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Drug discovery is a very expensive and time-consuming endeavor. Fortunately, recent
omics technologies and Systems Biology approaches introduced interesting new
tools to achieve this task, facilitating the repurposing of already known drugs to
new therapeutic assignments using gene expression data and bioinformatics. The
inherent role of transcription factors in gene expression modulation makes them strong
candidates for master regulators of phenotypic transitions. However, transcription
factors expression itself usually does not reflect its activity changes due to post-
transcriptional modifications and other complications. In this aspect, the use of
high-throughput transcriptomic data may be employed to infer transcription factors-
targets interactions and assess their activity through co-expression networks, which
can be further used to search for drugs capable of reverting the gene expression profile
of pathological phenotypes employing the connectivity maps paradigm. Following this
idea, we argue that a module-oriented connectivity map approach using transcription
factors-centered networks would aid the query for new repositioning candidates.
Through a brief case study, we explored this idea in bipolar disorder, retrieving known
drugs used in the usual clinical scenario as well as new candidates with potential
therapeutic application in this disease. Indeed, the results of the case study indicate
just how promising our approach may be to drug repositioning.

Keywords: connectivity map, computational drug repositioning, master regulators, transcription factors, reverse
engineering, systems pharmacology

INTRODUCTION

Customary approaches to drug development focus on identification of a new treatment target,
followed by a search for a compound capable of modulating that target and lastly a validation
process. Additional targets for these drugs are not usually investigated, and other clinical
applications are not frequently explored. However, these extra elements represent an opportunity
for the systematic identification of new indications for existing therapeutics.

The practice of identifying additional therapeutic indications for existing drug compounds,
referred to as drug repositioning or repurposing, has some key benefits over traditional methods
of drug development (Ashburn and Thor, 2004; Chong and Sullivan, 2007; Jin and Wong, 2014).
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Indeed, the development process for a repositioned drug can be as
short as 3 years, mostly because several steps of the development
pipeline can be eliminated during repurposing efforts (Dudley
et al., 2011). Additionally, bioinformatics approaches developed
in the last 10 years represent powerful, fast and cheap
strategies for predicting and choosing new therapeutic indication
candidates for existing medications.

Computational approaches may exploit known links between
diseases and drugs, which can be used to generalize existing
treatments into new clinical contexts. Those diseases–drugs
connections can arise by characterizing drugs according to their
impact on molecular activity, framing them as perturbations to
the biological system. This can identify characteristic signatures
for that compound, which can be used to compare many
medications, resulting in several opportunities to redirect
therapeutic indications between “related” drugs (Readhead and
Dudley, 2013). Inserted in this computational approach is an
emerging perspective that the understanding of biology and
the identification of true drivers of pathologies will require the
construction of relevant networks (Schadt and Bjorkegren, 2012).

In this context, transcription factors act as drivers of
pathological conditions by modulating overall gene expression.
Hence, assembling networks based on co-expression of
transcription factors and their target genes may help narrowing
down important biological modules unpaired in different
diseases (Lopez-Kleine et al., 2013). These gene modules
can offer the opportunity for in silico screening of drug
compounds by simulating the extended effects a given drug
may impose on the biological system. In fact, we suggest that
gene co-expression networks centered on master regulator
transcription factors may be used to identify promising
candidates for drug repositioning through a module-oriented
adaptation of classical Connectivity Maps. Additionally, we
implement a case study of this proposal in the context of
bipolar disorder, a complex psychiatric disease, in order
to exemplify the potential of this approach for molecules
selection.

MASTER REGULATORS OF
TRANSCRIPTION

Since Susumu Ohno’s first applications of the term “master
regulator” or “master regulatory gene” to describe a gene that
occupies the very top of a regulatory hierarchy, re-definitions of
this concept have emerged to accommodate broader biological
facets. One such extended description positions master regulators
as participants in the specification of cellular lineages by
regulating multiple downstream genes either directly or through
a cascade of gene expression changes, ultimately retaining the
ability to re-specify the fate of cells (Chan and Kyba, 2013).

Changes in mRNA profiles are a key feature for phenotype
characterization from a cell type to another during development,
for example. The same rationale may be applied to physiological
to pathological transitions in biological systems. In this context,
gene expression changes are ultimately mediated and regulated
by the activity of transcription factors, which enable a relatively

small number of molecules to generate a large diversity of cell
types and phenotypic states (Yeh et al., 2013; Bhagwat and Vakoc,
2015; Reiter et al., 2017). Indeed, in several biological systems,
such as embryonic stem cells (Muller et al., 2008) or glioblastoma
(Carro et al., 2010; Rooj et al., 2016), it was observed that a
small number of transcription factors act as master regulators that
manage cellular outcome.

In this aspect, previous literature have observed that, given
differential gene expression profiles from two independent
studies, there was virtually no statistical significance in
the overlap between them and these signatures performed
poorly in classifying samples from the other study (Michiels
et al., 2005; Lim et al., 2009; Padi and Quackenbush, 2015).
This observation fits well with the idea of transcription
factors acting as master regulators, supporting an approach
of exploring the controllers of expression profiles, rather than
simply evaluating all differentially expressed genes between
two phenotypes of interest. However, the biological activity
of transcription factors may not be directly correlated with
their expression levels. For that reason, inference of activity
is often assessed through expression modifications of the
transcription factors’ target genes by reverse engineering
methods (Fletcher et al., 2013; Wong et al., 2013; Padi and
Quackenbush, 2015; Castro et al., 2016; Senbabaoglu et al.,
2016). These approaches can help uncover potentially relevant
regulatory units and biological consequences (Supplementary
Figure S1).

The application of such view in the search for biological
markers of phenotypic states has provided new insights in many
biomedical investigations, such as cancer (Fletcher et al., 2013;
Castro et al., 2016; Chen et al., 2016; Udyavar et al., 2017),
diabetes (Piao et al., 2012), and bipolar disorder (Pfaffenseller
et al., 2016).

SYSTEMS PHARMACOLOGY AND
COMPUTATIONAL DRUG
REPOSITIONING

The usual “one disease, one target, one drug” paradigm of drug
discovery clashes with the novel views of biology, failing to
yield effective medications for many complex conditions such as
cancer and neurodegenerative diseases (Yildirim et al., 2007). On
the other hand, a new archetype of drug research has emerged
in recent years, named Systems Pharmacology. This paradigm
offers an integrated system-level way to drug repurposing or new
drugs identification, and facilitates prediction of effectiveness and
security of compounds during all phases of development (van
der Graaf and Benson, 2011; Zhou et al., 2016). Additionally, it
exploits a feature of drugs that for many years has been labeled
undesirable: that they often affect more than one molecular
target. In fact, this promiscuity, known as polypharmacology,
seems to be intrinsic to several drugs’ therapeutic efficacy
(Hopkins, 2009).

For drug repositioning, the seminal article of Lamb and
collaborators introduced the concept of molecular connectivity
map (CMap) (Lamb et al., 2006). The great adherence of the
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FIGURE 1 | General master regulators connectivity map pipeline. (A) Expression data from high-throughput sources are submitted to reverse engineering inference
algorithms to predict targets of known transcription factors, constituting regulons. (B) Using these regulons, master regulators of pathological phenotypes may be
selected by using different strategies (such as GSEA) and data from case-control studies. (C) In the CMap original proposal, users query lists of genes whose
expression correlates with a biological state of interest and assess their similarity to a reference collection of gene-expression profiles from cultured human cells
treated with 1000s of bioactive small molecules. Here, we propose the use of master regulators’ targets expressions to inquire new drug prospects for repurposing.
(D) The rationale of this connectivity map follows the modulation of the inferred targets of the master regulators transcription factors by the drug candidates.

community toward this new idea can be attributed to its embrace
of the Systems Biology paradigm, which accepts that biological
elements have several interdependencies and are effectively
connected. In addition, this idea heralds that attempts to defeat
such notion by breaking the elements with a single targeted

intervention are probably ineffective. Hence, they proposed the
need to switch the entire state of the system to a more favorable
one, through modulation of many targets simultaneously (Lamb,
2007). Recently, the Library of Integrated Network-based Cellular
Signatures (LINCS) project, funded by the National Institutes
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FIGURE 2 | Bipolar disease master regulators connectivity map pipeline. (A) Human prefrontal cortex transcriptional network model was computed centered on
transcription factors from a large-scale microarray data obtained from Gene Expression Omnibus (GSE30272) using RTN package ARACNe algorithm with 200
permutations and permutation p-value < 1e-06 (remaining network reconstruction parameters were kept at default values). (B) Regulons of EGR3, ILF2, MADD,
TSC22D4, and YBX1 were tested using GSEA in three different datasets of case-control (GSE5388, GSE12649, and GSE92538). (C) Samples from these studies
were merged based on their common genes, batch corrected using the sva package and a sub-graph of the regulatory units with more than 100 genes was
created. (D) The inferred TF-target association network of the five selected regulons was extracted and the targets’ logFC direction were inputted as query for the
connectivity map using PharmacoGx package using GSEA method and 1000 permutations. (E) Following the connectivity map propose, the drugs obtained ideally
revert the expression profiles of the pathologically altered regulatory units toward the normal phenotype.

of Health, expanded the original databases of drug perturbation
and enabled the generation of approximately one million gene
expression profiles using the L1000 technology1 (Ma’ayan et al.,
2014; Vempati et al., 2014; Li et al., 2016).

1http://lincsproject.org/

Although the gene expression-based high-throughput
approach has the potential to transform biomedicine and
accelerate drug discovery (Iorio et al., 2009; Wen et al., 2015;
Gillet et al., 2016; Raghavan et al., 2016), the usual workflow
relies heavily on signatures of differentially expressed genes
and, as mentioned above, differential expression profiles
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TABLE 1 | Master regulators connectivity map results.

Drug Connectivity score p-Value ∗ATC level 1 ∗ATC level 3 CAS number

Chlorpromazine −0.270 0.00546 N = NERVOUS SYSTEM N05A = ANTIPSYCHOTICS 50-53-3

Levomepromazine −0.258 0.00790 N = NERVOUS SYSTEM N05A = ANTIPSYCHOTICS 60-99-1

Perphenazine −0.255 0.01623 N = NERVOUS SYSTEM N05A = ANTIPSYCHOTICS 58-39-9

Zuclopenthixol −0.228 0.03376 N = NERVOUS SYSTEM N05A = ANTIPSYCHOTICS 53772-83-1

Haloperidol −0.243 0.01810 N = NERVOUS SYSTEM N05A = ANTIPSYCHOTICS 52-86-8

Promazine −0.236 0.02966 N = NERVOUS SYSTEM N05A = ANTIPSYCHOTICS 58-40-2

Maprotiline −0.253 0.00566 N = NERVOUS SYSTEM N06A = ANTIDEPRESSANTS 10262-69-8

Desipramine −0.226 0.02894 N = NERVOUS SYSTEM N06A = ANTIDEPRESSANTS 50-47-5

Mianserin −0.232 0.01657 N = NERVOUS SYSTEM N06A = ANTIDEPRESSANTS 24219-97-4

Diflorasone −0.207 0.03009 D = DERMATOLOGICALS D07A = CORTICOSTEROIDS, PLAIN 2557-49-5

Meclofenamic acid −0.236 0.02462 M = MUSCULO-SKELETAL SYSTEM M01A = ANTIINFLAMMATORY AND
ANTIRHEUMATIC PRODUCTS,
NON-STEROIDS

644-62-2

Ketorolac −0.222 0.04700 M = MUSCULO-SKELETAL SYSTEM M01A = ANTIINFLAMMATORY AND
ANTIRHEUMATIC PRODUCTS,
NON-STEROIDS

74103-06-3

Trolox c −0.248 0.00341 53188-07-1

Acetylsalicylsalicylic acid −0.246 0.00472 530-75-6

Drugs with antimaniac effects. Drugs with antidepressive effects. Drugs with anti-inflammatory and/or antioxidant effects. ∗Anatomical therapeutic chemical (ATC)
classification.

may be prone to poor reproducibility. On the other hand,
network-based approaches provide an enriched biological
rationale by contextualizing pathologically altered molecular
nodes into a systemic functional scenario, possibly enhancing
the robustness of drug predictions (Zickenrott et al., 2016).
Furthermore, the community has recently been exploring
modularity, an important feature of systems network, in the
context of connectivity maps. In a network, modules represent
highly interconnected local regions (Barabasi et al., 2011), which
in the biological context can be easily understood when thinking
of pathways. In this aspect, Jadamba and Shin developed a
method that identifies disease-specific pathways, by integrating
multiple gene expression profiles, and employing them to
define pathway-drug networks using semisupervised learning.
They tested this proposed pathway-based drug repositioning
process in breast cancer and retrieved many known anticancer
drugs as well as several new repurposing candidates (Jadamba
and Shin, 2016). Chung and collaborators have also devised
an interesting approach using gene modules to query the
connectivity map, which they named Functional Module
Connectivity Map (FMCM). They tested their method against
the common practice of selecting drugs using a genomic
signature represented by a single set of individual genes
and observed that FMCM had higher robustness, accuracy,
specificity, and reproducibility in identifying known anti-cancer
agents (Chung et al., 2014).

The concept of transcription factors acting as master
regulators of the phenotypic specification overlaps the concept
of modularity when reverse engineering methods are used
to infer their potential targets. In this context, the inferred
targets form a modular unit centered on the transcription
factor, comprising a regulon or regulatory unit, under the

control of this molecule. Furthermore, if this is a deregulated
master regulator of the pathological state, the expression profile
of the targets is also altered favoring the disease. Therefore,
employing the connectivity maps idea of reversing this profile
is an interesting approach to search for potential therapeutic
drug repurposing. Thus, the goal of this approach aims for
treatments to reverse downstream effectors of disease phenotype
by modulating regulatory units of the transcription factors acting
as master regulators of the pathology (Figure 1).

MASTER REGULATORS CONNECTIVITY
MAP

As a brief example of application, we used a Master Regulators
Connectivity Map (MRCMap) framework to query potential
drugs for repositioning in bipolar disorder. For such, we
reproduced the procedures described in Pfaffenseller et al.
(2016). Summarily, a tissue-specific transcriptional network
model was computed from a large-scale human prefrontal cortex
microarray dataset (Colantuoni et al., 2011) using the RTN
package available from Bioconductor (Fletcher et al., 2013; Huber
et al., 2015; Castro et al., 2016) and afterward we queried the
five master regulators regulons previously reported as enriched
in bipolar disorder (EGR3, TSC22D4, ILF2, YBX1, and MADD)
in two new studies (GSE12649 and GSE92538) besides GSE5388,
using Gene Set Enrichment Analysis (GSEA). Considering that
usual psychiatric disorder transcriptomic profiles show low
to moderate single gene expression changes, this approach
enable information extraction and evaluation of data even
in such scenarios. In effect, we could observe a satisfactory
reproducibility of most regulons in GSE12649, though only
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two showed significant enrichment (adjusted p-value < 0.05)
in GSE92538 (Iwamoto et al., 2005; Ryan et al., 2006; Udyavar
et al., 2017). Afterward, we merged bipolar and control samples
from all three datasets and investigated the connectivity map of
these regulatory units. For that, the targets’ logFC direction of
all five regulons were assembled and inputted in the R package
PharmacoGx (Smirnov et al., 2016). Hence, we aimed for drug
candidates that would revert the expression of all five master
regulators candidates simultaneously (Figure 2). The full list of
drugs obtained from the analysis is showed in Supplementary
Table S1.

Recent meta-analyses of randomized, double-blind studies
demonstrated that antipsychotics were significantly more
effective than mood stabilizers in the treatment of acute mania,
as demonstrated by the superior efficacy profile of risperidone,
olanzapine, and haloperidol (Cipriani et al., 2011; Yildiz et al.,
2015). Typical antipsychotics block dopamine D2 receptors
presenting anti-manic and anti-psychotic effects in acute
mania (Tohen and Vieta, 2009), and atypical antipsychotics
are antagonists of dopamine D2 receptors as well, but also
block type-2 serotonin (5-HT2) receptors (Markowitz et al.,
1999). Although their mechanisms of action are still not
completely understood, these meta-analyses have supported the
recommendation to use dopamine antagonist/partial agonists
to treat mania (Goodwin et al., 2016). In this sense, it is not
surprising that the MRCMap returned several antipsychotics
with potential to modulate regulons enriched in bipolar
disorder, including two of the classical and still frequently
used typical antipsychotics chlorpromazine and haloperidol
(Tohen and Vieta, 2009; Cipriani et al., 2011). Our CMap
adaptation also found compounds with antidepressive
effects such as maprotiline, mianserin, and desipramine
(Table 1).

Despite the availability of several effective drugs for the
management of acute mania, most pharmacological drugs
currently used to treat psychiatric disorders act through
mechanisms discovered a long time ago, usually acting at
neurotransmitter receptors that may modulate several signal
transduction pathways and induce different responses (Geddes
and Miklowitz, 2013). Nevertheless, molecules targeting specific
signal transduction pathways, not necessarily related to known
traditional mechanisms of psychiatric drugs, may be interesting
therapeutic approaches. We have also identified some drugs
that act on pathways possibly involved in bipolar disorder
pathophysiology, such as inflammatory and oxidative stress
pathways (Berk et al., 2011). These include: non-steroidal
anti-inflammatory agents (meclofenamic acid, ketorolac and
acetylsalicylsalicylic acid, a degradation product of aspirin), a
steroid anti-inflammatory agent with anti-inflammatory and
immunosuppressive properties (diflorasone) and a molecule with
antioxidant profile (trolox C).

Immune disturbances have been strongly suggested
as an important component for the high prevalence of
medical comorbidities in bipolar disorder and for its
pathophysiology (Leboyer et al., 2012; Rosenblat and
McIntyre, 2015). In fact, several reports in literature suggest
that bipolar disorder is associated with a chronic low-grade

TABLE 2 | Advantages and disadvantages of TF-centered CMap versus standard
differentially expressed gene signature CMap.

Advantages Disadvantages

Enables sophisticated modeling
strategies through reconstruction of
gene regulatory networks.

Requires more sophisticated
bioinformatics analyses prior to CMap
phase.

Enables the incorporation of network
biology complexity to drug discovery.

Requires extended computation
pipelines and expertise.

By incorporating transcription factors
rationale as master regulators of groups
of genes, enables extended biologically
relevant knowledge to accompany the
drug selection process.

Requires careful parameterization
during regulatory network
reconstruction phase.

Enables extensive integration of
external data from many other types
and sources (e.g., protein-binding
microarray, proteomics, and
epigenetics) to improve selection
robustness and validity.

inflammation (Brietzke et al., 2009; Modabbernia et al., 2013;
Munkholm et al., 2013; Barbosa et al., 2014). Furthermore,
studies have shown antidepressant effects of adjunctive agents
with anti-inflammatory properties in bipolar disorder (Keck
et al., 2006; Berk et al., 2008; Nery et al., 2008; Savitz et al.,
2012). Current pharmacologic therapy for bipolar disorder
involves low tolerability and high rates of treatment resistance
with recurrent depressive episodes (Gitlin, 2006). Thus,
novel and interesting targets for a better management of
bipolar disorder may involve molecules that act on the
inflammatory pathways, such as those identified in the MRCMap
analysis.

CONCLUDING REMARKS

Prompted by the prohibitive costs and time consuming pitfalls
of traditional approaches, recent years have unraveled new
ways to tackle the drug discovery and development issue,
centered on information integration and analysis, and leading
to computational repositioning strategies. This novel paradigm
shows great multidisciplinary characteristics, incorporating
several current hot topics on biology, statistics, applied
mathematics, and informatics. In this context, data generated
by high-throughput technologies and computational methods
to integrate and analyze them have played an important role.
Moreover, the current systems view of biology promises more
holistic, efficient, and rational avenues of research.

Following this idea, we propose the use of transcription factors
acting as master regulators of pathological states as proxies
to query new drugs for repurposing. The regulatory units of
these master regulators, inferred through reverse engineering,
may be explored with current connectivity maps approaches as
a biologically functional groups of genes, which pathological
expressions we would like to revert. Of additional importance is
the possibility to integrate several layers of biological complexity
(Padi and Quackenbush, 2015) to improve and refine the
primary workflow showed in Figure 1. Since the outcome
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relies on the reconstruction of regulatory TF-target associations,
incorporating strategies to enhance the resolution of these
interactions using protein-binding microarray (Wong et al.,
2013) and/or proteomics are a very interesting prospect to
develop this type of modeling. Also, even though our case
study retrieved several drugs currently used in BD with only
the expression data and the regulatory network reconstruction,
we believe the pipeline proposed could be further improved
by adding different network analyses. Table 2 qualifies a few
advantages and disadvantages of adopting such strategy.

Using bipolar disorder as a short case study, we have
retrieved several drugs with potential to revert regulatory units
previously proposed as master regulators of this disease, among
which were antipsychotics, antidepressive, anti-inflammatory,
and anti-oxidant agents. Some of these molecules are current
clinical therapies for bipolar disorder (e.g., haloperidol and
chlorpromazine), while other present new opportunities of
investigation. It is important to note that standard differentially
expressed CMap of the top 500 genes in the merged BD
dataset queried using build22 did not retrieve drugs such as
haloperidol and chlorpromazine (Supplementary Table S2).
However, more studies are required to further consolidate
the proposed framework and fully assess the validity of the
new repositioning candidates retrieved in experimental/clinical
scenarios.

Finally, although the regulatory units of master regulators
present an interesting new approach to evaluate repurposing
of drugs using connectivity maps, some caution remarks are
required when employing this strategy. Since reverse engineering
of regulatory networks is a new and growing field of systems
biology research, the algorithms used to infer of the master
regulators’ regulatory units during the initial stages of the process
may affect the inputs to the connectivity map stage. Thus, careful
inspection of the computational parameters and procedures are
important to assure reproducibility. Furthermore, CMap also
comes with some pitfalls, such as limited drug perturbation
data, a limited drug coverage and dosage-dependent conditions,
although LINCS project have helped mitigate these factors.
Also, besides the uncertainty of employing cell lines expression
patterns, usually there is no account for dynamics associated
with the disease or the drug under investigation, multi-organ
effects, and genetic variations (Musa et al., 2018). Nevertheless,
search for repositioning drugs using functional modules centered
on transcription factors promises an exciting, rational and
biologically relevant strategy, especially as the reverse engineering

2 https://portals.broadinstitute.org/cmap/

methods advance toward novel, more reliable and powerful
computational and statistical stages.
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FIGURE S1 | TF-Centered Reverse Engineered Network. Expression data
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TABLE S1 | Master regulators connectivity map results.
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