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Periplaneta americana, a magic medicinal insect being present for over 300 million years,
exhibits desirable therapeutic outcome for gastrointestinal ulcer treatment. Nowadays,
P. americana ethanol extract (PAE) has been shown to ameliorate ulcerative colitis (UC)
by either single-use or in combination with other therapeutic agents in clinics. However,
its underlying mechanisms are still seldom known. Herein, we investigated the anti-
UC activity of PAE by alleviating intestinal inflammation and regulating the disturbed
gut microbiota structure in dextran sulfate sodium (DSS)-induced UC rats. Based
on multiple constitute analyses by HPLC for quality control, PAE was administrated
to DSS-induced UC rats by oral gavage for 2 weeks. The anti-UC effect of PAE
was evaluated by inflammatory cytokine production, immunohistochemical staining,
and gut microbiota analysis via 16S rRNA sequencing. As a result, PAE remarkably
attenuated DSS-induced UC in rats. The colonic inflammatory responses manifested as
decreased colonic atrophy, intestinal histopathology scores and inflammatory cytokines.
In addition, PAE improved the intestinal barrier function via activating Keap1/Nrf-2
pathway and promoting the expressions of tight junction proteins. It was observed
that the UC rats showed symptoms of gut microbial disturbance, i.e., the increased
Firmicutes/Bacteroidetes ratio and the significantly decreased probiotics such as
Lactobacillus, Roseburia, and Pectobacterium, which were negatively correlated with
these detected pro-inflammatory cytokines (secreted by immune CD4+ T cells, and
including IFN-γ, TNF-α, IL-6, IL-8, IL-17, IL-1β). Besides, PAE administration regulated
the abnormal intestinal microbial composition and made it similar to that in normal rats.
Therefore, PAE could attenuate the DSS-induced UC in rats, by means of ameliorating
intestinal inflammation, improving intestinal barrier function, and regulating the disturbed
gut microbiota, especially improving beneficial intestinal flora growth, modulating the
flora structure, and restoring the intestinal-immune system.
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INTRODUCTION

Ulcerative colitis (UC) is a representative chronic inflammatory
bowel disease (IBD) with high morbidity worldwide,
characterized by recurrent remission and relapse (Danese
and Fiocchi, 2011). It is reported that the incidence of UC
ranges from 35 to 100 per 100,000 people. Moreover, a global
epidemiology study has reported that compared to United States
and United Kingdom, Southern Europe and Asia have a
more rapid growth rate of UC incidence (Hanauer, 2006;
Molodecky et al., 2012). Typical symptoms include frequent
bowel movement, bloody diarrhea, abdominal pain, urgency,
tenesmus, and some common complications such as proctitis,
rectal abscess, enterobrosis, and colon cancer (Feuerstein and
Cheifetz, 2014). However, despite the increased global attention,
the etiology and pathogenesis of UC remain unclear, making
it one of the most challenging gastrointestinal diseases. Until
now, 5-aminosalicylic acids and corticosteroids, which could
regulate the imbalance between pro-inflammatory cytokines
and anti-inflammatory cytokines, have been known as the
important agents for UC treatment (Huang et al., 2017b).
However, some potential side-effects of these drugs, such as
anti-antibody reaction, allergy, infection and mutagenesis, could
be brought by long-term use and therefore compromise their
clinical applications (Renna et al., 2014; Gu et al., 2017). Thus, to
investigate the effective anti-UC drugs with higher drug safety is
of great significance and urgency.

Complementary and alternative medicines show the potentials
of being effective, low-cost treatment approaches with high
safety. Some plant-derived compounds such as artemisinin, taxol,
camptothecin are the representative examples of natural’s gifts
to medicine at present. Epidemiological surveys suggest that, the
majority of patients with IBD receive traditional medicines (Kong
et al., 2005; Guo et al., 2017). Some natural products such as
berberine (Habtemariam, 2016), sophocarpidine (Wang et al.,
2012), indigo naturalis (Wang Y. et al., 2017), andrographolide
(Liu et al., 2014), and curcumin (Sreedhar et al., 2016) also exhibit
efficacy in treating UC. In addition, the medicinal insects, whose
species are more than twice as many as medical plants, have
also received extensive research interests. Periplaneta americana,
more widely known as American cockroach, was first recorded in
an ancient Chinese pharmacopeia “Shen Nong Ben Cao Jing.” As
one of the largest and oldest insect groups being present for over
300 million years, this miraculous insect has also been employed
as a traditional Chinese medicine for over 2,000 years, for its
functions of activating blood circulation, dissipating blood stasis,
promoting digestion, and inducing diuresis. Modern studies have
revealed its various bioactivities (Srivastava et al., 2011; Zhang
et al., 2013; Huang et al., 2017a; Shen et al., 2017; Zhao et al., 2017)
such as gastric protection, wound healing, antitumor activity,
immune enhancement, liver protection, and antiviral effect.
P. americana has been developed into clinical drugs under the
approval of China Food and Drug Administration (CFDA), such
as “Kangfuxin oral liquid (Z51021834),” “Xinmainong injection
(Z20060443),” and “Ganlong capsule (Z20050113).” Particularly,
Kangfuxin oral liquid, which is prepared by the ethanol extract
of P. americana, has been widely demonstrated for its wound

healing effect in peptic ulcer treatment (Chen et al., 2016; Shen
et al., 2017). In view of its significant role in gastric protection,
Li et al. (2016) has been demonstrated for the therapeutic effects
of P. americana in UC rats induced by dinitrochlorobenzene
and acetic acid, which are attributed to the anti-inflammation
function and fibroblasts viability. Previous studies (He et al.,
2012; Zhang H. C. et al., 2017) have also indicated that, the anti-
inflammation activity in UC model are related to the regulation
of inflammation cytokines including iNOS, MPO, IL-4, IL-10,
EGF, MUC2, and IL-6. Moreover, the mucositis amelioration
of Kangfuxin liquid was also observed in Randomized Phase
III Clinical Study (Luo et al., 2016). However, to date, the
chemical constitutes and the underlying anti-UC mechanisms of
P. americana have not been well described.

Several signal transduction cascades and transcription factors
are involved in the pathological inflammatory process, such as
NF-κB, MAPK, JAK-STAT, and Keap1/Nrf2/ARE (Ahmed et al.,
2017) signaling pathways. At present, an increasing number of
researches (Yang et al., 2016; Ahmed et al., 2017) have begun to
focus on the role of Nrf2/Keap1 pathway in the inflammation-
associated pathogenesis, as well as the suppression of pro-
inflammatory signaling pathways. Besides, previous studies have
demonstrated the decreased expression of Nrf2 in dextran sulfate
sodium (DSS)-induced UC model and the important role of Nrf2
signaling pathway in UC treatment by some chemo-preventive
agents (Dae Park et al., 2017; Seo et al., 2017; Liu et al., 2018; Tan
and Zheng, 2018).

Up to now, although the development of IBD has been
confirmed to be related to various factors including immune
dysregulation, genetic disorder and barrier dysfunction, the
pathogenesis of IBD still remains unclear. Gut microflora has
been recorded as the highest cell density in any ecosystem,
with a profound and crucial influence on human health. And
the close relationship between gut microflora dysfunction and
IBD has been widely acknowledged (Ohkusa and Koido, 2015).
According to relevant reports, fecal bacteria from healthy donors
are expected to have therapeutic effects on patients with IBD
(Anderson et al., 2012). In particular, gut microflora is crucial
for the protection of intestinal mucosa, and microbiota dysbiosis
could lead to mucosal injury. Studies (Tao et al., 2017; Wang
K. et al., 2017; Wang Y. et al., 2017) have indicated that the
coexistence between the host and gut microbiota is beneficial
for modulating the intestinal mucosal immune system. Gut
microbiota is considered to be relevant to intestinal local
inflammation and mucosal immune system. It is well known that
antimicrobial drugs could generally improve IBD by modulating
the host microbiota (McIlroy et al., 2017). The anti-inflammation
activity of P. americana on gastric protection has been reported
in previous studies. However, whether the anti-UC effect of
P. americana is involved in its gut microbiota regulation activity
still remains unclear. In this study, we evaluated the anti-UC
activity of ethanol extracts of P. americana (PAE), which were
provided by GoodDoctor Pharmaceutical Co., Ltd., and widely
used as the preparation materials for Kangfuxin liquid, in a
dextran sodium sulfate-induced UC rat model that mimicked
many histopathological and immune characteristics of human
intestinal inflammation. Meanwhile, the PAEs were characterized
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by means of high performance liquid chromatography (HPLC)
quantification for quality control. Eventually, the anti-UC effects
and mechanisms of the PAEs related to anti-inflammation,
intestinal barrier improvement, and gut microbiota regulation
were evaluated.

MATERIALS AND METHODS

Chemicals and Materials
P. americana ethanol extracts (PAE) were extracted from
P. americana provided by Good Agricultural Practice (GAP)
breeding base of GoodDoctor Pharmaceutical Co., Ltd. (Sichuan,
China), while P. americana water extracts were obtained by water
extraction following the steps below: after being degreased with
petroleum ether, P. americana crude powders (100 g), obtained
from the Good Agricultural Practice (GAP) breeding base of
GoodDoctor Pharmaceutical Co., Ltd. (Sichuan, China), was
soaked for 2 h, extracted with water for 10 times, boiled for
30 min, and finally collected by freeze-drying after filtration.
Both ethanol and water extracts of P. americana were dissolved
in DMSO for cell experiments and then suspended in 0.5%
CMC-Na solution for animal test, respectively. HPLC-grade
acetonitrile and water used in this study were purchased from
Fisher Scientific UK.

HPLC Analysis
Chromatographic analysis was performed on an Agilent 1260
series HPLC system equipped with a diode array detector (DAD),
using a Zorbax XDB C18 (4.6 mm × 250 mm, 5 µm) at
a column temperature of 25◦C. The flow rate and injection
volume were 1 ml/min and 10 µl, respectively. The methanol–
water (2.5:97.5) system was employed as the mobile phase for
quantitative determination of multiple standard compounds, i.e.,
guanosine, uridine, inoside, cytidine, hypoxanthine, thymine,
adenine, cytosine, and uracil. All these standard compounds were
dissolved together by 3% methanol to form a mixed standard
solution. The optimized detection wavelength was 254 nm.

Anti-inflammatory Effect of PAE in vitro
RAW 264.7 macrophage cell line, obtained from American Type
Culture Collection (ATCC; Manassas, VA, United States), was
cultured in RPMI-1640 medium supplemented with 10% FBS,
100 U/ml penicillin and 100 µg/ml streptomycin. All cells were
incubated in a humidified 5% CO2 incubator at 37◦C, and
plated in 96-well plates at densities of 1 × 104 cells/well. The
concentrations of non-toxic PAE in RAW 264.7 were evaluated
by MTT assay described in supplementary materials in the first
place, and the effects of PAE on the pro-inflammatory cytokine
production in RAW 264.7 cells were then explored. After 24 h
adherence, the cells were pre-incubated in a FBS-free medium
containing a series of amounts of PAE for 2 h, and then treated
with 1 µg/ml of LPS stimulation for 12 h. After then, cell culture
supernatants were collected and assayed for NO production by
reacting with Griess reagent (Hu et al., 2017) and the amounts
of inflammatory cytokines, including TNF-α, IL-1β, PGE2, were
calculated by an enzyme-linked immunosorbent assay (ELISA)

kit for rats (Ge et al., 2017) (R&D Systems, Inc., Minneapolis,
MN, United States). Meanwhile, the cell viability was assessed
by incubating with MTT regent for 4 h, and the absorbance of
DMSO solution containing formazan crystal was measured at
570 nm (Zhang J. et al., 2017).

Anti-UC Effects in DSS-Induced UC Rats
In view of the high reproducibility in experimental
implementation and the high similarity with the features of
clinical UC, the DSS-induced UC model is widely recognized
and frequently used to evaluate the anti-UC effects involved
in the anti-inflammatory approaches, in which cases, repeated
administration of DSS could result in the disruption of
the colonic mucosal architecture and long-term chronic
inflammation. Herein, the UC rat model was established by oral
administration of 5% DSS (w/v) dissolved in drinking water for
seven consecutive days. The UC rats were randomly divided into
four groups (n = 8) with various treatments for 14 consecutive
days, i.e., the model group, the high-dose PAE group, the
low-dose PAE group, and the P. americana water extract group
(W-E). More specifically, rats in model group were given only
saline by gavage administration once per day. UC rats in high-
and low-dose PAE groups were administrated with 200 mg/kg
and 100 mg/kg of PAE, respectively. Since water decoction is
a traditional preparation approach of Chinese medicine, W-Es
(200 mg/kg) of P. americana herein were obtained and evaluated
to determine whether they could alleviate UC-model rats and
serve as the counterpart of PAE. During the administration of
various agents, 3% DSS (w/v) was given to rats to avoid self-cure.
Apart from these UC rats, rats without DSS treatment were only
given saline in the control group.

The weight loss, stool consistency and occult/gross bleeding of
all rats were recorded every 3 days throughout the experiment.
Disease activity index (DAI) scores were calculated based on
the previously described evaluation standard (Cho et al., 2011),
to assess the extent of UC. After 14 days of administration,
all rats were sacrificed by isoflurane inhalation, and their colon
samples were collected and exampled. Part of the colon segments
were fixed by 4% paraformaldehyde, embedded in paraffin
and then cut into 4 µm thick sections. These sections were
stained with hematoxylin and eosin (HE) and alcian blue,
respectively, in accordance with the standard procedures for
histopathological analysis. Additionally, the remaining colon
segments were weighted and homogenized with 0.1 M phosphate
buffer (pH 7.4). The homogenate suspension was collected
by centrifugation at 5,000 rpm for 15 min. The amounts of
inflammation-associated cytokines including IFN-γ, IL-17, IL-
8, IL-6, IL-1β, and TNF-α were determined using ELISA kits
according to the manufacturers’ instructions.

Intestinal Barrier Function Activities
The intestinal barrier functions were evaluated via Keap1 and
Nrf-2 mRNA analysis by quantitative reverse transcription PCR
(qRT-PCR) and the expressions of tight junction proteins (ZO-
1, occludin, and claudin-1) were via Western blot analysis. Total
RNA of colon tissue was extracted by TRIzol reagents according
to the manufacturer’s instructions (Invitrogen, United States).
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The PCR reaction mixture contained 2 × qPCR mix, 7.5 µM
PCR primer, 2.5 µl reverse transcription product and 8.0 µl
ddH2O. The RT quantitative reaction was performed as follows:
precycling at 95◦C for 10 min, then 40 cycles of denaturation
at 95◦C for 15 s and annealing at 60◦C for 60 s. Primers for
Keap1, Nrf2, and GAPDH were listed in Table 1. Fluorescence
was measured at the end of each annealing step, and the melting
curves were monitored to identify the specificity of the PCR
products. The 2−11Ct method was used to determine the mRNA
expression levels of Keap1 and Nrf-2 relative to the control gene
GAPDH.

The colon segments were homogenized with RIPA
buffer containing protease inhibitor (1:100). After protein
concentration was determined by BCR protein assay kit, Western
blot assay was performed as described (Kang et al., 2017). The
primary antibodies against ZO-1, occludin and claudin-1 were
then incubated overnight at 4◦C. GAPDH antibody was used as
an internal control to ascertain the equal loading of proteins. The
obtained chemiluminescence bands were analyzed with ImageJ
software.

Furthermore, intestinal epithelial permeability in vivo was
determined via FITC probe based on the previously described
method (Moussaoui et al., 2014). Briefly, UC model rats were
employed and administrated with saline, high-dose PAE, low-
dose PAE, and W-E for 14 consecutive days. After then, these UC
rats and normal rats were fasted overnight and given fluorescein
isothiocyanate (FITC)-dextran solution (4 kDa, 600 mg/kg) by
gavage. Their blood samples were collected from retinal veins
4 h after administration and then centrifuged at 3,000 × g and
4◦C for 10 min. Serum levels of FITC were measured at 480 and
520 nm using a microplate reader.

Effects on Gut Microbiota
In light of the anti-UC effects of high-dose PAE, whether PAE
could regulate gut microbiota was investigated. Primarily, total
genomic DNAs from the feces of rats in various groups were
extracted using DNeasy PowerSoil Kit (QIAGEN) according
to the descriptions. DNA concentration and quality were
checked using a NanoDrop Spectrophotometer. Bacterial
16S rRNA gene sequences (V4 region) were amplified by
PCR instrument (Applied Biosystems R© Gene Amp R© PCR
System 9700) using primer 5′→3′ (Caporaso et al., 2011):
515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′). The amplification
procedures were conducted at 94◦C for 1 min in the first place,
and then followed by 30 cycles (denaturation at 94◦C for 20 s,

TABLE 1 | Primers for real-time quantitative PCR.

Gene Primer sequences Product size (bp)

Keap1-S 5′-TATGAGCCAGAGCGGGACGA-3′ 172

Keap1-A 5′-TCATCCGCCACTCATTCCTCT-3′

Nrf-2-S 5′-CTGGCTGATACTACCGCTGTTC-3′ 208

Nrf-2-A 5′-AGGTGGGATTTGAGTCTAAGGAG-3′

GAPDH-S 5′-AGGAGCGAGACCCCACTAACA-3′ 247

GAPDH-A 5′-AGGGGGGCTAAGCAGTTGGT-3′

annealing at 54◦C for 30 s, and elongation at 72◦C for 30 s) and a
final extension at 72◦C for 5 min. PCR reactions were performed
in triplicate: 25 µl mixture containing 1x PCR buffer, 1.5 mM
MgCl2, each deoxynucleoside triphosphate at 0.4 µM, each
primer at 1.0 µM, 0.5 U of KOD-Plus-Neo (TOYOBO) and 10 ng
template DNA. Amplicons were extracted from 2% agarose gels,
purified with the OMEGA Gel Extraction Kit (Omega Bio-Tek,
United States) and then quantified with Qubit @ 2.0 Fluorometer
(Thermo Fisher Scientific, United States).

MiSeq Illumina sequencing was further processed on the
sequencing reaction (Illumina Inc., San Diego, CA, United States)
for paired-end reads to establish a DNA library using the TruSeq
DNA PCR-Free Sample Prep Kit (FC-121-3001/3003) as per
the standard protocols. The paired-end reads were merged by
FLASH and then assigned to each sample according to the unique
barcodes, so as to get rid of the low-quality tags (length < 200 bp,
more than two ambiguous base ‘N,’ or the average base quality
score < 30). High-quality tags were clustered into operational
taxonomic units (OTUs) using UPARSE (Edgar, 2013) algorithm
in QIIME software based on a 97% sequence similarity, and
these OTUs were further subjected to analysis using database of
Greengenes by PyNAST algorithm. Alpha and Beta diversities
and principal coordinate analysis (PCoA) were analyzed by
QIIME, Mothur, and R software. LEfSe analysis were done using
Python LEfSe package (Segata et al., 2011).

Statistical Analysis
The experimental data were analyzed by GraphPad Prism 6.0
software and presented as mean ± SD. The values of various
groups were evaluated by one-way ANOVA and difference test.
P < 0.05, P < 0.01, and P < 0.001, calculated using SPSS software
version 17.0., were considered statistically significant.

RESULTS

HPLC Quantitative Analysis
Given the complex composition of herbal extracts, the
quantitative analysis was of great importance for the quality
control of PAE herein. The amounts of nine physiological
small molecules, i.e., guanosine, uridine, inosine, cytidine,
hypoxanthine, thymine, adenine, cytosine, and uracil, in PAE
were determined by HPLC. These nucleotides, nucleosides
and nucleobases were deemed to be the potential active
components in some natural products such as Cordyceps
sinensis (Yuan et al., 2008; Yang et al., 2010) and Sipunculus
nudus (Ge et al., 2016). As shown in Figure 1A, these nine
compounds in mixed standard substances were analyzed,
with a satisfied degree of separation and methodological
investigation being obtained. The standard curves and linear
ranges of these compounds were as follows: cytimidine:
y = 132.64x-3.1286 (r2 = 0.9999, 0.311∼6.22 mg·ml−1), uracil:
y = 216.56x + 0.3047 (r2 = 1, 0.432∼8.64 mg·ml−1), cytidine:
y = 79.1x-0.1193 (r2 = 1, 0.354∼7.08 mg·ml−1), hypoxanthine:
y = 153.25x-18.512 (r2 = 0.9996, 0.392∼7.84 mg·ml−1), uridine:
y = 22.569x-1.056 (r2 = 1, 0.389∼7.78 mg·ml−1), thymine:
y = 28.056x + 2.0681 (r2 = 0.9990, 0.272∼5.44 mg·ml−1),
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FIGURE 1 | HPLC chromatograms of mixed standard substances (A) and PAE samples (B). Peaks 1∼9 are derived from cytimidine, uracil, cytidine, hypoxanthine,
uridine, thymine, adenine, inosine, and guanosine, respectively.

adenine: y = 4.1931x + 3.7809 (r2 = 0.9997,
0.363∼7.26 mg·ml−1), inosine: y = 100.13x+ 40.147 (r2 = 0.9993,
0.302∼6.04 mg·ml−1), guanosine: y = 15.581x + 12.32
(r2 = 0.9992, 0.304∼6.08 mg·ml−1). Figure 1B provides
clear evidence that the concentrations of these nine compounds
in PAE sample could be determined. Accordingly, based on
the external standard method, the amounts of these nine
compounds, i.e., cytimidine, uracil, cytidine, hypoxanthine,
uridine, thymine, adenine, inosine, and guanosine, in PAE were
calculated and the results were 6.165, 0.724, 1.375, 2.466, 1.422,
0.451, 2.885, 2.373, and 1.737 mg/g, respectively. This result

indicated that the multicomponent quantification method could
provide a definite quality control approach for PAE.

The Expressions of Pro-inflammatory
Factors Were Down-Regulated in
LPS-Stimulated RAW 264.7 Cells
Macrophages are the major source of pro-inflammatory
cytokines. In order to investigate the inhibition effects of PAE
on inflammatory factor expression, the amounts of NO, TNF-α,
IL-Iβ, and PGE2 in LPS-stimulated RAW 264.7 cells were

Frontiers in Pharmacology | www.frontiersin.org 5 August 2018 | Volume 9 | Article 944

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-00944 August 21, 2018 Time: 16:38 # 6

Ma et al. Anti-UC Mechanisms of Periplaneta americana

FIGURE 2 | Effects of PAE on the production of NO (A), TNF-α (B), IL-Iβ (C), and PGE2 (D) in LPS-stimulated RAW 264.7 macrophages. RAW 264.7 cells were
pre-incubated in FBS-free medium containing a series of amounts of PAE for 2 h, and then co-treated with 1 µg/ml of LPS stimulation for 12 h. ∗P < 0.05 blank
control group or PAE vs. LPS-stimulated group, NP < 0.05 LPS + PAE groups vs. LPS-stimulated group (n = 6 per group).

determined by Griess reaction and ELISA assay. The potential
cytotoxicity of PAE on RAW 264.7 cells was first evaluated by
MTT assay, indicating that PAE (0.25, 0.5, and 1 µg/ml) was not
significantly cytotoxic after 24 h incubation (Supplementary
Figure S1). As is well known, the NO amount in RAW 284.7
cell culture medium could be dramatically increased by the
simulation of LPS. Whether PAE could attenuate LPS-induced
NO production in RAW 264.7 macrophages was then examined.
The significant reduction in NO production induced by the
LPS-simulated macrophages was due to the addition of PAE in
a concentration-dependent manner (Figure 2A). Subsequently,
the changes of inflammatory factor production were evaluated
based on its non-toxicity against macrophage cells. As shown in
Figures 2B–D, compared with the blank control or PAE group,
LPS induced a more significant increase in the production of
pro-inflammatory cytokines (by 2.34-fold for TNF-α, 4.37-fold
for IL-Iβ, and 2.44-fold for PGE2). However, the pretreatment of
PAE with various concentrations could significantly inhibit the
LPS-induced production. These results indicated that PAE could
remarkably alleviate the inflammatory reaction by inhibiting the
production of nitric oxide and pro-inflammatory cytokines.

PAE Attenuated DSS-Induced UC in Rats
Preliminary experiments have shown that continuous
administration of 5% DSS in drinking water for more than
five consecutive days could induce various symptoms, such
as diarrhea and even hematochezia, which exhibit similarities

with human UC. However, if the 5% DSS is replaced with fresh
water, these symptoms in rats would gradually disappear after
7 days. Therefore, to avoid the self-cure of UC rats after the
termination of 5% DSS administration, 3% DSS was used to keep
the pathological condition during the administration of PAE
agents herein (Figure 3A). The body weight changes of the rats
throughout the experiment clearly reflected their physiological
status. Figure 3B shows a significant body weight loss of
DSS-treated UC rats at day 21, in comparison with the control
group. However, rats in PAE-H group exhibited a less distinct
weight loss compared with the model group. In view of these
representative clinical features, the DAI was used to evaluate the
therapeutic activity of PAE. As shown in Figure 3C, DAI scores of
rats treated with DSS were significantly increased in comparison
with those of the control group. However, DAI scores of PAE-H
group remarkably dropped, indicating the improvement effect
of high-dose PAE on UC-related pathological states. In addition
to the severe synechia, hyperemia, edema, the colon length of
rats treated with DSS was apparently shortened. Figures 3D,E
show the colon shortening of rats treated with DSS. Given all
that, high-dose PAE could significantly ameliorate the colon
shortening.

PAE Ameliorated the Histopathological
Changes in Colon Tissues
Based on the above-mentioned findings, DSS could induce severe
inflammation of colon tissues. The histopathological screening
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FIGURE 3 | Effects of PAE treatment on the of DSS-induced UC rats after 14 days of continuous gavage. (A) The medication regimen. (B) Rats’ body weight
changes from day 1 to day 21 throughout the experiment. (C) DAI scores of rats in various groups. (D) Representative photographs of rats’ colons in various groups.
(E) Colon length of rats in various groups. ∗P < 0.05 untreated control group vs. DSS-induced UC model group, NP < 0.05 model group vs. PAE-H group (n = 6 per
group).

of rats’ colon sections by HE-staining revealed no necrosis or
inflammation in the control group (Figures 4A,B). Rats in
the DSS model group showed colon tissue injuries, including
crypt distortion, goblet cell loss, severe epithelia damage, and
mucosal inflammatory cell infiltration (Chen et al., 2015).
However, the administration of high-dose PAE could significantly
protect colon crypt structure and reduce histologic inflammation.
Moreover, it was hypothesized that PAE could protect the
intestinal mucosa from damages by reinforcing its self-repair.
To further demonstrate this hypothesis, alcian blue staining was
conducted to investigate the intestinal mucosa changes after PAE
administration during the DSS treatment. Figures 4C,D show
that DSS could remarkably decrease the expressions of mucins,
which were involved in the repair of colon mucosa, compared
with the control group. Nevertheless, both high- and low-dose
PAEs could increase the mucin expressions, showing much more
positive blue cells in both PAE-H and PAE-L groups. These
results suggested that PAE could inhibit colonic inflammation
and promote the restoration of intestinal mucosa.

PAE Reduced the Expressions of
Inflammatory Cytokines in the
Colorectum Tissues of UC Rats
In the intestinal mucosal immune system, neutrophils and
macrophages are responsible for inflammatory cytokine
secretion, which could disrupt epithelial integrity and cause
colon injury (Grisham and Yamada, 1992). The production
of pro-inflammatory cytokines was significantly increased in
DSS-induced model group compared with the control group.
However, both PAE and water extract reduced the abnormally
increased amounts of pro-inflammatory cytokines (Figure 5).
It has been widely demonstrated that the increased amounts
of TNF-α, IL-6, and IL-1β were related with the inflamed
mucosa and superficial ulcers in UC rats (Pavlick et al., 2002).
Additionally, IFN-γ, IL-8, and IL-17 also served as the pro-
inflammatory cytokines to evaluate the UC status (Qu et al.,
2017). As a result, high-dose PAE significantly diminished these
raised pro-inflammatory cytokines, with the most potent efficacy.
These results suggested that PAE could regulate the expressions
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FIGURE 4 | Effects of PAE on DSS-induced UC rats by HE staining and alcian blue staining of colorectum sections (A and C with magnification ×100, B and D with
magnification ×200).

of pro-inflammatory cytokines, providing an evidence for the
remission of epithelial cell necrosis, edema, and neutrophil
infiltration.

PAE Improved the Intestinal Mucosal
Barrier Function by Keap1/Nrf-2 mRNA
and the Expressions of Tight Junction
Proteins
Substantial evidence indicates that UC is associated with
oxidative stress, which may play a significant role in its etiologies
(Patlevic et al., 2016). It has been substantially demonstrated
that nuclear factor (erythroid derived 2)-like 2 (Nrf2), a redox-
sensitive transcription factor, as well as its tight interact with
Kelch-like ECH-associated protein 1 (Keap1) could promote
the antioxidant activity and provide therapeutic benefits in
inflammation and associated disorders. Keap1/Nrf-2 signaling
pathway plays a key role in the protection of intestinal cells
against oxidative stress (Yang N. et al., 2017). Therefore,
the mRNA expressions of Keap1 (Figure 6A) and Nrf-2
(Figure 6B) were measured by real-time quantitative PCR. As
shown in the previous figures, the Keap1 and Nrf-2 mRNA
expressions of rats in the UC model group were down-regulated,
compared with normal rats. However, the administration of
high-dose PAE significantly increased the mRNA expressions
of both Keap1 and Nrf-2, indicating that PAE could activate
Keap1/Nrf-2 signaling pathway to resist the intestinal mucosal
injury.

Furthermore, the protein expressions of ZO-1, occludin and
claudin-1 were measured by Western blot analysis to evaluate
the tight junction integrity of the colon (Zhang L. C. et al., 2017).

As shown in Figures 6C,D,E, the amounts of all these proteins
were decreased in UC rats compared with the normal rats in
the control group, indicating that the tight junction integrity
was compromised. However, PAE promoted the expressions
of these proteins remarkably, indicating its improvement on
the tight junction structure and promotion on the intestinal
mucosal barrier function. Comparatively speaking, the water
extract could not up-regulate the mRNA expressions of
Keap1/Nrf-2 and tight junction-related proteins, which was
in accord with its negative anti-UC activity as mentioned
above.

PAE Modulated Gut Microbiota in
Ulcerative Colitis Rats
The expression of 16S rRNA gene sequence was used to evaluate
the amelioration of high-dose PAE on DSS-induced UC. Totally,
the mean values of 10141 effective sequences in each sample
were collected to generate 1,825 OTUs, based on a similarity
of at least 97%. The rarefaction curve plateau (Figure 7A) with
the current sequencing indicates that most of the diversities
have already been captured in all samples. It appeared that UC
model rats possessed the least number of species, compared
with the normal rats and the UC rats administrated with
high-dose PAE. As shown in Figure 7B, Shannon index was
used to indicate the alpha diversity of microbial communities,
showing a significant decrease of the alpha diversity due to
DSS treatment and a remarkable increase of microbial diversity
due to the administration of PAE-H. As shown in the Venn
diagram (Figure 7C), 746 OTUs (96.84%) overlapped among
these three groups, 34 OTUs (0.54%) between the control and
model groups, 73 OTUs (0.22%) between the DSS and PAE-H
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FIGURE 5 | Effects of PAE on the amounts of inflammatory cytokines, including IFN-γ, TNF-α, IL-6, IL-8, IL-17, IL-1β, in the colorectum tissues of DSS-induced UC
rats by ELISA measurement. ∗P < 0.05 untreated control group vs. DSS-induced UC model group, NP < 0.05 model group vs. PAE-H group (n = 6 per group).

FIGURE 6 | Effects of PAE on the intestinal mucosal barrier function. mRNA expressions of Keap1 (A) and Nrf-2 (B) determined by real-time quantitative PCR
analysis. Expressions of ZO-1 (C), occludin (D), and claudin-1 (E) over GAPDH determined by Western blot analysis. ∗P < 0.05 untreated control group vs.
DSS-induced UC model group, NP < 0.05 model group vs. PAE-treated group (n = 6 per group).
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FIGURE 7 | PAE regulation on the disturbed gut microbiota in DSS-induced UC rats. (A) Rarefaction curves determined at the 97% similarity level. (B) Alpha diversity
analyzed by Shannon diversity index. (C) Venn diagram of OTUs in the three groups. (D) PCA analysis of variation. (E) PCoA analysis of variation based on the
weighted UniFrac distance. (F) Cluster dendrogram of the three groups based on Jaccard distance. Significant difference among two group was set as ∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001 (n = 6 per group).
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FIGURE 8 | Gut microbial community structures of rats from various groups. Microbial community bar plot by phylum (A) and genus (B). a: normal rats serve as the
control group; b: UC rats induced by DSS; c: UC rats treated with high-dose PAE (n = 6 per group).

groups, and 302 OTUs (1.56%) between the control and PAE-
H groups. PCA (Figure 7D) and PCoA (Figure 7E) analyses
based on the weighted UniFrac distance matrices suggested
that the gut microbiota in three groups were significantly
diversified. Although the administration of high-dose PAE could
not completely reverse the gut microbiota to those of the control
group, PAE still presented the function of regulating abnormal
gut microbiota in DSS-induced UC rats. The system clustering
tree in Figure 7F provides evidences of a significant difference
existing among the three groups, with a higher similarity shown
in the microbiota communities between the PAE-H group and
the control group.

Histograms were used to reflect the differences among
various groups on species and relative abundance of intestinal
microbiota. At the phyla level (Figure 8A), Firmicutes,
Bacteroidetes, Proteobacteria, and Actinobacteria were the
predominant and most numerous species in all groups. The
significantly increased Bacteroidetes and decreased Firmicutes
acted as the representative characters of the DSS-induced
UC rat model. The result was accordant with the rising
Firmicutes/Bacteroidetes ratio of UC rats in a previous report
(Tao et al., 2017; Yang Y. et al., 2017). However, after the
administration of PAE-H, the abnormal microbiota community
structure became similar to that of the untreated control group.

The detailed information about the regulation effect of PAE on
gut microbiota of UC rats was provided in bar plots at genus level
(Figure 8B). As shown in the figure, 12 genera were identified
in all samples. The most remarkable change on microbiota
abundance in UC rats was Lactobacillus, in comparison with
normal rats. Lactobacillus, a well-known probiotic (Curro
et al., 2017; Amer et al., 2018), exhibited beneficial effects on
inflammatory bowel disorders by stimulating immune cells,
depressing pro-inflammatory cytokine secretion, and inducting
anti-inflammatory cytokines. Specifically, the increase in the
abundance of Lactobacillus was observed in PAE-H group,
indicating that PAE could help to protect intestinal tract and
alleviate intestinal inflammation by increasing the probiotics.

To figure out whether the changes in gut microbial of UC
rats were correlated to the intestinal inflammatory symptoms,
the relationship between the 40 microflora genera with high
abundance in all samples and those above-mentioned six
pro-inflammatory cytokines, were analyzed using Spearman’s
correlation coefficient, based on the hierarchical clustering and
Heatmap. As shown in Figure 9, apart from IL-17, all the other
pro-inflammatory cytokines exhibited significant correlations
with these predominant microflora genera. Particularly,
Lactobacillus exhibited a significantly negative correlation with
inflammatory factors IL-6, TNF-α, and IFN-γ, indicating that
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FIGURE 9 | Correlation analysis between 40 microflora genera with high abundance in all samples and environmental variables, i.e., the above-mentioned six
pro-inflammatory cytokines. Red and blue blocks represent the positive and negative correlations, respectively. Gradation of color indicates the correlation degree.
∗∗∗P < 0.001; ∗∗P < 0.01; ∗P < 0.05 (n = 6 per group).

an increase in the abundance of Lactobacillus would help to
suppress the production of these inflammatory factors. On
the contrary, the pathogenic bacteria Bacteroides exhibited a
significantly positive correlation with IL-6, TNF-α, and IFN-γ.
The results manifested that the consecutive administration of
PAE could significantly alleviate the intestinal inflammation
(shown in Figure 5), which was greatly associated with the
increase of Lactobacillus and the down-regulation of Bacteroides
in UC rats.

DISCUSSION

It is known that the pathogenic manifestations of UC include
defects in epithelial barrier, immune response, leukocyte
recruitment and colonic microflora, but the underlying specific
etiologic causes and mechanisms still remain unknown (Lynch
and Hsu, 2017). In particular, UC frequently leads to intestinal
epithelium injury, resulting in the generation of endogenous and
exogenous antigens and the bacteria translocation via the portal
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venous system. Intestinal barrier defects are common in IBD
patients and believed to increase the uptake of luminal antigens
across the intestinal epithelium, which in turn would trigger the
immune system and the development of mucosal inflammation
(Vancamelbeke et al., 2017). Given the limited therapeutic
effect of the current approaches focusing on immune response,
improvement of intestinal barrier function in intestinal epithelial
cells may provide new avenues for UC treatment characterized
by changes in barrier function. Tight junctions and adherence
junctions are primarily responsible for the restriction and
modulation of intestinal permeability. Samak et al. (2015) found
that DSS treatment could increase tyrosine phosphorylation of
occludin and ZO-1 in Caco-2 cells, indicating the disruption
of tight junctions. A previous study (Lahey et al., 2017) has
demonstrated the promotion of tight junction, composed of
various transmembrane proteins such as occluding, claudin
family proteins and intracellular zona occludens (ZO) family
proteins, could help to alleviate UC symptoms. In present study,
representative proteins of tight junctions, i.e., ZO-1, occludin
and claudin-1, were evaluated, showing that DSS treatment could
down-regulate the tight junction proteins in colons of UC rats
(Figure 5). Additionally, the intestinal epithelial tight junction
serves a key role in protecting against inflammation, and the
disrupted tight junction is a main cause of intestinal barrier
dysfunction and inflammation. Therefore, whether PAE could
regulate intestinal permeability in vivo was further evaluated
using FITC-dextran. As shown in Supplementary Figure S2,
DSS-induced UC model could significantly exacerbate intestinal
permeability and induce a higher amount of FITC-dextran in
serum compared with the control rats. However, the raised
serum level of FITC in UC rats was remarkably reduced by
the administration of high-dose PAE. The results were in line
with the fact that PAE could regulate the expressions of tight
junction-associated proteins. Besides, oral administration of PAE
could restore the disturbed intestinal barrier function, by partly
improving the tight junctions and up-regulating their associated
proteins in the inflamed colon tissues.

Furthermore, based on the recognized relationship between
IBD and intestinal immunity, more researches focusing on
the regulation of intestinal microbiome associated with UC
have been carried out, with the intestinal microflora being
recorded as the highest intestinal immune system. Particularly,
the intestinal microbiota has been demonstrated as one of the
critical factors to influence nutrient metabolism and immune
response, and keep the host healthy in various intestinal diseases
(Zhang M. et al., 2017). The microbial diversity has been found
in IBD patients and healthy individuals, with the diversity,
stability and clusters in IBD patients being notably reduced.
According to a previous report (Rajilic-Stojanovic et al., 2007),
the gut microbiota mainly consists of Firmicutes, Bacteroidetes,
Actinobacteria, Proteobacteria, and Fusobacteria, among which,
Bacteroidetes and Firmicutes predominate and account for∼90%
of the total gut microbiota. However, based on direct gene
sequencing technology by real time PCR, the proportions of
these commensal bacteria could vary greatly in IBD patients.
Microbial dysbiosis is generally found in UC patients, which
is characterized by a reduction of bacterial diversity and an

increase in the ratio of Bacteroidetes/Firmicutes. The intestinal
bacteria, such as Bacteroides, Eubacterium, and Lactobacillus,
could be reduced in IBD (Ott et al., 2004). The decreased
ratio of Firmicutes/Bacteroidetes was found in TNBS-induced
colitis rats (Tao et al., 2017). In our present study, based
on the 16S rRNA gene sequence analysis of samples from
the normal group, the DSS-induced UC group and sequential
PAE treatment groups, the predominant intestinal bacteria
profiles were greatly diversified. Gut microbiota community in
various group at class, order and family level, respectively, were
exhibited in Supplementary Figure S3. Figures 7, 8 show that
the DSS-induced UC is often accompanied by shifts in gut
microbiota structure, with a significant decrease of intestinal
bacterial diversity, a reduction of Firmicutes and an increase
of Bacteroidetes amounts, which have also been found in a
previous study (Yeom et al., 2016). However, when compared
with the UC rats treated with PAE, a much higher abundance of
order Lactobacillales showed up, with the well-known probiotic
properties. It has been reported that the strains of Lactobacillus
subspecies could reduce mucosal permeability, prevent colitis
onset, and alleviate inflammatory reaction (Madsen et al., 1999).
The activity of PAE to increase Lactobacillales in UC rats
would further verify its intestinal barrier improvement and anti-
inflammation effects.

To evaluate the intestinal immunity regulation effect,
multivariate direct gradients were used to analyze the relationship
between inflammatory factors/cytokines in colonic epithelial
tissue samples and intestinal microflora (Figure 9). As expected,
protective bacteria such as Pectobacterium, Roseburia, and
Lactobacillus were significantly negatively correlated with
inflammatory cytokines such as IL-8, IL-6, TNF-α, and IFN-γ,
while aggressive bacteria such as Prevotellaceae UCG-001,
Massilia, Bacteroides, Parabacteroides, Hymenobacter, and
Ruminococcaceae UCG-005 were positively correlated with
pro-inflammatory cytokines such as IL-1β, IL-8, IL-6, TNF-α
and IFN-γ. More importantly, these evaluated inflammatory
cytokines were secreted by helper T cells, also called CD4+

T cells, which served an important part in the immune
system (Gaboriau-Routhiau et al., 2009). CD4+ T cells were also
confirmed as an important pathogenesis of IBD, meaning that the
imbalance of maintenance-regulated factor/cytokine expressions
in CD4+ T cells might be one of the main mechanisms of
disease. To be more specific, IFN-γ, IL-1β, and TNF-α were
secreted by Th1, IL-6 by Th2, and IL-17 by Th17. In UC
rats, both Th1/Th2 and Th17/Treg were up-regulated due
to the remarkably increased effects on pro-inflammatory
factors (Figure 5). Nevertheless, the unbalanced Th1/Th2 and
Th17/Treg ratios could be reduced by PAE treatment, indicating
the anti-inflammation and intestinal immunity regulation effects
of PAE.

CONCLUSION

In view of the recognized efficacy of Kangfuxin liquid, a
famous commercial product made from Periplaneta americana
extract, in the clinical treatment of gastrointestinal ulcers, the
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suppression effect of P. americana on experimental UC and
the related mechanisms were investigated in the present study.
Nine physiological small molecules in PAE, including cytimidine,
uracil, cytidine, hypoxanthine, uridine, thymine, adenine,
inosine, and guanosine, were simultaneously determined by
HPLC as the quality control approach. According to the DSS-
induced UC model, the administration of PAE could prominently
ameliorate the intestinal damage and the associated DAI. The
anti-UC mechanism of PAE could assist to inhibit inflammatory
cytokines production in colon, resist oxidative stress, preserve
intestinal barrier integrity and regulate the disturbed gut
microbiota structure. Specifically, PAE could decrease a series
of inflammatory factors such as TNF-α and IL-1β in RAW
264.7 macrophage and in colons of UC rats. The activation of
Keap1/Nrf-2 pathway and the protection effect of tight junction
integrity of PAE were observed. Interestingly, DSS treatment
could result in significant dysbacteriosis in UC rats in comparison
with normal rats, with the significantly increased Bacteroidetes
and decreased Firmicutes being the representative characteristics.
Nevertheless, the Firmicutes/Bacteroidetes ratio could be down-
regulated by the administration of PAE. It could also increase
the amounts of probiotics like Lactobacillus, which could
help to modulate inflammatory bowel disorder, depress pro-
inflammatory cytokine secretion, and improve intestinal barrier
function. These results suggested that PAE, a complementary
and alternative medicine, could be a potential pharmaceutical
candidate to ameliorate UC.
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