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More than 10 million people worldwide incur a traumatic brain injury (TBI) each year,
with two million cases occurring in the United States. TBI survivors exhibit long-lasting
cognitive and affective sequelae that are associated with reduced quality of life and
work productivity, as well as mental and emotional disturbances. While TBI-related
disabilities often manifest physically and conspicuously, TBI has been linked with a “silent
epidemic” of psychological disorders, including major depressive disorder (MDD). The
prevalence of MDD post-insult is approximately 50% within the 1st year. Furthermore,
given they are often under-reported when mild, TBIs could be a significant overall cause
of MDD in the United States. The emergence of MDD post-TBI may be rooted in
widespread disturbances in the modulatory role of glutamate, such that glutamatergic
signaling becomes excessive and deleterious to neuronal integrity, as reported in both
clinical and preclinical studies. Following this acute glutamatergic storm, regulators
of glutamatergic function undergo various manipulations, which include, but are not
limited to, alterations in glutamatergic subunit composition, release, and reuptake. This
review will characterize the glutamatergic functional and signaling changes that emerge
and persist following experimental TBI, utilizing evidence from clinical, molecular, and
rodent behavioral investigations. Special care will be taken to speculate on how these
manipulations may correlate with the development of MDD following injury in the clinic,
as well as pharmacotherapies to date. Indisputably, TBI is a significant healthcare issue
that warrants discovery and subsequent refinement of therapeutic strategies to improve
neurobehavioral recovery and mental health.

Keywords: traumatic brain injury (TBI), depression, glutamatergic neurotransmission, animal models,
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INTRODUCTION

Traumatic brain injuries (TBI) have recently soared into
notoriety (Goldstein, 1990; Selassie et al., 2008), with over one
million TBI-related emergency room visits in the United States
alone yearly (Faul et al., 2010). Over 40% of Americans have
TBI-related disabilities following hospitalization (Selassie et al.,
2008; Summers et al., 2009) and there is a scarcity of viable
treatment options despite their sequalae affecting a diverse
collection of quality of life parameters. One of the most common
comorbidities in TBI patients has been major depressive disorder
(MDD) with a varied and multifactorial etiology which to
date, remains poorly defined (Dean and Keshavan, 2017). The
prevalence of MDD post-insult has been reported as being nearly
50% within the 1st year (Bombardier et al., 2010). While the
emergence of MDD post-insult is almost certainly intertwined
with a variety of psychogenic and pathophysiological factors,
such as stress exposure (Hammen, 2005), leading to poor global
and psychosocial outcome, as well as cognitive compromise
(Rapoport, 2012), distinct TBI-related dysfunction in the brain
may drive the manifestation of depression beyond the expected
rate of emergence. Moreover, the pathophysiological landscape
of both MDD and TBI is marred by widespread disturbances
in glutamatergic functioning (Sanacora et al., 2012; Guerriero
et al., 2015). Given its activity as the primary excitatory brain
neurotransmitter (Zhou and Danbolt, 2014), glutamate may
play a significant role in orchestrating the vulnerability of the
post-TBI brain. This review seeks to construct a roadmap of
glutamatergic dysfunction following TBI and to elucidate the
implications of these alterations in the context of therapeutics and
neurobehavioral recovery.

PRECLINICAL MODELS OF TBI

Preclinical rodent models have proven instrumental in
elucidating a systemically progressive pathophysiology, where
abnormalities of membrane polarization and ionic constituency
evolve into metabolic crises, altered neurotransmitter function,
and cellular death (Bondi et al., 2015). In humans, TBI
is a remarkably heterogenous disease, recently necessitating a
multisite research consortium initiative by the U.S. Army entitled
“Operation Brain Trauma Therapy” to conduct an extensive
analysis of pharmacological interventions across multiple
preclinical models (Kochanek et al., 2016). Experimental models
of TBI have been developed to study injury biomechanics,
discover pathological mechanisms, and develop therapies with
the goal of reducing TBI-induced human suffering (Bondi et al.,
2015). The controlled cortical impact (CCI) is a focal injury
model that has seen widespread implementation in preclinical
research. Typically, researchers perform a craniectomy and
subsequently use a piston to apply a controlled impact to the
dura matter, causing damage to the underlying tissue (Dixon
et al., 1991). Manipulations to the depth, speed, location, and
number of impacts have allowed researchers to perform a wide
variety of etiological and severity-based assessments (Budinich
et al., 2012; Washington et al., 2012; Bondi et al., 2014). The fluid

percussion injury model (FPI) is another highly prolific model,
involving diffuse or mixed (diffuse and focal) injuries. The injury
is induced utilizing a fluid pressure chamber, which is struck
by a pendulum. A pulse of pressure strikes the exposed dura
mater, at the midline sagittal suture (i.e., rendering concussive
injuries) (Dixon et al., 1987) or laterally over parietal cortex
(i.e., rendering hippocampal cell death and cortical contusions)
(McIntosh et al., 1989). Much like the CCI, injury severity and
the number of fluid pulses can be adjusted. In weight-drop
models of TBI, the skull is impacted with a free-falling weight
on a guided path. Varying models exist, such as a focal impact
applied to the intact skull (Hall et al., 1988), the Marmarou
impact acceleration model (Marmarou et al., 1994), or the head
rotation model (Ross et al., 1994), and the injury severity can
be modified by manipulating the initial height and the mass of
the weight. Blast TBI injury models, mainly diffuse in nature,
are clinically and biomechanically relevant to military TBIs, by
exposing animals to explosive or pressurized gas-driven shock
tubes to generate pressure waves similar to those produced by
explosives (Svetlov et al., 2010).

GLUTAMATERGIC ALTERATIONS IN TBI

Glutamate was first described as a neurotransmitter in 1954,
much later than the other classical neurotransmitters, in part
due to its relative abundance and complex web of non-synaptic
interactions (Hayashi, 1954). At points of synaptic contact,
concentrations of glutamate are only in the nanomolar (nM)
magnitude (Moussawi et al., 2011). Meanwhile, intracellular
concentrations are approximately 10 mM, while cerebrospinal
fluid levels are estimated in the range of 10 µm (Moussawi
et al., 2011). In the decades since, glutamate has been
revealed as the primary excitatory neurotransmitter in the
CNS. Vesicular transporters (VGLUT 1-3) transport intracellular
glutamate into synaptic vesicles, which are released in a calcium-
dependent manner utilizing the SNARE complex mechanism
(Hamberger et al., 1978; Liguz-Lecznar and Skangiel-Kramska,
2007; Popoli et al., 2011). Glutamate can be detected by
three types of ligand-gated ionotropic receptors: α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), with
GluA1-2 combinations being the most prominent in the rodent,
at least in the hippocampus (Lu et al., 2009; Henley and
Wilkinson, 2013), N-methyl-D-aspartate (NMDA), each with
their own variants: GluN1, GluN2, and GluN3 (Cull-Candy
and Leszkiewicz, 2004; Iacobucci and Popescu, 2017), and
kainite (KA), albeit the latter is comparatively understudied and
poorly understood. Electrophysiological studies have established
that NMDA receptors do not necessarily impact the peak
magnitude of the postsynaptic membrane potential. Instead,
the fast AMPAR-mediated current establishes peak magnitude
before quickly subsiding, whereas the slower NMDA-mediated
current manipulates the temporal decay of the total potential,
and thus manipulates the total amount of ionic flux (Iacobucci
and Popescu, 2017). Glutamate may also activate three different
groups of metabotropic receptors (mGluRs I-III). Group I
receptors initiate calcium mobilization and activation of protein
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kinase C, while group II and III mGluRs are, in contrast,
classically coupled to the inhibition of adenylyl cyclase and
directly regulate ion channels and other downstream signaling
partners (Niswender and Conn, 2010), thus primarily fulfilling
autoreceptor roles in the brain. Glutamate reuptake involves five
types of excitatory amino acid transporters (EAATs) and the
glutamate-cysteine exchanger. Intriguingly, the bulk of glutamate
reuptake is accomplished by astrocytes, particularly via EAAT2,
where they are converted to glutamine and transported back into
neurons or fed into the tricarboxylic acid (TCA) cycle to serve as
metabolic fuel (Fontana, 2015; Rose et al., 2016).

In recent years, glutamatergic neurotransmission has emerged
as a pivotal player in the pathophysiology of TBI, its dysfunction
resonating throughout the acute, subacute, and chronic phases
of injury (Dorsett et al., 2017). Moreover, preclinical and clinical
research suggests that TBI and MDD share common mechanisms
in the dysregulation of glutamate homeostasis (Piao et al., 2017).
Following the discovery of potassium disturbances immediately
following TBI (Takahashi et al., 1981), the connection between
potassium abnormalities, excessive release of excitatory amino
acids, and tissue damage was materialized (Hayes et al., 1988;
Faden et al., 1989). When sufficient force is rapidly applied
to the brain, neurons will undergo concomitant biomechanical
injury, generating significant ionic flux and inappropriate
depolarization (Povlishock, 1992; Wolf et al., 2001). This
initial insult generates an influx of calcium, then glutamate
is indiscriminately released at synapses and neuronal activity
rapidly proliferates (Kochanek et al., 2015). Provided sufficient
insult, what begins as transient depolarization can lead to
the activation of apoptotic and non-apoptotic cellular death
cascades, followed by significant excitotoxic damage and even cell
death (Szydlowska and Tymianski, 2010; Kochanek et al., 2015;
Dorsett et al., 2017). With the establishment of excitotoxicity
in the pathophysiology of TBI, researchers expanded on initial
investigations of astrocytes (Bakay et al., 1977; Kimelberg et al.,
1989, 1995). Maxwell and colleagues proposed that astrocytic
swelling works to limit glutamate diffusion from the synaptic
space—suggesting potential compensation (Maxwell et al., 1994).
A short time later, it was revealed that expression of EAAT1
and EAAT2 were reduced at multiple time points following
CCI (6–72 h post-insult), indicating an attenuation of astrocyte-
mediated glutamate uptake (Rao et al., 1998; Kim et al., 2011).
In a blast-injury model, altered glutamate uptake was also
reported, as the number of EAAT2-containing astrocytes was
reduced at 2 h post-insult (Miller et al., 2017), although the
overall expression of EAAT2 was unchanged. While it was
proposed that the post-traumatic reduction in cellular EAAT1
and EAAT2 expression is predominantly due to degeneration
of astrocytes and to downregulation of surviving astrocytes
(van Landeghem et al., 2006), recent research has further
complicated our understanding of the astrocytic reaction to
traumatic insult, with one group noting increases of 20-
25% in EAAT4 expression following lateral FPI (3–7 days
post-insult) (Yi et al., 2007). Nevertheless, more research is
needed to clearly elucidate whether specific astrocyte-induced
alterations of the glutamatergic system are compensatory or
dysfunctional.

Investigations into glutamatergic dysfunction post-injury
have also revealed notable changes in receptor expression.
Patel and colleagues revealed that GluN2B-subunit containing
receptors are particularly vulnerable to mechanical stress, given
that neurons containing larger ratios of subunits were more
susceptible to injury-induced loss of functional connectivity
(Patel et al., 2014). Moreover, broad decreases in GluNR subunit
expression across multiple brain regions following lateral FPI
(Osteen et al., 2004). It was noted that the ipsilateral occipital and
parietal cortices had decreased ratios of GluN2A:GluN2B subunit
expression at 1 and 14 days post-insult, and additionally, the
bulk of calcium flux was determined via calcium autoradiography
to be GluN2B-mediated. Notably, it has been suggested
that GluN2A-predominant receptors are more responsible for
synaptic reception, while GluN2B-predominant receptors are
more responsible for extrasynaptic reception (Kohr, 2006).
Hence, it is possible that TBI induces an increase in extrasynaptic
signaling. A hippocampal-specific study found acute reductions
in GluNRs following CCI (Kumar et al., 2002). Nevertheless,
these changes were transient, and expression returned to sham
levels within 24 h. Chronically, it appears GluN2B subunits may
rebound, and even increase relative to sham levels (Kharlamov
et al., 2011). Though not as extensively, AMPA receptor changes
have been investigated following injury. Following the flurry of
glutamatergic activity that accompanies the insult, GluR1 subunit
phosphorylation is significantly upregulated at 4 h, but not 1
or 24 h (Atkins et al., 2006). Furthermore, GluR2-endocytosis
appears to occur (Bell et al., 2007, 2009). Overall, it appears that
GluR1 subunits decrease, while the expression of GluR2 subunits
is not well characterized (Guerriero et al., 2015). The authors
of this review suggest that more dedicated research is necessary
to explore AMPA receptors following TBI, given that they are
coupled to NMDA receptors in plastic responses.

MDD AND TBI: A GLUTAMATERGIC
HYPOTHESIS

Historically, etiological explanations of depression have
specifically involved widespread disturbances of monoamine
function (Krishnan and Nestler, 2008). However, current
research has suggested that some variations of clinically defined
depression may be rooted in dysfunctions of the glutamatergic
system (Matthews et al., 2012). The conventional treatment plan
for moderate depression has utilized pharmacotherapies which
target serotonin functioning, complemented by psychotherapy
and psychosocial intervention (Davidson, 2010). While a
comprehensive mechanism for the involvement of glutamate
in depression has not been universally accepted, there is
reasonable evidence suggesting glutamatergic alterations can be
observed in many cases of MDD (Sanacora et al., 2012), many
of which resembling alterations also reported following TBI
(see Figure 1). Thompson and colleagues noted reductions in
markers of AMPA activity in a plethora of regions after chronic
stress, including the nucleus accumbens, prefrontal cortex, and
the hippocampus (Thompson et al., 2015). Additionally, shifts
from GluN2A to GluN2B subunit expression in the hippocampus
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FIGURE 1 | Chronic glutamatergic dysfunction encountered in both TBI and
stress-induced depression is notably similar. TBI and stress exposure often
are responsible for reductions in a variety of brain glutamatergic markers
including EAAT2 and AMPA expression, which in combination with a shift
toward GluN2B subunit dominant NMDA receptor composition (i.e., reduced
GluN2A:GluN2B ratios), it could lead to increased neuronal vulnerability.
AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor,
NMDA: N-methyl-D-aspartate receptors, EAAT: excitatory amino acid
transporters.

were reported in prenatal stress (Sun et al., 2013) and chronic
mild stress (Calabrese et al., 2012) models. Intriguingly, in
human post-mortem depressed patients, research has revealed
that in the amygdala, which is known to become hyperactive in
stressful contexts, GluN2A and PSD-95 are increased without
concomitant GluN1 increase, suggesting a shift from GluN2B to
GluN2A signaling (Karolewicz et al., 2009). Reger and colleagues
have shown NMDA receptor upregulation in the rat amygdala
following a mild, lateral FPI injury, in stark contrast to the
reductions in receptor expression seen in the vast majority of
preclinical TBI research (Reger et al., 2012). The characteristic
GluN2A to GluN2B subunit shift was again not observed in
the amygdala. Furthermore, glutamate reuptake is impaired
under chronic stress (de Vasconcellos-Bittencourt et al., 2011),
albeit subsequent glutamate release is significantly facilitated in
response to acute stress challenges (Popoli et al., 2011).

In rodent models of depression, EAATs are also
downregulated in animals displaying depressive behaviors
compared to controls (Gomez-Galan et al., 2013), while
pharmacologic blockade of glutamate transporters on astrocytes
induces anhedonic behaviors in rodents (Bechtholt-Gompf
et al., 2010). Recently, Piao et al. (2017) determined that
the serum protease, thrombin, may act in CNS via a TBI-
compromised blood-brain barrier, on protease-activated
receptors in astrocytes, thus causing a decrease in the astrocyte
glutamate transporters in the hippocampus, an increase in
extracellular glutamate in response to stress, and an increase
in depressive-like behavior (e.g., tail-suspension and forced
swim tests, sucrose preference test) following TBI. It could thus

be speculated that glutamatergic disturbances following TBI
underlie vulnerability to depression, where patients’ functional
neuroarchitecture and behavioral characteristics mimic the
phenotype observed in chronic stress-related iterations of MDD
(Figure 1).

GLUTAMATE RECEPTORS: A GATEWAY
TO THERAPEUTICS

With the goal of therapeutics to restore cellular changes
resulting in the aftermath of TBI (see Figure 1), as well as
improve functional outcome, studies have typically coalesced
molecular investigations with the context of behavioral recovery,
providing optimistic outlooks for a variety of glutamatergic
compounds. The NMDA-receptor negative allosteric modulator
phencyclidine (PCP) was used to investigate long-term gross
motor functioning recovery in a FPI model (Hayes et al.,
1988). The group reported that PCP pretreatment alleviated
TBI-induced deficits in beam balance, beam traversal speed,
ambulatory activity, and performance on an incline plane.
More recently, the non-competitive NMDA receptor antagonist,
gacyclidine, has been examined in a bilateral contusion
of the medial frontal cortex, and it similarly improved
cognitive performance in the Morris water maze (Smith
et al., 2000), while enhancing surviving cell numbers in
thalamus, and increasing the size and number of microglia
and astrocytes in the striatum. Another non-competitive
NMDA receptor antagonist, dizocilpine maleate (MK-801),
administered immediately following FPI in immature rats,
decreased hippocampal cell loss, diminished memory-related
impairments on the novel object recognition test, and decreased
anxiety-like responses in the elevated plus maze test 2 months
after surgery (Sönmez et al., 2015). Potentially even more
promising results came from a different drug from the same class,
memantine, which prevented hippocampal neuronal loss when
given to rats immediately after CCI injury (Rao et al., 2001), as
well as attenuated FPI-induced motor deficits, infarction volume,
neuronal loss, and nitrosative stress, while also normalizing
the GluN2A/GluN2B ratio by reducing GluN2B expression in
the perilesion cortex (Wang et al., 2018). In order to obtain
a more clinically translatable TBI treatment approach, other
studies combined memantine with neuroprotective compounds,
such as the free radical scavenger melatonin, determining that
the memantine/melatonin combination in mice decreased TBI-
induced DNA fragmentation, p38 phosphorylation and inducible
nitric oxide synthase activity compared to each therapy alone
(Kelestemur et al., 2016). An interesting study using acute
administration of memantine and 17β-estradiol (E2) in rats
subjected to FPI reported a reduction in degenerating neurons
in hippocampus and cortex, albeit behavioral recovery was
not robust enough in order to preferentially endorse this
combination therapy (Day et al., 2017). A recent report examined
effects of memantine (2× daily for 7 days) in patients with
moderate TBI and concluded that they benefited from this
treatment as determined by significantly reduced serum levels of
neuron-specific enolase, a marker of neuronal damage, as well
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as improvement in their Glasgow Coma Scale scores
compared to the control group (Mokhtari et al., 2018).
Although animal findings overall supported the potential
of NMDA antagonists as neuroprotective agents after
TBI, many clinical studies have unfortunately been mostly
inconclusive or terminated prematurely, such as those
using selfotel, aptiganel, dexanabinol or EAA 494 (Muir,
2006).

Other potential therapeutic treatments for TBI are
centered upon restoring the intracellular concentration of
ions that are vital to the glutamatergic signaling pathway.
For example, magnesium sulfate effects have been explored
in rat models of impact acceleration and FPI. Acute
administration of magnesium sulfate has been shown to
reduce progressive tissue loss in the hippocampus (Browne
et al., 2004), improve depression- and anxiety-like behavior
in rats following TBI, such as spontaneous activity test
(Fromm et al., 2004), and improve motor and cognitive
outcomes using the rotarod and Barnes maze tests, respectively
(Turner et al., 2004). In a model of closed-head injury,
neurological recovery was enhanced by blood glutamate
scavenging following administration of either combination of
oxaloacetate/glutamate-oxaloacetate transaminase (Zlotnik et al.,
2007) or pyruvate/glutamate-pyruvate transaminase (Zlotnik
et al., 2008).

Following FPI, continuous i.v. infusion (72 h) of talampanel,
a non-competitive AMPA antagonist, improved pyramidal
cell counts in the hippocampal CA1 region (Belayev et al.,
2001). Perampanel (5 mg/kg given at 5 min post-injury) also
ameliorated CCI-induced brain edema, contusion volumes,
and gross motor dysfunction via the beam-balance test,
while also suppressing the expression of pro-inflammatory
cytokines (TNF-α and IL-1β) and enhancing the levels of
anti-inflammatory cytokines (IL-10 and TGF-β1) (Chen et al.,
2017), therefore suggesting the importance of AMPA receptors
in TBI damage involving secondary injury and inflammation
processes. The β-lactam antibiotic ceftriaxone is another
promising drug which, when given daily following lateral FPI,
had the ability to upregulate glutamate transport, as well
as to reestablish EAAT2 expression, reduce seizure activity,
and attenuate reactive astrogliosis quantified by glial fibrillary
acid protein-expression (Goodrich et al., 2013). Furthermore,
ceftriaxone appears to reduce TBI-induced edema formation
and improves spatial memory performance in the Morris
water maze (Wei et al., 2012; Cui et al., 2014). A few
other studies employed the mGluR antagonist, α-methyl-4-
carboxyphenylglyicine (MCPG), and reported motor function
and spatial memory improvement post-FPI when administered
into the rat left ventricle 5 min prior to insult (Gong et al.,
1995) or reduced the hybridization signals for immediate early
genes c-fos and c-jun mRNA after in vitro traumatic injury
in glial cells (Katano et al., 2001). Although a variety of
compounds appear promising in the laboratory, the translation
of preclinical treatments to clinical interventions is still work in
progress.

In parallel, despite the growing volume of work
investigating glutamatergic disturbances following TBI, there

are methodological issues that complicate the translatability and
replicability of preclinical rodent studies. Primarily, anesthetics
such as ketamine and isoflurane are potent NMDA antagonists,
and may operate in a similar manner to pretreatment in the
early NMDA antagonist studies, potentially subverting the
proper characterization of glutamatergic disturbances (Petrenko
et al., 2014). For instance, it has been noted that the presence
of NMDA antagonists during insult can attenuate spreading
depolarizations (Hertle et al., 2012). Recent studies also suggest
glutamatergic drugs, most notably ketamine, show incredible
promise in the treatment of depression in both humans and
rats (Burger et al., 2016; Jiang et al., 2017). While drugs
such as ketamine have been characterized in the context of
the intensive care unit, studies assessing their feasibility and
impact in the chronic phases of TBI have been fairly scarce
(Chang et al., 2013; Zeiler et al., 2014). We thus suggest
that when characterizing glutamatergic dysfunction in TBI,
anesthetics utilized should ideally not affect the glutamatergic
and GABAergic systems.

CONCLUSION

The pathophysiology of TBI in rodents is initially characterized
by ionic dysfunction and a “storm” of glutamatergic activity.
As a result, intracellular calcium levels soar, and through a
variety of pathways, cellular death and dysfunction becomes
imminent. Astrocytes, the neuronal support system, experience
manipulations in their functional activity, best characterized
by their inability to clear glutamate from the synaptic space.
Subsequently, many brain regions display a shift from synaptic to
extrasynaptic ionotropic glutamatergic signaling, as well as broad
receptor downregulation. Chronic-stress induced depression
is eerily similar to this environment, where glutamatergic
clearance is impaired and similar modulations of NMDA
and AMPA expression occur. This similarity may underlie a
precipitating factor where TBI patients are more vulnerable
to developing depression. Nevertheless, more research needs
to be performed in both the preclinical and clinical arenas.
While researchers have made great progress in illuminating
the relationships between TBI, glutamatergic dysfunction, and
MDD, we have only scratched the surface of these complex
phenomena.
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