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Background: The anti-inflammatory and antioxidant capacity of carnosine (CAR) has
been investigated in autoimmune diseases. The aim of this study was to evaluate the
potential protective effects of oral CAR supplements to ameliorate type 2 diabetes
mellitus (T2DM)-induced osteoarthritis (OA) in rats and its mechanism.

Methods: Seventy male Sprague–Dawley rats were randomly divided into the control
group (CG, n = 10) and the T2DM group (n = 60). A rat model of T2DM was established
using a high fat diet and streptozotocin (30 mg/kg, i.p.). The 41 rats that developed
T2DM were chosen and randomly divided into four groups: T2DM-induced OA group
(OAG, n = 11), and the T2DM-induced OA with low, moderate, and high-doses of
CAR for 8 weeks group (CAR-L, CAR-M, and CAR-H, n = 10). After 13 weeks,
all rats were evaluated by enzyme-linked immunosorbent assay (ELISA), histology,
immunohistochemistry, and western blotting. Fibroblast-like synoviocytes (FLSs) were
obtained from the knee joints of all rats. The effects of CAR on the inflammatory
response in interleukin (IL)-1β-stimulated FLSs under a high glucose environment were
evaluated by real-time quantitative polymerase chain reaction, western blotting, flow
cytometry, and immunofluorescence.

Results: The results of ELISA (IL-1β and tumor necrosis factor-α), the histological
evaluation (Mankin and OARSI score), western blotting [COL2A1, matrix
metalloproteinase (MMP)-3, MMP-13, IL-1β, and nuclear factor-kappaB (NF-κB)
p65], and immunohistochemistry (COL2A1, MMP-3, and MMP-13) indicated that
oral CAR attenuated the development of T2DM-induced OA and suppressed the
inflammatory response. Moreover, CAR alleviated MMP-3 and MMP-13 expression
levels by decreasing reactive oxygen species content and suppressing nuclear
translocation of NF-κB p65 on IL-1β-induced FLSs in a high glucose environment.

Conclusion: These findings indicate that oral CAR had chondroprotective effects on
T2DM-induced OA through the reactive oxygen species (ROS)/NF-κB pathway.

Keywords: carnosine, osteoarthritis, type 2 diabetes mellitus, fibroblast-like synoviocyte, reactive oxygen
species, NF-kappaB
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INTRODUCTION

Knee osteoarthritis (OA) is a highly prevalent disabling joint
disease that is poorly understood and it has doubled in prevalence
since the mid-20th century (Ondrésik et al., 2017; Wallace et al.,
2017). OA involves the whole joint, including degeneration of the
articular cartilage, subchondral bone porosis, and inflammation
of the synovial membranes (Kalunian, 2016). Although many
clinical therapies for OA focus on relieving symptoms, reducing
pain, and improving joint function, the pathophysiological
processes need further investigation.

Type 2 diabetes mellitus (T2DM) is characterized by reduced
pancreatic β-cell function and systemic insulin resistance, which
lead to metabolic dysfunction throughout the body. OA and
T2DM often co-exist and share many risk factors, including
aging, obesity, and physical inactivity (Sellam and Berenbaum,
2013; Guariguata et al., 2014; King and Rosenthal, 2015). T2DM
can develop with OA in association with high fat diet-induced
obesity, glucose intolerance, and insulin resistance in a classic rat
model (Mooney et al., 2011; King and Rosenthal, 2015; Hamada
et al., 2016; Williams et al., 2016).

The association between T2DM and OA involves chronic
systemic inflammation related to metabolic syndrome (Dahaghin
et al., 2007; Brunner et al., 2012; Gierman et al., 2012; Griffin et al.,
2012) The cartilage degradation that occurs in OA results from
dysregulated joint homeostasis activated by pro-inflammatory
mediators, such as cytokines, lipid mediators, and reactive oxygen
species (ROS), which are produced by synoviocytes (de Boer et al.,
2012; Berenbaum et al., 2013; Kirkman, 2015). Adipokines act on
the synovial membrane of the joint to increase the number of
activated macrophages that release pro-inflammatory cytokines,
such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α),
and ROS (de Boer et al., 2012; Lee et al., 2013). ROS are a
major contributor to chronic low-grade inflammation and are
excessively generated by hyperglycemia-induced oxidative stress,
which is a result of an imbalance between the peroxidation and
antioxidant defense systems (Shuai et al., 2013).

Synovitis is the main manifestation of OA. The synovium
consists of synovial macrophages and fibroblast-like synoviocytes
(FLSs). FLSs are the key cells mediating the destruction of
cartilage in OA (Kalunian, 2016). FLSs are activated by pro-
inflammatory cytokines and cytokine-independent pathways,
including IL-1β. We examined the expression of matrix
metalloproteinase (MMP)-3 and MMP-13, as elevated levels
of MMPs, mainly secreted by FLSs, may be the main
cause of OA. The nuclear factor kappaB (NF-κB) pathway
orchestrates mechanical, inflammatory, and oxidative stress-
activated processes, thus representing a potential therapeutic
target in OA disease (Olivotto et al., 2015; Yang et al., 2017).

Although many pharmacological agents are available to
relieve OA symptoms, these agents, such as non-steroidal
anti-inflammatory drugs, are associated with substantial
gastrointestinal, renal, and cardiovascular side effects (Patrignani
et al., 2011; Cheng and Visco, 2012). Thus, the development
of novel therapeutic agents that can ameliorate OA damage
and be safe to administer for long periods is urgently needed.
Amino acids also play an important role in ameliorating T2DM

and arthritis, such as methionine (Li et al., 2016), arginine
(Clemmensen et al., 2013), and so on. Carnosine (CAR) is a
dipeptide consisting of β-alanine and L-histidine. The anti-
inflammatory potential of CAR in autoimmune diseases has
been investigated (Ponist et al., 2016). The capacity of CAR is
well documented, such as antioxidant, anti-glycating, aldehyde-
scavenging, and toxic metal-ion chelating properties (Fatih et al.,
2017). CAR suppresses senescence of cultured human fibroblasts
and delays aging, but the mechanisms remain uncertain (Hipkiss,
2009). Nevertheless, the anti-inflammatory potential of CAR in
OA has been scarcely investigated.

In the present study, we evaluated the potential protective
effects of an oral CAR supplement to ameliorate T2DM-induced
OA. Furthermore, to elucidate a potential contribution by an
anti-inflammatory mechanism to these effects at the cellular level,
we explored the therapeutic effects of CAR focusing on the
ROS/NF-κB signaling pathway in IL-1β-induced FLSs under a
high glucose condition.

MATERIALS AND METHODS

Experimental Animals
Seventy male Sprague–Dawley (SD) rats (130–140 g, and specific-
pathogen-free) were obtained from HFK Bioscience Co., Ltd.
(Beijing, China). This study was carried out in accordance with
the recommendations of “the Ethics Committee of Shengjing
Hospital of China Medical University.” The protocol was
approved by this committee. The rats were kept in individual
plastic cages on sawdust bedding, under a 12:12 h light: dark
cycle with lights on from 6:00 a.m. to 6:00 p.m., a controlled
temperature of 22 ± 2◦C, and 70% humidity. The rats had free
access to a planned diet. Body weight was recorded at regular
intervals. The rats were adapted to laboratory conditions for 1
week prior to the experimental procedures.

T2DM Model and Oral CAR
Supplementation
After the 1 week acclimation, the rats were randomly assigned to
a control group (CG, n = 10) or a T2DM group (n = 60). In the
CG, rats were fed a normal chow diet (10% of kcal derived from
fat). T2DM was induced with a combination of a high-fat diet
(60% kcal derived from fat) and streptozotocin (STZ) treatment
(Reed et al., 2000; Srinivasan et al., 2005; Liu et al., 2012). In the
T2DM group, the rats were first fed a high-fat diet for 4 weeks.
Then, the rats were fasted the night before drug administration
and injected i.p. with a single dose of STZ (Srinivasan et al., 2005;
Deeds et al., 2011; Sigma, Beijing, China, 30 mg/kg body weight)
dissolved in citrate buffer (0.1 M, pH 4.4). The CG group received
citrate buffer only. Seventy-two hours after the STZ injection,
glucose was measured in blood samples, obtained by a tail prick
and a strip-operated blood glucose sensor (Onetouch Ultraeasy;
Ningbo Qihao International Trade Co., Ltd., Ningbo, China).
Blood glucose levels were >16.7 mmol/L in all STZ-injected
animals and defined as diabetic rats for further pharmacological
studies (Srinivasan et al., 2005; Shi et al., 2011).
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After the STZ injection, the CG was kept on the standard diet,
and the T2DM group was kept on the high-fat diet. A total of
41 rats that developed T2DM were chosen and randomly divided
into four treatment groups: T2DM-induced OA group (OAG,
n= 11), T2DM-induced OA+ low-dose CAR supplement group:
0.1 g/kg/day for 8 weeks (CAR-L, n= 10); T2DM-induced OA+
moderate-dose CAR supplement group: 0.3 g/kg/day for 8 weeks
(CAR-M, n = 10); and T2DM-induced OA + high-dose CAR
supplement group: 0.9 g/kg/day for 8 weeks (CAR-H, n = 10;
Figure 1).

Sampling and Tissue Preparation
All rats were anesthetized after oral CAR supplementation.
Blood samples were obtained immediately after the animals were
euthanized and centrifuged at 3000 × g for 10 min to obtain
the serum. All rats were sacrificed by cervical dislocation. Intra-
articular lavage fluid (IALF) was obtained from the synovial
cavity of the right knee by injecting 200 µl of phosphate-buffered
saline (PBS) three times, followed by recovery of the liquid.
The left knee joints of all rats were dissected and fixed in 4%
paraformaldehyde solution. The articular cartilage and synovium
were removed from the weight-bearing areas of the condyles of
the right femur and tibia using a scalpel. All tissues were stored at
−80◦C.

Histology
Left knee joint tissue samples were stored in 4%
paraformaldehyde for 7 days. Then, they were washed in
water for 5 h and transferred to 20% EDTA solution (Jianglai
Reagent Co., Ltd., Shanghai, China) to decalcify for 21 days; the
solution was changed every 3 days. Decalcified samples were
dehydrated in an ethanol series and embedded in paraffin. Serial
5-µm sagittal sections were cut from the tibiofemoral joints
for histological examination. The sections were stained with
hematoxylin and eosin, as well as toluidine blue, to observe
the cartilage. Next, the sections were visualized with ScanScope
(APERIO CS2, Leica Biosystems, Inc., Buffalo Grove, IL,
United States). Injuries to the articular cartilage in the femur and
tibia were assessed by the Modified Mankin score (scale of 0–14

points; van der Sluijs et al., 1992; Patrignani et al., 2011) and
the Osteoarthritis Research Society International (OARSI) score
(scale of 0–24 points; Pritzker et al., 2006; Gerwin et al., 2010;
Ponist et al., 2016). Since both the tibial and femoral cartilages
were evaluated, the maximum Mankin score was 28 and the
maximum OARSI score was 48. Two experienced observers (YY
and XZ) performed the scoring in a blinded manner.

Measurement of Plasma Glucose, Total
Cholesterol, and Triglycerides
Plasma glucose was determined by a strip-operated blood glucose
sensor (Onetouch Ultraeasy; Ningbo Qihao International
Trade Co., Ltd.). Plasma total cholesterol and triglycerides
were measured using commercially available colorimetric
diagnostic kits according to the manufacturer’s instructions
(Bio-Technology and Science Inc., Beijing, China).

Enzyme-Linked Immunoassay (ELISA) of
TNF-α and IL-1β
Serum and knee IALF TNF-α and IL-1β levels were determined
using enzyme-linked immunosorbent assay (ELISA) kits
(Tongwei, Shanghai, China) following the manufacturer’s
instructions. Then, the protein content in the IALF was
measured to ensure that the ratio of the dilution was equal.

Immunohistochemistry
In addition to the histomorphological evaluation, serial sections
were stained for COL2A1, MMP-3, and MMP-13. After
deparaffinization and rehydration of the tissue sections, the
proteins were immunostained using a two-step method following
the manufacturer’s instructions for the kit. The sections
were incubated with rabbit polyclonal anti-COL2A1 antibody
(ab34712, 1:50; Abcam, Cambridge, MA, United States), rabbit
polyclonal anti-MMP-3 antibody (ab52915, 1:50; Abcam),
and rabbit polyclonal anti-MMP-13 antibody (ab39012, 1:50;
Abcam) overnight at 4◦C. The slides were washed three
times in PBS followed by a 20 min incubation at 37◦C
with an anti-mouse/rabbit IgG detection system (PV-9000,

FIGURE 1 | Treatment schedule and intervals for various parameters.
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Zhongshan Goldenbridge Biotechnology Co., Beijing, China) and
visualized with diaminobenzidine. Nuclei were counterstained
with hematoxylin for 5 min. Negative control sections were
prepared using the same protocol, but the primary antibody
was replaced with PBS. The optical density of the stained
slides was measured using image analysis software (NikonH600L
microscope and image analysis system, Tokyo, Japan). COL2A1
and MMP-3 were expressed as relative intensities. MMP-13 was
expressed as a percentage of positive cells.

Western Blotting
The cartilage and synovium were washed twice in ice-cold
PBS. Proteins in the cytoplasm and nucleus were isolated
by using Cytoplasmic and Nuclear Protein Extraction Kit
(AR0106, Boster, China), according to the manufacturer’s
instruction. The protein concentration of cytoplasm and nuclear
was measured with a bicinchoninic acid (BCA) assay kit
(P0010S, Beyotime, China). Equal amounts of protein (40 µg)
were separated by sodium dodecyl-sulfate-polyacrylamide gel
electrophoresis and transferred to polyvinylidene difluoride
membranes. After blocking with 1% bovine serum albumin
(BSA) in Tris-buffered saline with 0.1% Tween-20 (TBST)
at room temperature for 2 h, the blots were incubated
overnight at 4◦C with primary antibodies: rabbit polyclonal
anti-COL2A1 antibody (ab34712, 1:5000; abcam), molecular
weight 142 kDa; rabbit polyclonal anti-MMP-13 antibody
(ab39012, 1:3000; abcam), molecular weight 54 kDa; rabbit
monoclonal anti-MMP-3 antibody (ab52915, 1:1000; abcam),
molecular weight 54 kDa; rabbit polyclonal anti-IL-1β antibody
(ab150777, 1:1000; abcam), molecular weight 31 kDa; rabbit
monoclonal anti-IκB-α antibody (ab32518, 1:10000; abcam),
molecular weight 36 kDa; rabbit polyclonal anti-NF-κB p65
antibody (AB21014, 1:1000; absci), molecular weight 65 kDa;
mouse monoclonal anti-β-actin (60008-1-lg, 1:5000, Proteintech
Group), molecular weight 42 kDa; and rabbit polyclonal anti-
histone H2A.X (AB41012, 1:1000, absci), molecular weight
19 kDa. After washing three times with TBST, the membranes
were incubated with IgG-horseradish peroxidase-conjugated
secondary antibodies (1:10,000, Canlife) at room temperature
for 2 h. After washing with TBST buffer, immunoreactivity was
detected with enhanced chemiluminescence and quantified using
Quantity ONE (Bio-Rad, Hercules, CA, United States) software.
β-actin or histone H2A.X was used as the internal control.

Isolation and Culture of FLSs
Fibroblast-like synoviocytes were obtained from the knee joint
synovium of SD rats. The tissues were collected in sterile PBS.
Fat and connective tissue were removed, and the remaining tissue
was digested with 1 mg/ml collagenase (Sigma–Aldrich, St. Louis,
MO, United States) for 45 min at 37◦C. The cells were then
separated from the undigested tissue using a 70 µm cell strainer
and cultured in 25 cm2 cell culture flasks in Dulbecco modified
Eagle medium (Gibco BRL, Grand Island, NY, United States)
with 10% fetal bovine serum (Gibco BRL) and antibiotics
(100 U/ml penicillin and 100 µg/ml streptomycin) in a humid
atmosphere of 5% CO2 at 37◦C. Upon reaching confluence, the
cells were detached with 0.25% trypsin and split 1:3. The cells

were identified by immunofluorescence staining with vimentin
antibody (ab92547, 1:200; Abcam; Supplementary Figure S1).
Passages 4–6 were used for all experiments. More than 95% of
the cells were judged to be FLSs under a microscope.

Quantitative Real-Time Polymerase
Chain Reaction (qPCR)
Cultured FLSs were grown in 100 mm cell culture dishes
(8–10× 106 cells/dish) for quantitative polymerase chain
reaction (qPCR). After the indicated treatment, the cells
were washed twice with ice-cold PBS, and total mRNA was
extracted with Trizol reagent. cDNA was reverse transcribed
from 1 µg total RNA using a PrimeScript RT reagent kit
with the gDNA Eraser (Takara Bio, Dalian, China) according
to the manufacturer’s instructions. qPCR was performed in
an ABI Prism 7500 Fast Real-Time PCR System (Applied
Biosystems, Wilmington, NC, United States) using SYBR
Premix Ex Taq II (Tli RNaseH Plus; Takara Bio, Dalian,
China). Expression levels were calculated by the 2−MMCT
method (Livak and Schmittgen, 2001) with β-actin as the
reference gene. The primer pair sequences were specific
to rat MMP-13 (F-5

′

-TGATGATGAAACCTGGACAAGCA-3
′

;
R-5

′

-GAACGTCATCTCTGGGAGCA-3
′

), MMP-3 (F-5
′

-CATA
ATACACAGCTGACCTGTATAA-3

′

; R-5
′

-ATTTAAGAAATCA
TAGATAACAGTTACTTA-3

′

), and β-actin (F-5
′

GGAGATTA
CTGCCCTGGCTCCTA-3

′

; R-5
′

-GACTCATCGTACTC CTG
CTTGCTG-3

′

).

Treatment of FLSs
After the FLSs were cultured in six-well plates (2× 106 cells/well),
they were stimulated with 10 ng/ml IL-1β (ab200284, Abcam)
with or without CAR (100 µM) for 24 h under normal glucose
(5.5 mM) or high glucose (25 mM) conditions. The CAR dose
was considered to be effective after a dose–effect experiment
(Figure 6A).

To investigate whether the effect of high glucose was related
to its osmotic effect, cells were incubated with mannitol
(19.5 mM) instead of high glucose (25 mM) for 24 h in separate
experiments.

Cellular ROS Production
Fibroblast-like synoviocytes were seeded and cultured in six-
well plates at a density of 2 × 106 cells per well. After
24 h, ROS production was measured by flow cytometry and
fluorescence microscopy with 2

′

,7
′

-dichlorodihydrofluorescein
diacetate (DCFH-DA) (S0033, Beyotime). The FLSs were
incubated with 10 µM DCFH-DA for 45 min at 37◦C in the
dark, and then washed three times in PBS. Fluorescence was
detected by fluorescent microscopy and was measured with the
BD FACSCalibur at 488 nm excitation and 525 nm emission
wavelengths.

Western Blot and Immunofluorescence
Analysis of FLSs
Cultured FLSs were grown in 100 mm cell culture dishes
(8–10× 106 cells/dish) for the western blot analysis. FLSs were
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FIGURE 2 | Histological evaluation of the tibiofemoral joints. (A) Histological features of representative tibiofemoral joints sectioned in the sagittal plane stained with
hematoxylin and eosin and toluidine blue. Mankin and OARSI histological scores are shown for each image. F, femur; T, tibia. (B) Mankin score for the tibiofemoral
joints. Differences between CG and OAG (∗P < 0.001), OAG vs. CAR-M and CAR-H groups (+aP = 0.002, +P < 0.001) were significant. (C) OARSI histological
scores for tibiofemoral joint cartilage. Differences between CG and OAG (∗P < 0.001), OAG vs. CAR-L, CAR-M, and CAR-H groups (+P < 0.001) were significant.
One-way ANOVA, n = 10 or 11 rats in each group; means with 95% confidence intervals.

stimulated with 10 ng/ml IL-1β with or without CAR (100 µM)
for 24 h under normal glucose (5.5 mM) or high glucose (25 mM)
conditions. After 24 h, the cells were collected and stored at
−80◦C for western blotting.

Fibroblast-like synoviocytes were placed on a confocal dish
and incubated under different conditions for 24 h. The cells
were washed in PBS and fixed in 4% paraformaldehyde for
20 min at room temperature. Then, the cells were permeabilized

with 0.5% Triton X-100 for 30 min after being incubated in
non-specific binding blocking solution (5% BSA) for 30 min at
room temperature. Rabbit polyclonal anti-NF-κB p65 antibody
(AB21014, 1:50; Ab Science, Chatham, NJ, United States) was
added to cells overnight at 4◦C followed by staining with
AlexaFluor R© 594 conjugated anti-rabbit antibody for 60 min at
room temperature in the dark. Nuclei were counterstained with
4,6-diamidino-2-phenylindole (DAPI) for 2 min. After washing,
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FIGURE 3 | The results of body weight, serum, and intra-articular lavage fluid (IALF). (A) The results of plasma glucose, triglycerides, and total cholesterol. The
differences between the CG and OAG were significant (∗P < 0.001), but no significant differences were observed between OAG and CAR-L, CAR-M, or CAR-H.
(B) Body weights. Differences between the CG and OAG were significant (∗P < 0.001, ∗aP = 0.002, ∗bP = 0.030, and ∗cP = 0.001), but no significant differences
were observed between OAG and CAR-L, CAR-M, or CAR-H. (C) Serum and IALF IL-1β and TNF-α levels. Differences between the CG and OAG were significant
(∗P < 0.001), and differences between the OAG group and CAR-L, CAR-M, and CAR-H were significant (+P < 0.001, +aP = 0.013, +bP = 0.002, +cP = 0.022, and
+dP = 0.011). One-way ANOVA, n = 10 or 11 rats for each group; means with 95% confidence intervals.

the FLSs were visualized under a confocal microscope (Olympus,
Tokyo, Japan).

Statistical Analysis
Data are expressed as means with 95% confidence intervals (CIs)
and analyzed using SPSS statistical software version 16 (SSPS,
Inc., Chicago, IL, United States). The Shapiro–Wilk and Levene
tests were applied to evaluate the normality and homogeneity
of the results, respectively. One-way analysis of variance was
used for the statistical analysis if the variables were normally
distributed. P-values< 0.05 were considered significant.

RESULTS

Histological Observations
The histological assessment (Mankin and OARSI scores)
demonstrated that the damage to the cartilage in the OAG was
serious compared with that observed in the CG (Mankin score of
tibiofemoral joints: CG= 1.0, 95% CI 0.6–1.4; OAG= 19.8, 95%
CI 19.1–20.5; OARSI score of tibiofemoral joints: CG = 1.0, 95%
CI 0.6–1.4; OAG= 35.3, 95% CI 34.2–36.4). CAR had therapeutic
effects on the cartilage in the tibiofemoral joints compared with
the OAG (Mankin score of tibiofemoral joints: CAR-L = 18.7 –
95% CI 17.8–19.6; CAR-M = 17.4 – 95% CI 16.4–18.3; CAR-
H= 12.1 – 95% CI 11.2–13.0; OARSI score of tibiofemoral joints:
CAR-L = 33.6 – 95% CI 31.4–35.8; CAR-M = 30.4 – 95% CI
29.3–31.4; CAR-H= 12.5 – 95% CI 11.0–14.1; Figures 2A–C).

Results of Plasma Glucose, Total
Cholesterol, and Triglycerides
As shown in Figure 3A, the concentrations of plasma glucose,
total cholesterol, and triglycerides increased in the OAG
compared to the CG; but no significant differences were observed
between the OAG and CAR-L, CAR-M, or CAR-H.

ELISA for TNF-α and IL-1β
As shown in Figure 3C, serum TNF-α and IL-1β concentrations
were both higher in the OAG than in the CG; CAR-M and CAR-
H reduced the increase in serum TNF-α and IL-1β concentrations
compared to that seen in the OAG group. The changes in the
TNF-α and IL-1β concentrations were similar in IALF to those
observed in serum (Figure 3C).

Immunohistochemical Analysis
The immunohistochemical staining showed that the therapeutic
effects of CAR-M and CAR-H resulted in an increase of COL2A1,
MMP-3, and MMP-13 expression in articular cartilage compared
with the OAG group (Figure 4).

The relative intensity of COL2A1 compared with CG in the
articular cartilage increased from 0.41 in the OAG group to 0.46
in the CAR-L, 0.58 in the CAR-M, and 0.69 in the CAR-H. The
relative intensity of MMP-3 compared with CG in the articular
cartilage decreased from 3.86 in the OAG group to 3.62 in
the CAR-L, 2.34 in the CAR-M, and 1.68 in the CAR-H. The
percentage of MMP-13 in the CG group was 6.6%. The percentage
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FIGURE 4 | Immunohistochemical staining. The micrographs show the relative intensity of immunohistochemical staining for COL2A1 and MMP-3, and the
percentages of MMP-13 positively stained cells in the articular cartilage of each experimental group. Differences between the CG and OAG were significant
(∗P < 0.001), and differences between the OAG vs. CAR-M and CAR-H were significant (+P < 0.001). One-way ANOVA, n = 5 rats for each group, mean score with
95% confidence intervals.

of MMP-13-positive cells in articular cartilage decreased from
44.3% in the OAG to 52.6% in the CAR-L, 32.9% in the CAR-M,
and 22.4% in the CAR-H.

Western Blot Analysis
Western blots were evaluated for differences in COL2A1, MMP-
13, and MMP-3 in cartilage and IL-1β, MMP-13, MMP-3, and
NF-κB p65 in the synovium among the groups of rats with
T2DM-induced knee OA (Figure 5). Treatment with CAR
resulted in these proteins being expressed in articular cartilage
and synovium compared with the OAG group.

qPCR Assay
The relative expression levels of MMP-3 and MMP-13 mRNA are
shown in Figure 6A. Expression of both MMP-3 and MMP-13
was higher in the high glucose (25 mM) with IL-1β (10 ng/ml)
treatments than in the CG. Expression of MMP-3 and MMP-
13 decreased in response to different doses of CAR compared

to the high glucose (25 mM) with IL-1β (10 ng/ml) condition.
No significant differences in MMP-3 or MMP-13 mRNA were
observed between 100 and 200 µM CAR in the high glucose with
IL-1β-induced FLSs [mRNA of MMP-3: control= 1.00 – 95% CI
0.94–1.06; high glucose (25 mM) with IL-1β (10 ng/ml) = 5.57 –
95% CI 5.05–6.09; CAR (50 µM)= 2.67 – 95% CI 2.44–2.91; CAR
(100 µM) = 2.06 – 95% CI 1.94–2.17; CAR (200 µM) = 1.98 –
95% CI 1.75–2.21. mRNA of MMP-13: control = 1.00 – 95% CI
0.96–1.05; high glucose (25 mM) with IL-1β (10 ng/ml) = 3.79 –
95% CI 3.51–4.08; CAR (50 µM)= 1.87 – 95% CI 1.74–2.01; CAR
(100 µM) = 1.18 – 95% CI 1.07–1.28; CAR (200 µM) = 1.22 –
95% CI 1.10–1.34]. Thus, we chose 100 µM CAR for further
study.

ROS Analysis of FLSs
We measured the production of ROS by DCFH-DA to evaluate
oxidative stress in FLSs (Figure 6C). We replaced excess glucose
with mannitol (19.5 mM) at the same concentration as a control
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FIGURE 5 | Western blotting results. Protein expression was determined in western blots of total protein extracted from cartilage (A) and synovium (B). The data
were obtained from three separate experiments β-actin or histone H2A.X was the internal standard. Differences between the CG and OAG group were significant
(∗P < 0.001), and differences between the OAG and the different doses of CAR were significant (+P < 0.001, +aP = 0.001, +bP = 0.014, +cP = 0.008, and
+dP = 0.010). One-way ANOVA, n = 3 rats for each group; means with 95% confidence intervals.

for the hyperosmotic effects to analyze the possibility that the
effect of high glucose level was due to osmotic stress. As a result,
no significant difference was observed between the high mannitol
group and the CG.

Reactive oxygen species production was enhanced with high
glucose (25 mM) or IL-1β (10 ng/ml) stimulation separately.
Interestingly, ROS production was significant enhanced with
high glucose (25 mM) and IL-1β (10 ng/ml) stimulation after 24 h
compared to only a single stimulation. These results emphasize
the role of IL-1β and high glucose combined in the formation of
ROS. Moreover, we evaluated the effect of CAR (100 µM) on ROS
generation in FLSs under the high glucose (25 mM) and IL-1β

(10 ng/ml) condition and noticed a significant decrease in ROS
level. Furthermore, the ROS level was determined in FLSs under
a fluorescence microscope after DCFH-DA staining (Figure 6C).

Western Blot and Immunofluorescence
Analysis of FLSs
We examined the effect of CAR on MMP-3, MMP-13, and
IκB-α expression levels by western blot (Figures 6B, 7A) and
the expression of NF-κB p65 protein by immunofluorescence

staining using confocal microscopy in IL-1β-induced FLSs under
the high glucose condition (Figure 7B).

Fibroblast-like synoviocytes stimulated with or without IL-
1β (10 ng/ml) and CAR (100 µM) in the presence of mannitol
(19.5 mM) released quantities of MMP-3 and MMP-13 similar
to those released under the normal glucose condition (5.5 mM;
Figure 6B). Therefore, we ruled out the impact of osmotic stress
under the high glucose condition.

As shown in Figure 6B, MMP-3 and MMP-13 protein
expression increased significantly in response to IL-1β.
Interestingly, MMP-3 and MMP-13 expression levels were
higher in IL-1β-induced FLSs under the high glucose
condition than under the normal glucose condition. Such
increased inflammatory phenotype after IL-1β stimulation
was corroborated by the sensitivity of the FLSs to the high
glucose environment. We speculated that sustained extracellular
high glucose exposure could be one of the actors in this
responsiveness. However, the results show that CAR not only
alleviated stimulation by IL-1β, but also ameliorated the influence
of high glucose. CAR relieved the changes in IκB-α expression
under high glucose (25 mM) and IL-1β (10 ng/ml) stimulation
(Figure 7A).
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FIGURE 6 | qPCR, western blotting, and ROS in FLSs. (A) Relative expression of MMP-3 and MMP-13 mRNA. Differences between the control group and high
glucose (25 mM) with IL-1β (10 ng/ml) group were significant (∗P < 0.001); differences between the high glucose (25 mM) with IL-1β (10 ng/ml) group and different
doses of CAR were significant (+P < 0.001); differences between CAR (50 µM) and CAR (100 µM) were significant (#P < 0.001 and &aP = 0.001), but no significant
differences were observed between CAR (100 µM) and CAR (200 µM). One-way ANOVA, n = 9; means with 95% confidence intervals. (B) The western blotting
results of MMP-3 and MMP-13 in FLSs. Data were obtained from three separate experiments. β-actin was the internal standard. Differences between the groups
were significant (∗P < 0.001, +P < 0.001, and #P < 0.001). One-way ANOVA, n = 3; means with 95% confidence intervals. (C) The fluorescence microscopy and
flow cytometry of ROS in FLSs. n = 3; means with 95% confidence interval.

As shown in Figure 7B, significant nuclear translocation
of the NF-κB p65 protein was detected in FLSs induced by
high glucose (25 mM) and IL-1β (10 ng/ml) when compared
with the CG. Furthermore, Figure 7 also indicates that CAR
suppressed nuclear translocation of NF-κB p65, which was used
to confirm our hypothesis that CAR exhibited therapeutic effects
by suppressing nuclear translocation of NF-κB p65.

DISCUSSION

The principal findings of the present study were: (i) T2DM
caused knee OA and oral supplementation with CAR at doses
of 0.3 and 0.9 g/kg partially alleviated T2DM-induced OA by
reducing cartilage surface erosion, matrix loss, and inflammation
of the synovium; (ii) the FLSs showed increased responsiveness to
IL-1β-induced inflammation under the high glucose condition;
and (iii) CAR suppressed the inflammatory response in IL-
1β-induced FLSs under the high glucose condition via the
ROS/NF-κB pathway.

To study the association between T2DM and progression
of OA, we investigated the implications of T2DM in the

development of OA using a high-fat diet and low dose STZ-
treated model. These rats exhibit metabolic disturbances similar
to those observed in humans with T2DM; thus, they are a
representative model to study diabetes and associated metabolic
complications (Shi et al., 2011). In the first 4 weeks of high-
fat diet, the weight of rats did increase significantly. However,
after injection of STZ, there was no significant change in the
body weight of T2DM rats, which were even lower than CG
group (Figure 3B). Therefore, the effect of weight gain is
not obvious for OA compared to T2DM, which supports the
findings of previous reports (Courties et al., 2015; Cicuttini and
Wluka, 2016). T2DM is related to systemic low-grade chronic
inflammation characterized by abnormal cytokine production
and activation of a network of inflammatory signaling pathways
(Hotamisligil, 2008; Courties et al., 2015). Our results show
that rats with T2DM developed more severe OA-like changes,
which caused histological changes, including cartilage surface
erosion, matrix loss, and inflammation of the synovium. Notably,
inflammation of the synovium and IALF are found in the joint.
Joint inflammation is accompanied by increases in MMP-13
and MMP-3, predominantly in the synovium. Taken together,
these results support that abnormal glucose metabolism and
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FIGURE 7 | Western blotting and immunofluorescence results of NF-κB p65 in FLSs. (A) Western blotting results of IκB-α. Differences between the groups were
significant (∗P < 0.001, +P < 0.001, +aP = 0.002, #P < 0.001). One-way ANOVA, n = 3; means with 95% confidence intervals. (B) Effects of CAR on nuclear
translocation of NF-κB p65 in IL-1β-induced FLSs under the high glucose condition. The FLSs were immunostained with anti-NF-κB p65 rabbit antibody (red) and
visualized by confocal microcopy. Cell nuclei were defined by DAPI (blue). Scale bar, 50 µm.

the inflammatory response accelerate experimental OA in rats
with T2DM. Thus, abnormal glucose metabolism and the
inflammatory response could be the mechanisms responsible for
T2DM-induced OA.

The therapeutic potential of CAR is reflected by its antioxidant
and anti-inflammatory capacities (Shi et al., 2011); thus,
we evaluated whether an oral CAR treatment could confer
protection to rats with T2DM-induced OA. Our results show
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FIGURE 8 | The mechanism of CAR on IL-1β-induced FLSs in a high glucose environment. CAR alleviated MMP-3 and MMP-13 expression by decreasing ROS
content and suppressing nuclear translocation of NF-κB p65 in IL-1β-induced FLSs under a high glucose environment.

that CAR decreased systemic inflammation in rats with T2DM-
induced OA which was monitored by serum IL-1β and TNF-α.
In addition, the oral CAR treatment dramatically ameliorated
synovitis, as demonstrated by the expression of IL-1β in the
synovium and the concentration of inflammatory cytokines in
IALF. Pro-inflammatory mediators produced by FLSs, such as
cytokines, degrade cartilage, and CAR, alleviated cartilage surface
erosion according to the histological evaluation.

Low-grade inflammation and hyperglycemia are observed in
T2DM. Growing evidence suggests that targeting FLS-mediated
synovial inflammation and invasion may be a new therapeutic
avenue for OA. MMP-3 and MMP-13, which degrade the
extracellular matrix of cartilage, play a vital role in the occurrence,
development, and progression of OA (Nair et al., 2012; Ping et al.,
2017). FLSs express MMPs, as well as a variety of surface adhesion
molecules. Thus, we investigated the expression of MMPs by
FLSs in response to high glucose and IL-1β. We found that
IL-1β increased the synthesis of MMP-3 and MMP-13 in FLSs
in vitro. Intriguingly, we also discovered that MMP-3 and MMP-
13 expression levels increased markedly when IL-1β-induced
FLSs were cultured under the high glucose condition compared
to those cultured under the normal glucose condition. However,
no significant differences were observed between the normal and
high glucose environment without IL-1β stimulation. Thus, it
was a particularly noteworthy finding that the enhanced pro-
inflammatory response under the high glucose environment was

related to sensitization of FLSs according to their responsiveness
to IL-1β-induced inflammatory stress.

The CAR treatment had a therapeutic effect on MMP-3
and MMP-13 production in IL-1β-induced FLSs under the
normal and high glucose conditions, suggesting that CAR
specifically reversed the inflammatory response. We speculate
that the therapeutic effect of CAR is related to ameliorating
the inflammatory response and sensitizing FLSs under the high
glucose condition. Moreover, CAR abolished the additive pro-
inflammatory effect of high glucose in IL-1β-induced FLSs.

Increased activity of the ROS pathway, which occurred when
FLSs were induced by IL-1β in the high glucose condition, is an
important pathogenic factor in diabetic complications. Excessive
production of ROS damages protein, lipids, nucleic acids, and
matrix components (Chuang et al., 2014). Mitochondria are vital
for cellular bioenergetics and regarded as the major cellular site
for ROS production. Overwhelming data suggest that reactive
lipid mediators generated from this process are biomarkers for
oxidative stress and important players for mediating a number
of signaling pathways (Zhong and Yin, 2015). Actually, FLSs
from an OA joint can produce large amounts of ROS in
response to biochemical stimuli. The FLSs behaved differently
after 24 h of the high and normal glucose conditions induced
by IL-1β. In the pro-inflammatory and high glucose condition,
the mitochondrial respiratory chain would be more activated,
which would increase mitochondrial production of ROS.
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To investigate the link between the targets potentially responsible
for these effects, we evaluated activity of the NF-κB pathway, a
key signaling pathway that regulates the cellular inflammatory
response. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) also
plays a prominent role in orchestrating glucose metabolism
(Mitsuishi et al., 2012). It is now clear that robust NF-κB and
Nrf2 activity is essential for maintaining coordinated cellular
responses to resolve the inflammatory status of the cell/tissue
(Wardyn et al., 2015). But the relationship between Nrf2 and
NF-κB pathway on IL-1β-induced FLSs in a high glucose
environment needs further investigation. Our study shows that
ROS produced by mitochondria promoted nuclear translocation
of NF-κB p65, which activated the NF-κB signaling pathway
(Figure 8). Thus, suppressing excess production of ROS could be
of benefit in the prevention and management of T2DM-induced
OA. Ultimately, we treated FLSs with CAR, which had promising
results decreasing ROS and suppressing nuclear translocation of
NF-κB p65.

It has been reported that T2DM dramatically affects health
outcomes, including articular cartilage and synovial function.
Thus, the mechanism of T2DM and OA needs further
investigation. Based on these concepts, we demonstrated that
T2DM activates systemic inflammatory mediators and the
high glucose condition increases sensitization of FLSs to IL-
1β-induced inflammatory stress via the ROS/NF-κB signaling
pathway. Our findings suggest that CAR could provide a safe
alternative to current pharmacological therapies for T2DM-
induced OA.

CONCLUSION

In conclusion, our findings demonstrate that T2DM can cause
knee OA, and an oral CAR treatment partially inhibited the
development of OA by reducing cartilage surface erosion, matrix
loss, and inflammation of the synovium. Moreover, FLSs from

rats under a high glucose condition were more reactive to pro-
inflammatory stress involving oxidative stress and the NF-κB
pathway than those under a normal glucose condition. CAR
ameliorated the changes in FLSs induced by IL-1β under the
high glucose condition. These results emphasize the potential
therapeutic value of oral CAR to treat T2DM-induced OA.
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