, interleukin-6; PPAR-γ, peroxisome proliferator-activated receptor gamma

coactivator 1-alpha.

FIGURE 1 | Root of Ginseng.

injury and acute respiratory distress syndrome (Sun et al., 2015).
A randomized controlled trial showed that ginsenoside Rb1
ameliorates the renal function of patients with early chronic
kidney disease. The trial recruited 197 patients with early chronic
kidney disease and orally administered Rb1. Compared with that
for the placebo group, renal function parameters (creatinine and
urea clearance), oxidative stress, and inflammation significantly
reduced (Xu et al., 2017). Ameta-analysis comparing ginsenoside
Rg3 combined with chemotherapy and chemotherapy alone for
the treatment of non-small-cell lung cancer showed that the
addition of ginsenoside Rg3 increased short-term efficacy, overall
survival, and the proportion of CD4/CD8T cells; these increases
were statistically significant (Xu et al., 2016). Another clinical trial
showed that ginsenosides acted synergistically with ulinastatin in
the treatment of septic acute lung injury and acute respiratory
distress syndrome. The pulmonary capillary permeability index,
the extravascular lung water index, and the oxygenation index
of the group treated with ginsenosides and ulinastatin group
were significantly higher than those of the ulinastatin group.
Hemodynamics and pulmonary circulation parameters, such
as cardiac index, intracavitary blood volume, and central
venous pressure, significantly improved (Sun et al., 2015).
In addition, a wide range of pharmacological activities have
been reported for ginsenosides, including anti-aging (Hu et al.,
2015), immunoregulation (Yang et al., 2017), neuroregulation
(Wang et al., 2016b), lipid regulation (Huang et al., 2017b),
antithrombosis (Ban et al., 2017), and wound healing (Li et al.,
2017).

At present, owing to its effects on the endocrine system
(Supplementary Table 1), ginsenosides have been widely
used in the adjuvant treatment of diabetes and diabetic
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complications. A meta-analysis showed that ginseng reduced
fasting blood glucose in patients. Ginseng also exerted
antidiabetic effects as a supplemental treatment (Shishtar
et al., 2014). Ginseng extracts significantly improved glucose
tolerance, improved in plasma glucose and insulin levels. In
addition, it has antioxidant, anti-inflammatory, anti-apoptotic
and immune-stimulatory activities (Jia et al., 2009). Many
studies have reported the antidiabetic activity of ginsenosides.
Ginsenosides may improve blood glucose through the regulation
of glucose absorption (Shang et al., 2014), intervention in
glucose transport and/or glucose disposal (Wang et al.,
2015a), and the alteration of insulin secretion and binding
(Gu et al., 2013). As ginsenosides affect multiple metabolic
pathways, their efficacy is complex; furthermore, the various
ginsenoside monomer components are difficult to separate.
The potential pharmacological mechanisms of ginsenosides are
unclear.

THE HISTORY OF GINSENG

Fossilized ginseng dates back to the Tertiary period,
approximately 60–70 million years ago. Ginseng is one of
the most precious Chinese herbal medicines. In ancient China,
ginseng was used for first aid, health care, and the treatment
of coma, cardiovascular diseases, and gastrointestinal diseases.
Shen nong ben cao jing is the earliest existing monograph of
traditional Chinese medicine, from approximately 4,000 years
ago, which chronicles the use of ginseng in China as a medicine
to nourish the body and the proposal that ginseng can delay
aging without delaying side effects (Sun et al., 2016). Diabetes
was known as Xiaoke disease in ancient China. In the Han
Dynasty, Zhang Zhongjing wrote a book called Shang Han Za

Bing Lun, which stated that ginseng could be used to treat thirst
as the primary symptom of Xiaoke disease. In the Song Dynasty,
Tai Ping Hui Min He Ji Ju Fang, an official traditional Chinese
medicine book, recorded the treatment of Xiaoke disease with
ginseng. Many of the proprietary Chinese medicines approved
by the Chinese government for the treatment of diabetes contain
ginsenosides, such as Tianqi Capsule (Pang et al., 2017), Jinlida
Granule (Tian et al., 2018), and ShenMai Injection (Zhang et al.,
2008).

CHEMICAL CONSTITUENTS

Depending on their structure, ginsenosides can be
divided into dammarane type and oleanene type tricyclic
triterpenoids. Dammarane type can be divided into
protopanaxadiol and protopanaxatriol according to whether
a C6-OH is present on the C-3, C-6, C-12, or C-20 of
the skeleton. Furthermore, the C-20 of protopanaxadiol
and protopanaxatriol is divided into 20(S) and 20(R)-
type structures, depending on the position of the chiral
carbon substitution (Leung and Wong, 2010). At present,
70 triterpenoid saponins have been isolated and identified
from ginseng. In this study, we selected the ginsenosides
with anti-diabetic effects, which can be divided into the
following categories according to the structure of the skeleton
(Figures 2, 3).

METHODOLOGY

We searched PubMed for articles on ginsenoside-related diabetes
from December 2012 to December 2017. The following search
terms were used: Ginsenoside [All Fields] OR “ginsenosides”

FIGURE 2 | The protopanaxadiol (PPD) and protopanaxadiol (PPT) skeletons.
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FIGURE 3 | Classification of ginsenosides.

[MeSH Terms] AND (“diabetes mellitus” [MeSH Terms])
OR (“diabetes” [All Fields] AND “mellitus” [All Fields]) OR
“diabetes mellitus” [All Fields] OR “diabetes” [All Fields] OR
“diabetes insipidus” [MeSH Terms] OR (“diabetes” [All Fields]
AND “insipidus” [All Fields]) OR “diabetes insipidus” [All
Fields]) AND (“2012/12/10” [PDAT]: “2017/12/08” [PDAT])
AND (“2012/12/10” [PDat]: “2017/12/08” [PDat]). No language
limitations were applied to the search.

INCLUSION CRITERIA

The following inclusion criteria were defined: (a) the literatures
are experimental articles; (b) the study medicine comprises
ginsenosides extracted from ginseng (Panax ginseng C. A. Mey);
(c) the articles study diabetes or diabetic complications.

EXCLUSION CRITERIA

The following inclusion criteria were defined: (a) excludes
“ingredients identified” type articles; (b) the medicine contains
other ingredients.

RESULTS

The PRISMA flow diagram of article processing is shown
(Figure 4): we screened 77 articles, from which the following
were excluded: article type did not meet the inclusion criteria
(three articles); study medicine is not ginsenoside extracted from
the ginseng, or contains other Chinese ingredients (25 articles);
the researched disease is not diabetes or diabetic complications

(11 articles). After exclusion of the above 39 articles, we included
38 articles. Sixteen types of ginsenoside were found to have
anti-diabetic effects, namely ginsenoside Rg1, Rg3, Rg5, Rb1,
Rb2, Rb3, compound K, Rk1, Re, ginseng total saponins (GTS),
malonyl-ginsenosides (MGR), Rd, Rh2, F2, and protopanaxadiol
(PPD) and protopanaxatriol (PPT)-type saponins.

IMPROVING INSULIN RESISTANCE

Insulin resistance refers to a pathological condition in which
the body cannot respond normally to insulin. Glucose intake
and utilization decrease in the target organs, such as the liver,
muscles, and adipose tissues, which releases excess glucose in the
blood and results in increased blood glucose levels. At this point,
the body is not sensitive to insulin, so there is a need for high
levels of insulin to control blood glucose. At present, the main
molecular mechanisms of insulin resistance include incorrect
FFA regulation, abnormal adipogenic cytokines (Mlinar et al.,
2007), insulin signaling disorders, and glucocorticoid excess.
Glucocorticoid serves as an insulin antagonist that regulates
insulin resistance and glucose intolerance. 11β-Hydroxysteroid
dehydrogenase type 1 (11β-HSD1) enhances the function of
glucocorticoid and thus triggers type 2 diabetes mellitus (T2DM)
(Stimson et al., 2011; Akiyama et al., 2014). Ginsenoside Rb1
improved insulin resistance in high-fat diet (HFD)-induced
T2DM mouse model through the inhibition of 11β-HSD1 to
reduce blood glucose (Song et al., 2017). Endoplasmic reticulum
stress is also a potential aggravating factor in insulin resistance
(Flamment et al., 2012; Kim et al., 2017a). Previous studies
have shown that in adipocytes, endoplasmic reticulum stress
may lead to pathway dysfunction in insulin signaling, which
causes adipocyte insulin resistance (Ozcan et al., 2004). Under
conditions of endoplasmic reticulum stress, the ginsenoside
complex Rk1 + Rg5 can improve insulin resistance and increase
glucose uptake to provide protective effects in 3T3-L1 cells
(Ponnuraj et al., 2014). Insulin resistance can also occur if any
of the steps in the process of encoding the insulin gene into the
glucose metabolism are altered. PI3K/Akt signaling pathway is
an important signaling pathway involved in insulin resistance
(Zhang et al., 2017). Downstream products of Akt/PI3K have
a regulatory role in the utilization of glucose. The ginsenoside
compound K, the final metabolic product of protopanaxadiol
saponin, has an anti-diabetic effect (Shao et al., 2015). Compound
K can improve insulin sensitivity through activation of the
PI3K/Akt signaling pathway in diabetic rats (Jiang et al., 2014).
Peroxisome proliferator-activated receptors (PPARs) are also key
factors in the regulation of glucose and lipid metabolism in
T2DM (Eldor et al., 2013). A clinical trial demonstrated that
patients with T2DM had lower PPARgamma mRNA levels than
normal controls (Ni et al., 2010). STAT5 triggers PPARgamma
to modulate adipogenesis. In vivo and in vitro tests showed
that Rg3 improved obesity-mediated insulin resistance, which
was dependent on the downregulation of the STAT5-PPAR
gamma pathway (Lee et al., 2017). The impairment of skeletal
muscle glucose uptake also leads to insulin resistance. In skeletal
muscle, mitochondrial dysfunction is a key factor of the insulin
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FIGURE 4 | Flow Diagram.

resistance (Di Meo et al., 2017). Evidence has shown that Rg3
activated mitochondrial functions, including the production of
ATP and the consumption of oxygen, in C2C12 cells. Meanwhile,
Rg3 improved the insulin signaling pathway and other related
proteins. Rg3 ameliorates mitochondrial function, which has
protective effects against insulin resistance in skeletal muscle
(Kim et al., 2016). Malonyl ginsenosides (MGR) are a type
of ginsenosides extracted from ginseng root that improve the
effects of insulin resistance. In the glucose tolerance test,
intraperitoneal injection of MGR (50 and 100 mg/kg/day, for 3
weeks) remarkably lowered fasting blood glucose (FBG) levels
and increased glucose disposal. Meanwhile, MGR promoted

insulin sensitivity in the insulin tolerance test (Liu et al.,
2013b). In addition, brain insulin resistance is related to
cognitive decline (Talbot et al., 2012). Patients with diabetics,
especially those with T2DM, often perform poorly in learning
and memory tasks. This is predominantly attributed to chronic
hyperglycemia and microvascular disease (McCrimmon et al.,
2012), called diabetic cognitive impairment. It is characterized by
neural slowing, increased cortical atrophy, and microstructural
abnormalities in white matter tracts. Research demonstrated
that in adipocytes, c-Jun NH2-terminal kinase (JNK) caused
the serine phosphorylation of insulin receptor substance-1,
resulting in insulin resistance (Ozcan et al., 2004). In vivo
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experiments showed that ginsenoside Re improved cognitive
behavior in mice with T2DM through increased acetylcholine
(ACh) and inhibition of acetylcholinesterase (AChE) activity,
and superoxide dismutase (SOD) and malondialdehyde (MDA)
expression in brain tissues. The significant reduction of insulin
resistance and hyperglycemia by ginsenoside Re may provide
a potentially new strategy for the treatment of diabetes-
related cognitive dysfunction. This may be associated with
the ginsenoside-mediated reduction of oxidative stress and
protection of the cholinergic neurons via the inhibition of the
JNK pathway (Kim et al., 2017b).

IMPROVING GLUCOSE TOLERANCE

Glucose tolerance refers to the ability of the body to regulate
blood glucose levels. Impaired glucose tolerance increases the
probability of progression to diabetes (Nathan et al., 2007).
T2DM can be prevented by changes in lifestyle of subjects with
impaired glucose tolerance (Tuomilehto et al., 2001). Therefore,
the improvement of glucose tolerance is a key point in the
prevention and treatment of diabetes. Ginsenoside Rb2 enhances
autophagy through activation of the SIRT1 and AMP-activated
protein kinase (AMPK) signaling pathways to reduce lipid
accumulation caused by the combination of oleic acid and high
glucose and therefore significantly improves glucose tolerance
(Huang et al., 2017b). In addition, Rb1 (Song et al., 2017),
compound K (Jiang et al., 2014), and protopanaxadiol (PPD)
and protopanaxatriol (PPT)-type saponins (Deng et al., 2017)
attenuated glucose tolerance to play a role in T2DM.

REDUCING GLUCONEOGENESIS

Gluconeogenesis, the increase in hepatic glucose production, is
a vital element in the progress of glucose disorders (Bock et al.,
2007). In physiological conditions, liver glycogen synthesis and
gluconeogenesis remain in a dynamic equilibrium. However,
when the liver appears insulin resistance, liver gluconeogenesis
increased, whereas hepatic glycogen synthesis is reduced
(Leclercq et al., 2007). After the balance of gluconeogenesis
and glycogen synthesis is disrupted, liver glycogen output is
increased, followed by the elevation of blood glucose. AMPK,
as a key regulator of energy metabolism, reduces plasma,
liver triglyceride levels and gluconeogenic gene transcription
(Cool et al., 2006). Modern hypoglycemic medicines, such as
metformin, inhibit gluconeogenesis through the activation
of AMPK in liver cells to reduce blood glucose in type 2
diabetes (Zhou et al., 2001; Madiraju et al., 2014). Forkhead
transcription factor 1 (FOXO1) is another important factor in
gluconeogenesis. AMPK can regulate FOXO1, which suppresses
hepatic gluconeogenesis (Zhang et al., 2009). Some ginsenosides
exert blood glucose lowering effects in this way. Researches
confirmed that ginsenoside Rg1 (Liu et al., 2017), Rb3 (Meng
et al., 2017) and, compound K (Wei et al., 2015) reduced
gluconeogenesis through increased AMPK expression and
decreased FOXO1 activity, which may offer a potential treatment

for type 2 diabetes. Ginsenoside Rg5 prevented gluconeogenesis
via the suppressing of HIF-1α (Xiao et al., 2017) expression.

EFFECTS ON GLUCOSE TRANSPORT

Sugar transport is important for the regulation of blood
glucose level (Chen et al., 2015). However, glucose cannot
enter the cell freely through the lipid bilayer structure of
the cell membrane. Glucose uptake by cells requires the help
of glucose transporters to achieve transport function. Glucose
transporters exist in various tissues of the body. They are
divided into two groups: sodium-glucose cotransporters (SGLTs),
which actively transport glucose against a concentration gradient;
and the other, which facilitates the transport of glucose in
a facile and diffusive manner along a concentration gradient
without any energy expenditure during transport. Thus, the
regulation of glucose transport and disposal are critical for
the maintenance of blood glucose level. Ginsenoside Rb1 can
promote the translocation of glucose transporter to increase
glucose uptake in adipocytes. This reduced fasting glucose
through a recovery in the expression of GLUT1 and GLUT4
and the phosphorylation of Akt in the adipose tissue of
db/db mice (Shang et al., 2014). Glucose absorption is mainly
mediated by transmembrane transport through the sodium-
glucose cotransporters 1 (SGLT1). Studies have shown that
intestinal SGLT1 levels were significantly increased in patients
with diabetes (Dyer et al., 2002) and positively correlated with
the pathogenesis of diabetes (Dominguez Rieg et al., 2016).
A recent clinical study reported that the glycated hemoglobin
levels of oral SGLT1 inhibitors were lower than placebo in
patients with type 1 diabetes who were receiving insulin (Garg
et al., 2017). Ginsenoside Rg1, through the regulation of
SGLT1 gene expression to effectively reduce intestinal glucose
uptake, provides a potential strategy for antihyperglycemia and
antidiabetic treatments (Wang et al., 2015a). Ginsenoside Rg3,
F2, compound K, and Rh2 can also inhibit SGLT1 (Gao et al.,
2017a).

INSULINOTROPIC ACTION

A characteristic of diabetes is that the pancreas cannot provide
sufficient insulin or the body cannot respond properly to insulin.
Thus, the increased secretion of insulin is a key prospect
for the treatment of T2DM. Glucagon-like peptide-1 (GLP-1)
has insulinotropic action (Nadkarni et al., 2014) and a β-cell
protective function (Rondas et al., 2013); it acts on pancreatic
β cells, promotes insulin synthesis and secretion, stimulates the
proliferation and differentiation of pancreatic β cells, inhibits
pancreatic β-cell apoptosis, and increases the number of islet β

cells. Simultaneously, GLP-1 can also act on islet α cells to inhibit
the release of glucagon. Thus, GLP-1 affects the maintenance
of blood glucose homeostasis (Nadkarni et al., 2014). Rg3
stimulated GLP-1 secretion in enteroendocrine L cells and
reduced hyperglycemia in a T2DM mice model through a sweet
taste receptor-mediated signal transduction pathway (Kim et al.,
2015). Thus, it is a potential medicine for T2DM and obesity. In

Frontiers in Pharmacology | www.frontiersin.org 6 May 2018 | Volume 9 | Article 423

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Bai et al. Ginsenosides Adjuvant Treatment Diabetes

an in vivo test, the administration of oral ginseng total saponins
at 150 or 300 mg/kg per day for 4 weeks decreased fasting plasma
glucose and postprandial plasma glucose, improved insulin
secretion and lipid homeostasis, and ameliorated the HOMA-IR
index. In an in vitro test, ginseng total saponins and ginsenoside
Rb1 stimulated GLP1 secretion in cultured NCI-H716 cells to
provide antidiabetic effects (Liu et al., 2013a). Thus, ginseng total
saponins and Rb1 have long-term prospects in the fight against
hyperglycemia and lipidmetabolism disorders. In pancreatic beta
cells, the secretion of insulin requires GLUT2 (Thorens, 2015).
Compound K enhanced insulin secretion via the upregulation
of GLUT2 in MIN6 pancreatic β-cells (Gu et al., 2013), and
improved insulin levels and insulin resistance to combat T2DM.

PROTECTING ISLET CELLS

Apoptosis is a form of β cell death that occurs in diabetes.
AMPK is an important enzyme in the regulation of metabolism;
it triggers the JNK switch directly to induce apoptosis. The
pathological state of DM upregulates the expression of Bax/Bcl-
2 and caspase-3, which contributes to islet cell apoptosis
in mice with DM. Compound K decreases Bax/Bcl-2 and
caspase-3 and protects pancreatic islet cells from apoptosis
through the inhibition of the AMPK/JNK pathway and the
subsequent suppression of the progression of T2DM (Guan
et al., 2014). Moreover, islet transplantation, which benefits from
the reduction of islet cell apoptosis, has recently emerged as
a new method to control diabetes. In particular, it is a good
alternative treatment for type 1 diabetes mellitus(T1DM) and
has the advantages of safety and fewer adverse reactions than
pancreas transplantation (Noguchi et al., 2006). Treatment with
ginsenoside Rg3 before islet transplantation can increase islet cell
function and reduce islet cell apoptosis. After Rg3 treatment,
there was a significant improvement in total insulin release and
pancreatic β cell apoptosis (Kim et al., 2014); thus, Rg3 confers
protective effects on islet cells during islet transplantation.

REGULATION OF GUT FLORA
METABOLISM

Gut flora is a complex microbial community in the digestive tract
of humans, which is known to be related to the pathogenesis
of diabetes. The characteristic of gut flora may be significantly
altered in patients with diabetes. The regulation of the gut flora
metabolism may decrease the influence of diabetes (Gao et al.,
2017b). A study reported that 20(S)-ginsenoside Rg3 reduced
blood glucose through the regulation of gut flora metabolism in
rats with T2DM (Niu et al., 2012). Another study showed that
Rb1 regulated the intestinal microflora to inhibit deglycosylation.
Thus, it may exert a positive effect on the clinical management of
diabetes (Liu et al., 2015a).

ANTIOXIDANT EFFECT

Oxidative stress is a pathological condition in which reactive
oxygen species in the body lead to greater effects than an

unbalanced redox reaction. Oxidative stress may play a key role
in the pathogenesis and development of diabetes (Maritim et al.,
2003). As the body produces excess reactive oxygen species,
β-cell maturation and apoptosis increase and insulin synthesis
and secretion decrease; diabetes, hyperglycemia, and obesity
can increase the production of reactive oxygen species, which
results in oxidative stress, creating a vicious circle in which
oxidative stress and diabetes promote each other. Further studies
have provided evidence that oxidative stress has a relationship
with diabetic complications such as DN (Sagoo and Gnudi,
2018), diabetes with erectile dysfunction (Liu et al., 2015b), and
diabetes with cognitive dysfunction (Kim et al., 2017b). The
ginsenosides compound K (Shao et al., 2015), Rg3 (Liu et al.,
2015b), and Re (Kim et al., 2017b) decreased the oxidative
stress marker MDA, and enhanced SOD in animal models of
Diabetic nephropathy(DN), diabetes with erectile dysfunction,
and diabetes with cognitive dysfunction, respectively. Rg5
inhibits fatty acid oxidation against the hepatic glucagon
response to reduce diabetes (Xiao et al., 2017). P. quinquefolium
also has antioxidant effects. At the same time, it reduces NO
level while there was no effect on C-peptide level (Amin et al.,
2011). Ginsenoside Re could exert protective activity against the
occurrence of oxidative stress in the eye and kidney of diabetic
rats. It provides evidence that ginsenoside Re could be used to
prevent diabetic microangiopathy (Cho et al., 2006a) 2006.

ANTI-INFLAMMATORY EFFECTS

Low-grade inflammation is a key cause of T2DM as it can
lead to insulin resistance (Lackey and Olefsky, 2016). Pro-
inflammatory macrophages may reduce the insulin sensitivity of
the liver, skeletal muscle, and pancreatic β-cells. The suppression
of the inflammatory response may represent a future therapy
for T2DM. Rb2 upregulated GPR120 expression in RAW264.7
macrophages, which lowered the level of iNOS and COX-2
expression to provide an anti-inflammatory effect; thus, it may
be a viable solution to relieve inflammation and improve glucose
metabolism (Huang et al., 2017a). Intraperitoneal injection of
Rb1 treatment also decreased the levels of pro-inflammatory
cytokines, including TNF-α, IL-6 and or IL-1β and NF-κB
pathway molecules (p-IKK and p-IκBα) in an animal experiment
(Wu et al., 2014). PPD and PPT also reduced the expression
of TNF-α and IL-6, which prevented T2DM (Deng et al.,
2017). Many diabetic complications are also associated with
inflammation. Ginsenosides can prevent diabetic complications
through a reduction in the inflammatory response. A review
confirmed that inflammation aggravated the progression of
diabetic nephropathy. Ginsenoside 20(S)-Rg3 inhibited the
inflammatory pathway to ameliorate this pathological condition
(Kang et al., 2013). Rg3 reduced NO production and apoptosis
to enhance islet function and ameliorate early inflammation
after transplantation (Kim et al., 2014). Rg1 can also provide an
anti-inflammatory effect by the inhibition of the JNK signaling
pathway to prevent T2DM with fatty liver disease (Tian et al.,
2017). In addition, protopanaxadiol saponin fraction decreased
the release of inflammatory mediators such as nitric oxide (NO),
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tumor necrosis factor-α and prostaglandin E2 in vitro and in vivo
inflammatory models (Yang et al., 2015). C-reactive protein is
used mainly as a marker of inflammation, whose levels rise in
response to inflammation. Ginsenoside Re regulated the level of
C-reactive protein, indicating that Re might improve diabetes
and its complications by relieving inflammation (Cho et al.,
2006b).

LIPID REGULATION

T2DM is closely linked to the epidemic of obesity (DeFronzo
et al., 2015). It is particularly important for diabetic patients to
actively prevent dyslipidemia. Lipid deposition in the liver causes
liver insulin resistance (Park et al., 2016). Lipotoxicity increased
islet cell apoptosis (Huang C. N. et al., 2017) and restricted the
use of glucose capacity in muscle. Ginsenoside Rg1 can affect
lipidmetabolism in streptozotocin-induced type 2 diabetic rats. It
inhibits the JNK signaling pathway to exert its anti-apoptotic and
anti-inflammatory effects, and reduce the total cholesterol (TC),
triglyceride (TG), and low-density lipoprotein cholesterol (LDL-
C) (Tian et al., 2017). PPD and PPT-type saponins can reduce
FBG and regulate serum lipid-related markers, such as reduced
TC, TG, and LDL-C through the inhibition of the expression
of liver metabolic genes in a high-fat diet and Streptococcus-
induced type 2 diabetes mellitus (Deng et al., 2017). Ginsenoside
Rg3 participates in the improvement of lipotoxicity. The lipid-
regulating effect of Rg3 is dependent on the regulation of the
STAT5-PPAR gamma pathway (Lee et al., 2017). The lipid-
regulating effects of Rg3 also exerted beneficial effects against
DN (Wang et al., 2016a). Moreover, Re (Kim et al., 2017b) and
compound K (Jiang et al., 2014) also reduced the TG and TC to
support lipid regulation.

IMMUNOSUPPRESSIVE EFFECT

T1DM also known as insulin-dependent diabetes, is a chronic
condition in which the body produces insufficient insulin.
It accounts for only approximately 5–10% of all cases of
diabetes mellitus (DM). However, its incidence continues to
increase all over the world and it has severe short-term and
long-term implications (Daneman, 2006). The management of
T1DM mainly comprises lifestyle interventions, insulin therapy,
pancreas transplantation, and islet cell transplantation (Bruni
et al., 2014). However, owing to the immune response, islet
transplantation has a high failure rate (Campbell et al., 2007).
Therefore, the exploration of new immunosuppressive medicine
is necessary to increase the safety and effectiveness of islet
transplantation. It was reported that compound K suppressed
immune responses and prolonged transplanted islet survival in
a mice model of T1DM; hence, it exerts potential therapeutic
effects on islet transplantation (Ma et al., 2014).

HEPATOPROTECTIVE ACTIVITY

Non-alcoholic fatty liver disease (NAFLD) is closely related
to metabolic syndrome, especially when diabetes is involved.
The liver is an important organ involved in glucose and lipid
metabolism (Fracanzani et al., 2008). T2DM is an underlying

factor in the occurrence of NAFLD. An animal experiment
showed that ginsenoside Rg1 exerted hepatoprotective activity
in a rat model of T2DM. Ginsenoside Rg1 decreased the blood
glucose level and improved the insulin resistance index in rats
with T2DM. Ginsenoside Rg1 also lowered the blood lipid
profile, including TC, TG, and LDL-C levels and decreased
aspartate transaminase and alanine transaminase levels. This
hepatoprotective active is mainly mediated by anti-apoptotic
effects, the suppression of JNK activity, and the inhibition of
inflammation. The experiment reveals the clinical potential of
Ginsenoside Rg1 as an adjuvant drug for the therapy of patients
with T2DM and fatty liver disease (Tian et al., 2017). Ginsenoside
Rb2 reduced hepatic lipid accumulation through the activation
of the SIRT1 and AMPK signaling pathways, which induced
autophagy to improve NAFLD (Huang et al., 2017b). In addition,
animal experiments showed that compound K improved glucose
intolerance and hepatic steatosis in T2DM OLETF rats, which a
double effect that involves the reduced synthesis of fatty acids
and the promotion of fatty acid oxidation (Hwang et al., 2017).
These results suggest that compound K may have potential
hepatoprotective functions.

DIABETIC CARDIOVASCULAR
COMPLICATIONS

Cardiovascular complications are notable causes of death in
diabetic patients (Bauters et al., 2003; Nathan et al., 2003).
Diabetic cardiomyopathy is mainly manifested as myocardial
dysfunction in the absence of other heart disease and may
eventually progress to heart failure. Ginsenosides can provide
myocardial protection through improved cardiac function,
attenuated cardiac fibrosis, reduced myocardial apoptosis, and
antioxidant activity. In vivo experiments showed that ginsenoside
Rh2 improved heart function in a streptozotocin-induced model
of type 1 diabetes in rats. In vitro experiments showed that
Rh2 activated PPARδ in cardiomyocytes cultured in high
glucose, which inhibited the expression of STAT3, reduced
cardiac fibrosis, and protected against diabetic cardiomyopathy
(Lo et al., 2017). Ginsenoside Rg1 decreased the percentage
of apoptotic myocardial cells and increased the parameters
of cardiac function; it prevented myocardial lesions and
myocardial collagen volume fraction. In rat models of diabetes,
the mechanism through which ginsenoside Rg1 ameliorates
diabetic cardiomyopathy is the inhibition of ER stress-induced
apoptosis (Yu et al., 2016). Another animal experiment showed
that the treatment of ginsenoside Rg1 to diabetic rats was
related to decrease oxidative stress and attenuated myocardial
apoptosis. This indicated that ginsenoside Rg1 may be a potential
compound to preventing cardiovascular impairment in diabetic
patients (Yu et al., 2015).

IMPROVING ENDOTHELIAL
DYSFUNCTION

Diabetes increases the risk of endothelial dysfunction (Ishida
et al., 2014). A vitro experiment has shown that ginsenoside Re
can improve the expression of endothelial cell function markers
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such as endothelin, nitric oxide, vascular endothelial growth
factor and interleukin-6 (IL-6) during the early stage of diabetes.
This effect of reducing endothelial dysfunction may be exerted
by activating p38MAPK, ERK1 / 2 and JNK signaling (Shi
et al., 2016). In human retinal endothelial cells, Rk1 regulated
endothelial barrier function and markedly reduced the vessel
leakiness of retina in a diabetic mouse model. This protective
property of Rk1 might effectively control the endothelial leakage
in diabetic retinopathy and other vascular leakage diseases
(Maeng et al., 2013).

IMPROVING ERECTILE DYSFUNCTION

Erectile dysfunction can be a complication of diabetes mellitus.
Hyperglycemia damages themale reproductive functions, leading
to erectile dysfunction, ejaculatory dysfunction, and decreases in
semen volume, sperm count, and sperm motility (Maresch et al.,
2018). Therefore, studies have assessed whether ginsenosides
could reverse erectile dysfunction caused by hyperglycemia.
It was deduced that the impairment of spontaneous erectile
response in diabetic rats may be caused by the degeneration of
neurons and oxidative stress. An in vivo test reported that the
administration of Rg3 (100 mg/kg) by gavage enhanced erectile
function in diabetic model rats. The anti-erectile dysfunction
of Rg3 resulted from neuroprotective activity and antioxidant
effects in corpus cavernosum cells (Liu et al., 2015b).

NEUROPROTECTIVE EFFECT

Cerebral infarction is a diabetic cerebrovascular complication.
Diabetes can lead to abnormal coagulation mechanisms, which
result in an increased incidence of cerebral infarction in
patients with diabetes (Putaala et al., 2011). Nerve cells in the
ischemic state can be damaged, but ginsenosides offer some
neuroprotective effects. An animal experiment demonstrated
that ginsenoside Rg1 nanoparticles penetrated the blood-brain
barrier, reduced the volume of diabetic rats with cerebral
infarction, and promoted the recovery of neurons. Ginsenoside
Rg1 nanoparticles are expected to provide a clinical treatment for
cerebral infarction in DM (Shen et al., 2017).

ANTI-ANGIOPATHIC EFFECTS

Diabetic microangiopathy and macrovascular complications,
also known as diabetic angiopathy, are the leading causes of
morbidity and mortality in DM. Diabetic retinopathy and DN
are the most common diabetic angiopathies, and can result
in great harm; thus, the study of therapeutic targets are of
great importance. Ginsenoside Re has anti-angiopathy effects;
it activates p38 MAPK, ERK1/2, and JNK signaling to prevent
diabetic angiopathy in Wistar rats with DM (Shi et al., 2016).

ANTI-NEUROTOXIC EFFECT

In diabetic cognitive impairment, hyperglycemia may exert
toxic impacts that result in brain function and structural
abnormalities (Gispen and Biessels, 2000). Ginsenoside Rb1

displays anti-neurotoxic effects on neurons, which may be
related to the regulation of endoplasmic reticulum stress. The
involvement of endoplasmic reticulum stress is recognized
in a variety of neurodegenerative diseases. Rb1 may protect
neurons against high-glucose induced cell damage via the
suppression of endoplasmic reticulum stress induced C/EBP
homologous protein (CHOP), which may offer a novel
strategy for the treatment of diabetic cognitive dysfunction
(Liu et al., 2014). Furthermore, ginsenosides Rd and R-Rh2
prevented neurotoxicity in astrocytes. Ginsenosides Rd and R-
Rh2 improved the cell viability of astrocytes, ameliorated insulin
signaling and inhibited apoptosis. Thus, Rd and R-Rh2 may have
therapeutic potential for the prevention of cognitive impairment
caused by diabetes (Chu et al., 2014).

KIDNEY PROTECTION EFFECT

DN is one of the most important chronic micro-vascular
complications of DM and has become the leading cause of
end-stage renal disease worldwide (Gupta et al., 2011). DN
increases the risk of premature death and presents a serious
financial burden (Yang et al., 2010). Thus, the treatment
of DN is topical, but complex, research. At present, the
treatment of DN mainly includes the control of blood sugar
and blood pressure levels, adherence to a low protein diet
(Fried et al., 2013), and kidney replacement therapy. However,
in the event of clinical DN, the kidney function continues
to decline until the development of end-stage renal failure.
Diabetes influences body’s metabolism and blood circulation,
which likely generates excess reactive oxygen species. These
conditions injure the kidney’s glomeruli and cause albuminuria
(Cao and Cooper, 2011). As diabetic nephropathy progresses,
the glomerular filtration barrier, which is composed of the
fenestrated endothelium, the glomerular basement membrane,
and the epithelial podocytes, becomes more damaged (Mora-
Fernandez et al., 2014). Streptozotocin-induced DN rats
displayed an aggravated volume of renal glomerulus, increased
basement membrane, and higher mesenterium mass. At the
same time, the renal glomerulus contains some inflammatory
cells. Ginsenoside 20(S)-Rg3 is a key bioactive constituent of
ginseng after heat-processing and is used for the treatment of
pathological conditions associated with DN. It clearly suppressed
inflammatory pathways via the inhibition of oxidative stress
and advanced glycation end product formation. Meanwhile,
Ginsenoside 20(S)-Rg(3) improved pathological conditions and
renal damage in DN animal models (Kang et al., 2013).
Compound K decreased renal function markers, blood urea
nitrogen (BUN) and serum creatinine (Scr), in high-fat diet
and streptozotocin-induced rats; it also improved renal tissue
pathological changes, enhanced antioxidant effects, and reduced
TGF-β1 in renal tissue damage to protect the kidney function of
diabetic rats (Shao et al., 2015).

CONCLUSION AND PERSPECTIVE

The increase in the incidence of diabetes imposes serious social,
financial, and health burden (Disease et al., 2016). According
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to the International Diabetes Federation (IDF), a total of 415
million adults worldwide have diabetes. China has the largest
number of people with diabetes in the world, approximately
110 million (Ogurtsova et al., 2017); the overall incidence of
diabetes in Chinese adults is 11.6% (Xu et al., 2013). DM
increased the mortality and morbidity of patients. The treatment
of DM mainly includes lifestyle interventions, drug treatment,
and insulin treatment, but DM is a life-long chronic disease
for which there is no cure. Traditional Chinese medicines
(TCMs) have continued to make a significant contribution to
the prevention and treatment of diabetes in China. Besides
Routine treatment, the effect of TCMs is attributable to
herbal ingredients containing hundreds of compounds and
playing different roles. Through the administration of various
compounds, TCMs achieve the goal of systematic treatment
of complex diseases by affecting multiple targets. A number
of double-blind, randomized, placebo-controlled, multicenter
trials have shown that TCMs have a clear effect on diabetes
(Lian et al., 2014, 2015). In 2017, Tianqi Capsule and
Jinlida Granule were first included by the Chinese Diabetes
Society in Guidelines for the prevention and treatment of
type 2 diabetes in China. Ginseng is an important ingredient
in Tianqi Capsule and Jinlida Granule. However, owing to
the complex composition of Chinese herbal medicine, the
mechanism of action is not clear. This has become a factor
limiting the development of TCMs. Since Tu You You invented
artemisinin to treat malaria and won the Nobel Prize, the use
of Chinese medicine monomers in the treatment of disease
has received widespread attention. Ginsenosides are the most
important components of ginseng. Through review the articles,
the mechanism of ginsenosides in treating diabetes is worth
studying.

Ginsenosides hasmultiple targets to treat diabetes and diabetic
complications in vitro and in vivo tests. Firstly, ginsenosides have
anti-diabetic effects including insulinotropic action, reducing
gluconeogenesis, improving insulin resistance, promoting
glucose transport, regulating glucose tolerance and protecting
islet cell to decrease blood glucose. Secondly, ginsenosides
also have anti-inflammatory, myocardial protective, lipid-
regulating, antioxidant, anti-angiopathic, immunosuppressive,
anti-endothelial dysfunction and anti-neurotoxic effects.
These effects could treat diabetic complications including
diabetic nephropathy, diabetic cognitive dysfunction, diabetic
cerebral infarction, diabetic cardiovascular complications
and diabetic erectile dysfunction. Besides, researches have
shown that ginsenosides have different therapeutic effects
between T1DM and T2DM (Table 1). The role of ginsenosides
in T2DM focuses on improving insulin resistance and treat
T2DM through multiple targets, while ginsenosides have
shown potential to participate in islet transplantation in
T1DM.

Among the various ginsenosides, Rg1, Rg3, Rb1, and
Compound K have the most promising therapeutic prospects
for development as an adjuvant medicine for the treatment of
diabetes. Rg1 has the potential to treat T2DM, T2DM with
fatty liver disease, diabetic cerebral infarction, and diabetic
cardiomyopathy complications. Experiments showed that Rg3
reduced blood glucose and increased plasma GLP-1 and plasma

TABLE 1 | The difference between T1DM and T2DM.

T1DM T2DM

Compounds Rh2; compound K; Re Rg1; Rb3; compound K; Rg3; Rk1;

Rg5; Rb1; Re; ginseng total

saponins; malonyl ginsenosides;

protopanaxadiol (PPD) and

protopanaxatriol (PPT)-type saponins;

Rb2; Re; Rd and R-Rh2

Target PPARδ-STAT3 signaling;

CD4(+), CD8(+) T cells;

interleukin-2; interferon-γ;

transforming growth

factor-β; Foxp3; nuclear

factor-κB, p38 MAPK,

ERK1/2 and JNK signaling

FoxO1; AMPK; HNF4α; PGC-1α;

STAT5-PPAR gamma pathway;

endoplasmic reticulum stress;

11β-HSD1; JNK pathway; PI3K/Akt;

mitochondrial function; GLP-1;

glucose homeostasis; glucose

disposal; Sirt1; autophagy; TNF-α;

IL-6; SOD; MDA,

phosphoenolpyruvate carboxykinase;

glucose-6-phosphatase; microsomal

TG transfer protein; 3-methylguanine;

N2; N2-dimethylguanosine;

acetoacetic acid; dodecanedioic acid;

glycocholic acid; trehalose

6-phosphate; p38 MAPK; ERK1/2;

cell viability and insulin signaling

Effects Improving cardiac function

and fibrosis;

immunosuppressive effect

and anti-angiopathy effects

suppressing of gluconeogenesis;

improving insulin resistance;

increasing insulin sensitivity;

stimulating GLP-1 secretion;

alleviating hyperglycemia;

hepatoprotection; anti-apoptosis;

attenuating diabetic myocardial

damage; reducing inflammatory

responses; regulating hepatic

metabolism and lipid metabolism;

regulating acid metabolism, energy

metabolism, and gut flora

metabolism; anti-angiopathy effects

and protective astrocytes

insulin through the improvement of insulin resistance, lipid
metabolism, energy metabolism, and gut flora metabolism.
A number of studies have shown that Rb1 may have
some therapeutic effect on diabetic obesity as Rb1 decreased
glucose tolerance, but increased insulin sensitivity, glucose
consumption, and GLP1 secretion through the modulation
of obesity-induced inflammation, central leptin sensitivity,
and intestinal absorption. In a model of T2DM, compound
K improved glucose intolerance, stimulated insulin secretion
and insulin sensitivity through the suppression of hepatic
gluconeogenesis and oxidative stress. In a model of T1DM,
compound K exerted immunosuppressive effects that promoted
islet transplantation.

Although ginsenosides have a wide range of antidiabetic
effects for the prevention and treatment of DM and its
complications, their use has some problems. A clinical trial
reported that oral ginsenoside Re therapy failed to ameliorate
beta-cell function or insulin sensitivity in diabetics with impaired
glucose tolerance or in newly diagnosed overweight/obese
subjects. Ginsenoside Re was not detected in human plasma
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after treatment (Reeds et al., 2011). This may be related
to low bioavailability. The bioavailability of ginsenosides
in the human body needs to be improved. However, the
metabolic regulation effects of other ginsenosides have not
been excluded. A research reported that Rg1 nanoparticle
(PHRO, fabricated with γ-PGA, L-PAE (H), Rg1, and OX26
antibody) released Rg1 with sustained release manner and
could promote the migration of cerebrovascular endothelial
cells and tube formation and even penetrated the blood-brain
barrier with high concentration in treating diabetic cerebral
infarction (Shen et al., 2017). Nanotechnology may become
a new tool to increase the bioavailability of ginsenosides.
Current aptamer-based drug delivery technology is being
developed for therapeutic use (Delac et al., 2015). So this
might be a good method to provide a targeting tool for
direct ginsenoside-loaded nanoparticle therapy. As we reviewed
above, this article is limited to the study of mechanisms
in vivo and in vitro experiments because of the lack of clinical
trials. Nevertheless, ginsenosides could be considered for future
development as a multi-target agent for therapeutic application
of diabetes and its complications and more clinical trials are
needed.
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