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Although necessary for human survival, pain may sometimes become pathologic if
long-lasting and associated with alterations in its signaling pathway. Opioid painkillers
are officially used to treat moderate to severe, and even mild, pain. However, the
consequent strong and not so rare complications that occur, including addiction and
overdose, combined with pain management costs, remain an important societal and
economic concern. In this context, animal venom toxins represent an original source
of antinociceptive peptides that mainly target ion channels (such as ASICs as well as
TRP, CaV, KV and NaV channels) involved in pain transmission. The present review
aims to highlight the NaV1.7 channel subtype as an antinociceptive target for spider
toxins in adult dorsal root ganglia neurons. It will detail (i) the characteristics of these
primary sensory neurons, the first ones in contact with pain stimulus and conveying the
nociceptive message, (ii) the electrophysiological properties of the different NaV channel
subtypes expressed in these neurons, with a particular attention on the NaV1.7 subtype,
an antinociceptive target of choice that has been validated by human genetic evidence,
and (iii) the features of spider venom toxins, shaped of inhibitory cysteine knot motif,
that present high affinity for the NaV1.7 subtype associated with evidenced analgesic
efficacy in animal models.

Keywords: voltage-gated sodium channels, NaV1.7 channel subtype, spider toxins, pain, dorsal root ganglia
neurons, electrophysiology

Abbreviations: ASIC, acid-sensitive ionic channel; BGB, blood-ganglia-barrier; BNB, blood-nerve-barrier; CaV channel,
voltage-gated calcium channel; CNS, central nervous system; DRG, dorsal root ganglia; EC50, effective concentration
necessary for increasing the response by 50%; GDNF, glial cell line-derivated neurotrophic factor; GMT, gating modifier
toxin; GPCR, G-protein-coupled receptor; HnTx, hainantoxin; HwTx, huwentoxin; IC50, effective concentration necessary
for decreasing the response by 50%; iPSCs, induced pluripotent stem cells; JzTx, jingzhaotoxin; KV channel, voltage-gated
potassium channels; NaSpTx, spider NaV channel toxins; NAT, natural antisense transcript; NaV channel, voltage-gated
sodium channel; NGF, nerve growth factor; PaurTx, Phrixotoxin; PcTx-1, psalmotoxin-1; PNS, peripheral nervous system;
ProTx, protoxin; PSN, primary sensory neuron; PTM, post-translational modification; Ret, “rearranged during transfection”
proto-oncogene; RUNX, Runt-related transcription factor; SSN, secondary sensory neuron; TRP channel, transient receptor
potential channel; TSN, tertiary sensory neuron; TTX, tetrodotoxin.
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INTRODUCTION

According to the International Association for the Study of
Pain, at least 10% of the world’s population suffer from
pain since 1 over 10 adults has experienced or had (acute,
chronic, intermittent or combined) pain with a median of
suffering time around 7 years (Goldberg and McGee, 2011).
The unpleasant sensation of pain is necessary to maintain
the body integrity. However, it is often accompanied by
long-term complications not only limited to comorbidities, as
depression, but also including social and economic concerns
as inability to work, social isolation and intrusive thoughts,
leading to costs of more than 600 billion US dollars annually
(Holmes, 2016). Pain care is thus a global public health
priority whose management must be regulated in its totality by
policies.

Nowadays, mild to moderate pain may be treated effectively
with a combination of physical modalities (e.g., ice, rest
and splints) and non-opioid analgesics (e.g., non-steroidal
anti-inflammatory drugs, acetaminophen or other adjuvant
medications). In contrast, the health system is pushed into its
limits to treat debilitating chronic pain because the therapy is
ineffective and/or associated with devastating effects. Indeed,
management of chronic and severe pain, especially related to
cancers or neuropathies, often requires opioids (Savage et al.,
2008). Unfortunately, the opioid abuse and overdose often
lead to death, which stimulates industries and academics to
find an alternative with acceptable undesired effects (Negus,
2018).

In this context, the likely promising target for therapeutic
treatment to fight pain and avoid central side-effects is
the neuron located in the periphery dorsal root ganglia
(DRG) which conveys pain from the skin and tendons to
the central nervous system (CNS). The DRG neurons are
well-known to express various families of transmembrane
proteins, including ion channels, G-protein-coupled receptors
(GPCRs) and gap junctions/pannexins (Pan et al., 2008;
Spray and Hanani, 2017; Yekkirala et al., 2017). Among
the ion channel family, the most extensively studied targets
for pain treatment are voltage-gated calcium (CaV) and
sodium (NaV) channels. In particular, it is well established
that small molecules that target NaV channels attenuate
chronic and debilitating pain in humans, as exemplified by
tetrodotoxin (TTX). However, due to a lack of selectivity,
pronounced side-effects have been described, such as nausea,
dizziness, oral numbness and tingling, limiting thus the
therapeutic development of this molecule (Hagen et al.,
2017). During the last decade, the attraction of scientists
for the NaV1.7 channel subtype has greatly increased, due
to its validation by human genetic diseases as a pain
target. Many studies have been reported in the literature to
describe gating modulators or pore blockers that affect the
functional properties of this subtype (Vetter et al., 2017).
Therefore, the present review will focus on the fascinating
spider venom toxins which represent an original source of
proteins possessing complex structures associated with specific
electrophysiological effects and prone to be more selective

for the NaV1.7 channel subtype mainly expressed in DRG
neurons.

PRIMARY SENSORY NEURONS AS
FRONT DOOR FOR PAIN

The cellular elements involved in pain transmission from the
peripheral to the CNS are detailed in Figure 1. The noxious
information is first detected by the nociceptors of peripheral and
visceral tissue, and then conveyed by the dendrites of primary
sensory neurons (PSNs). The nociceptors are located at the
level of free nerve endings of Aδ and C fibers of PSNs that
respond to noxious stimuli and are widely found throughout
skin and internal tissue. Three main types of pain receptors
exist: the thermal, the mechanical and the polymodal receptors,
activated by temperature, high pressure and mechanical, thermal
or/and chemical stimuli, respectively (Figure 1, Box 1). The
PSNs are pseudo-bipolar neurons which send their axons,
components of dorsal roots, to the laminas I, II and V of
the dorsal horn of spinal cord and establish synapses with the
dendrites of secondary sensory neurons (SSNs) (Figure 1, Box
2). The SSNs, in turn, bring the noxious information to the
hypothalamus and connect to tertiary sensory neurons (TSNs)
whose cell bodies constitute, in part, the brain cortex (Figure 1,
Box 3). At each CNS level, the information is integrated and
modulated by different ascending/descending control systems
such as the medullary control, named “gate control,” and
the diffuse inhibitory control including the noradrenergic and
serotoninergic pathways induced by nociception from the higher
centers to the dorsal horn, giving the affective, sensory and
cognitive dimensions to the human experience of pain (Porreca
and Navratilova, 2017).

The neuron bodies of PSNs constitute the 31 pairs of DRG,
coming out all along the spinal marrow: 8 cervical (C1-C7, note
that the first cervical spinal nerve is born above C1 and the
eighth one below C7), 12 thoracic (T1–T12), 5 lumbar (L1–
L5), 5 sacred (S1–S5), and 1 coccygeal (Co) which is vestigial.
The cranial sensory (trigeminal or Gasser’s) ganglion (nerve
V) conveys facial skin sensitivity, the spiral (or cochlear) and
vestibular (or Scarpa’s) ganglia (nerve VIII) serve the hearing
and balance senses, respectively, and the geniculate ganglion
(nerve VII) transfers facial sensations, with the contribution of
the superior and inferior (or petrous) ganglia of glossopharyngeal
nerve (nerve IX) and the superior (or jugular) and inferior (or
nodose) ganglia of vagus nerve (nerve X).

Dorsal root ganglia present a rich capillary bed in cell body
area (Figure 2), with the particularity of high fenestrations
between two endothelial cells being permeable to low and high
molecular weight compounds (Petterson and Olsson, 1989; Parke
and Whalen, 2002; Jimenez-Andrade et al., 2008; Berta et al.,
2017). In contrast to the cell body area, the nerve fiber area
wrapped by the epineural sheath, i.e., the dura mater continuum
in peripheral nervous system (PNS), presents a blood-nerve
barrier similar to the CNS blood-brain barrier (BNB), with a
lot of tight junctions between cells that prevent the passage of
unwanted drugs (Jimenez-Andrade et al., 2008; Liu et al., 2018).
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FIGURE 1 | Cellular elements involved in pain transmission from the peripheral to the central nervous system (CNS). (Box 1) The pain (thermal, high pressure,
mechanical, chemical) information is first detected by the receptors located at the level of free nerve endings of primary sensory neuron (PSN) fibers. (Box 2) Then, it
is conveyed by the dendrites of these neurons, components of dorsal root ganglia (DRG), to the dorsal horn of spinal cord where it is transmitted to the dendrites of
secondary sensory neurons (SSNs). (Box 3) Finally, it is brought to the hypothalamus via the tertiary sensory neurons (TSNs) whose cell bodies constitute, in part,
the brain cortex.

FIGURE 2 | Schematic representation of morphological characteristics of
ganglion and nerve capillaries. Ganglion capillaries differ from nerve ones by
the presence of fenestration and absence of narrow tight junctions. Nerve
endothelial cells are surrounded by pericytes.

Soma of PSNs relaying the sensory information are part
of the DRG which also contain other different cell types
such as glial cells, endothelial cells and macrophages. Two
groups of DRG neurons may be distinguished using light and
electronic microscopy: the small dark neurons (cross-sectional
area ≤ 800 µm2 and diameter ≤ 30 µm) composed of high
threshold, slowly-conducting unmyelinated (C) and/or thinly
myelinated (Aδ) nerve fibers, and the large light neurons
(cross-sectional area > 800 µm2 and diameter > 30 µm)
constituted of low threshold, fast-conducting thickly-myelinated

(Aα and Aβ) nerve fibers (Elliott and Elliott, 1993; Taddese
et al., 1995; Ho and O’Leary, 2011). The small DRG neurons
that convey mainly pain message are subdivided into two groups:
the non-peptidergic and the peptidergic neurons, depending
on isolectin-IB4 labeling (Table 1). This subdivision of small
neurons results from the expression level of runt-related
transcription factor 1 (RUNX1), responsible for neuropeptide
expression, regulated by the nerve growth factor (NGF) signaling
during cell growth and differentiation (Luo et al., 2007). In
adult DRG neurons, RUNX and neurogenin transcription factors
regulate the expression of (i) glial cell line-derivated neurotrophic
factor (GDNF) and tyrosine kinase c-Ret co-receptors (allowing
the GDNF-ligand expression required for cell post-natal survival
and indicative of non-peptidergic neurons), and (ii) the
tropomyosin receptor-kinase receptors (TrkA, B and C which
bind NGF or brain-derived neurotrophic factor, neurotrophin-
4 and neurotrophin-3, respectively). The expression of growth
factor receptors is therefore of great help to better characterizing
adult DRG neurons (Ernsberger, 2009). Although only the
small DRG neurons which are not labeled by isolectin-IB4 are
peptidergic, the high dense-core vesicles of large neurons may
also contain peptides, depending on both the vesicle size and the
nerve condition, i.e., normal or injured (Wiesenfeld-Hallin and
Xu, 2001). The peptidergic neurons deliver not only substance
P and calcitonin gene-related peptide, but also somatostatin,
vasoactive intestinal peptide and cholecystokinin. When released
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TABLE 1 | Characteristics of DRG neurons.

Small neurons (diameter ≤ 30 µm) Large neurons (diameter > 30 µm)

Unmyelinated C fibers or thinly myelinated Aδ-fibers Thickly-myelinated Aα/Aβ fibers

Isolectin-IB4 labeling YES (non-peptidergic) NO (peptidergic) NO

Distribution 33% 33% 33%

Transcription factors (during
neurons development)

Neurogenin 1 (determines
neuron formation)

Neurogenin 2 (regulates neuron formation)

RUNX1 (maintained by NGF
signaling, inhibits neuropeptide
expression)

Reduction of RUNX1 and Mrgpr
(due to NGF signaling decrease)

RUNX3 (inhibits TrkB expression and
contributes to specification of
TrkC-positive neurons)

Growth factor receptors (adult
neurons)

GDNF and c-Ret co-receptors

GDNF family receptor α-2 GDNF family receptor α-3

P2X3 (absence of TrkA
receptors)

TrkA receptors TrkB receptors TrkC receptors

Main
Neuropeptides

– Substance P, NKA
– CGRP, Somatostatin
– VIP, PACAP-27 and 28

(upregulated after nerve
injury)

– Galanin
– Cholescystokinin

(upregulated after nerve
injury)

– Substance P (upregulated after nerve injury)
– CGRP
– Neuropeptide Y (upregulated after nerve injury)

Neuronal cytoskeleton Peripherin NF200

Cell adhesion molecules Necl-1 Necl-1 Necl-1

The table illustrates the characteristics of DRG neurons regarding isolectin IB4-labeling, growth factor receptors, transcription factors, main neuropeptides, neuronal
cytoskeleton composition, and cell adhesion molecules. GDNF, glial cell line-derivated neurotrophic factor; Trk, Tropomyosin receptor-kinase; P2X3, P2X purinergic
receptor subunit 3; RUNX, Runt-related transcription factor; NGF, Nerve Growth Factor; Mrgpr, Mas-related G- protein coupled receptor; NKA, neurokinin A; CGRP,
Calcitonin Gene-Related Peptide; VIP, Vasoactive Intestine Peptide; PACAP, Pituitary Adenylate Cyclase-Activating Polypeptide; NF, Neurofilament; Necl, Nectin-like
molecule. The increased gradient of Necl-1expression between small non-peptidergic, small peptidergic and large neurons are represented by an increasing size of
letters.

in the CNS areas associated with pain transmission, these
neuropeptides affect the expression pattern of SSNs, PSNs and
peripheral organs (Moraes et al., 2014). The type of cytoskeleton
neurofilaments present in DRG neurons is correlated with both
the axonal diameter and the conduction velocity of action
potential: intermediate neurofilament peripherin (57 kDa) is
expressed in slowly-conducting unmyelinated (C) and/or thinly
myelinated (Aδ) nerve fibers whereas the heavy neurofilament
NF200 (200 kDa) is expressed in fast-conducting thickly-
myelinated (Aα and Aβ) nerve fibers. The expression of
the cell adhesion nectin-like molecule 1, interacting with the
cytoskeleton, reflects the myelination level of nerve fibers (Ho
and O’Leary, 2011).

Because of sequencing advances, a large scaled and more
precise genetic characterization of DRG is now possible to
better identifying the function and underlying mechanisms
of each neuron. Therefore, an innovative approach to get
rid of pain sensation, without affecting other physiological
pain (or itch) pathways, would be to inhibit/remove only
the population of DRG neurons that are responsible

for the noxious disturbance (Liem et al., 2016; Li et al.,
2018).

ELECTROPHYSIOLOGICAL STUDIES OF
DRG NEURONS IN VITRO

Different types of tissues or individual cells can be used to
perform electrophysiological studies of DRG neurons in vitro,
each of them offering advantages and disadvantages. Hence,
the primary cell cultures of rodent models (rats or mice)
provide freshly isolated DRG neurons, however dissociated
using enzymatic treatments which may disturb, in some extent,
their functioning and thus their electrophysiological recordings.
However, the two enzymatic procedures needed to replate the
cells (i.e., detach and again deposit them on glass-slides) 24 h
after their dissociation, in order to slow down extensive neurite
growth that could limit adequate electrophysiological recordings,
represent an aggressive cell treatment but were reported to have
no marked effect on the neuronal action potential (Caviedes et al.,

Frontiers in Pharmacology | www.frontiersin.org 4 September 2018 | Volume 9 | Article 1000

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01000 October 23, 2018 Time: 12:20 # 5

Gonçalves et al. NaV1.7 Target for Spider Toxins

1990). In any case, a delay of 4–7 days between cell dissociation
and recordings is primordial to obtain adequate membrane
conditions for experiments. A more physiological alternative to
avoid cell dissociation and thus enzymatic procedures is to use
DRG explants, i.e., slices of DRG previously inserted in 2%
agar. Under these conditions, neurons are kept in their native
environment and their plasma membrane is not altered (Scholz
et al., 1998; Scholz and Vogel, 2000). However, the maximal
life-time of DRG explants, as that of primary cell cultures, is of
about 2 weeks.

Another possibility is thus the use of immortalized DRG
neurons which offer the advantage of being maintained in
cultures for long periods of time by changing freshly-made
medium daily. The principle consists in immortalizing
DRG neurons from human fetuses or rodents by using a
tetracycline-responsive v-myc oncogene (Sah et al., 1997;
Raymon et al., 1999), a medium previously conditioned
with the rat thyroid cell line UCHT1 (Allen et al., 2002), or
telomerase reverse transcriptase expression vectors added in
the medium (Chen et al., 2007). Immortalized DRG neurons
may also be directly obtained from transgenic rats harboring the
temperature-sensitive large T-antigen gene (Nishiya et al., 2011).
Immortalized human DRG neurons became an advance 30 years
ago because of human tissue short supply. This type of more
homogeneous cell lines is of great interest for high throughput
screening of antinociceptive compounds.

Recently, the development of the induced pluripotent stem
cell (iPSC) technology opens up new perspectives in personalized
medicine, drug discovery or cell therapy. In the context of pain
studies, iPSCs, derived for example from mesenchymal cells
of a patient with inherited pain disease, are dedifferentiated
to acquire the neuronal phenotype (bipolar cells) with the
appropriate external medium containing neural growth factors.
Then, the cell cultures will allow performing electrophysiological
studies and pharmacological validation of a drug directly on
targets presenting the mutation responsible for the patient pain
phenotype (Cao et al., 2016; Sommer, 2016; Yang Y. et al., 2018).

VOLTAGE-GATED SODIUM CHANNELS
EXPRESSED IN DRG NEURONS

NaV channels are crucial transmembrane proteins for the
communication of excitable cells in vertebrate and invertebrate
organisms, due to their important role in action potential genesis
and propagation. In terms of discovery, these channels are the
founding members of a superfamily comprising more than 140
members grouped into eight families (voltage-gated Na, K and Ca
channels, Ca-activated K channels, cyclic nucleotide-modulated
ion channels, transient receptor potential (TRP) channel, inward-
rectifying K channels and two-pore K channels) which, after
the GPCRs, constitute the second largest group of signaling
molecules encoded by the human genome (Yu and Catterall,
2004).

The fundamental functional features that allow NaV channels
to perform their role in cellular electrical signaling include a
high selective permeation of Na ions and a gating system whose

opening and closing are controlled by both the time and the
membrane potential. Currently available data indicate that these
channels consist of a pore-forming α-subunit (glycoprotein of
220–260 kDa) which is formed by four homologous domains
(designated DI to DIV), each comprising six hydrophobic
transmembrane α helices segments (designated S1–S6) connected
by extra- and intra-cellular loops (Figure 3). The channel pore
formation is attributed to the hairpin-like P loops connecting S5
and S6 segments (extracellular part of the pore) and to the S6
segments (intracellular part of the pore) of each domain. The
channel activation (opening) is associated with the S4 segments
of each domain, containing repeated motifs of positively charged
amino acid residues (arginine) followed by two hydrophobic
residues, which lead to the opening of the pore by moving
outward under the influence of the membrane electric field to
initiate protein conformational change. The channel inactivation
(closing), meanwhile, is associated with the intracellular loop
connecting DIII and DIV domains, including the isoleucine,
phenylalanine and methionine (IFM) motif (Catterall, 2000;
Goldin et al., 2000; Payandeh et al., 2011). Ten α-subunits of the
mammalian NaV channel, referred as NaV1.1-1.10 (the first and
second numbers indicating the gene subfamily and the specific
channel isoform, respectively), have been identified so far. These
subunits, which exhibit 40–70% sequence homology and closely
related structures, can be distinguished according to their specific
expression in tissues and their sensitivity to TTX, a well-known
blocker of NaV channels (Table 2). The structure, functional
characteristics and phylogenetic relationships of the various NaV
channel subtypes have been largely detailed in the literature
(Catterall, 2000; Goldin et al., 2000; Goldin, 2001, 2002; Catterall
et al., 2005b, 2007).

The expression, pharmacology and functioning of NaV
channels can be altered by post-translational modifications
(PTMs) of α-subunits, such as acetylation, phosphorylation,
glycosylation and palmitoylation that occur after translation of
mRNAs into peptidic chains or during secretory pathways. These
PTMs greatly contribute to the development of chronic pain
syndromes and may also modulate the toxin sensitivity of NaV
channels (Liu et al., 2012). In acquired, but not in inherited,
pain syndromes, various signaling pathway activations may
alter expression and functioning of NaV channels (Laedermann
et al., 2015). In mammals, the α-subunit is associated with an
auxiliary β-subunit (glycoprotein of 30–40 kDa), consisting of
a single transmembrane α helices segment, a long N-terminal
extracellular immunoglobulin type V domain and a short
C-terminal intracellular domain (Figure 3), which may in
particular modulate the channel functioning, regulate its
trafficking and expression at the membrane surface and/or link
it to cytoskeleton proteins (Catterall, 2000; Xie et al., 2016).
Therefore, it is likely that the β-subunit type and presence or
absence in overexpression systems, or even in native tissues,
will have big impact on NaV channel readout during molecule
screening experiments, in particular. Hence, the functional
behavior of NaV1.8 subtype has been reported to be highly
dependent on the type of β-subunit expressed under normal
and disease conditions (Vijayaragavan et al., 2004). Among the
four auxiliary β-subunits (β1-β4) identified so far, only β2- and
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FIGURE 3 | The voltage-gated sodium channel. Schematic representations of α-subunit and auxiliary β-subunit of NaV channels, in which cylinders are
transmembrane α helices. In red: S5 and S6 pore-forming segments, in green: S4 voltage-sensor segment, and in blue: S1, S2, and S3 segments. IFM, isoleucine,
phenylalanine and methionine residues. The orange loops in DII and DIV domains correspond to spider toxins binding sites (adapted from Catterall et al., 2007).

TABLE 2 | Expression in tissues and TTX sensitivity of NaV channel subtypes.

NaV subtype Gene Expression in tissues TTX sensitivity

NaV1.1 SCN1A – PNS (DRG)
– CNS (hippocampus, neocortex, cerebellum, retinal ganglion, microglia)
– Keratinocytes

Yes

NaV1.2 SCN2A – PNS (DRG; unmyelinated or pre-myelinated axons and dendrites)
– CNS (hippocampus, neocortex; cerebellum, astrocytes)
– Fibroblast, islet β-cells, odontoblasts, osteoblasts

Yes

NaV1.3 (fetal) SCN3A – PNS (early postnatal periods, adult DRG when nerve injury or inflammation,
Schwann cells)

– CNS (hippocampus, neocortex)
– Fibroblasts, islet β-cells

Yes

NaV1.4 SCN4A – Skeletal muscle Yes

NaV1.5 SCN5A – Heart
– Skeletal muscle (denervated or fetal)

No

NaV1.6 SCN8A – PNS (DRG, nodes of Ranvier of motoneurons, Schwann cells)
– CNS (Purkinje, pyramidal and granule neurons, nodes of Ranvier and axon

initial segment of axons, astrocytes, microglia)
– Cancer cells, endothelial cells, fibroblasts, keratinocytes, macrophages

Yes

NaV1.7 SCN9A – PNS (DRG and sympathetic ganglion neurons, neuroendocrine cells)
– CNS (olfactory sensory neurons)
– Smooth myocytes
– Prostate and breast tumor cells, human erythroid progenitor cells,

fibroblasts, immune cells

Yes

NaV1.8 SCN10A – PNS (DRG)
– CNS (Purkinje neurons, astrocytes, Müller glia)
– Endothelial cells, fibroblasts, keratinocytes, T lymphocytes

No

NaV1.9 SCN11A – PNS (DRG)
– CNS (hypothalamus, astrocytes, Müller glia)
– Cancer cells, endothelial cells, fibroblasts, T lymphocytes

No

NaV1.10 (NaV1.x, NaV2.1-2.3) SCN7A – Lung, uterus, heart
– PNS (DRG, Schwann cells)
– CNS (thalamus, hippocampus, cerebellum, median preoptic nucleus)

No

The table illustrates the expression in tissues and sensitivity to TTX of NaV channel α-subunits (adapted from Goldin, 2001; Trimmer and Rhodes, 2004; Black and
Waxman, 2013). TTX, tetrodotoxin; PNS, peripheral nervous system; DRG, dorsal root ganglia; CNS, central nervous system.
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β4-subunit have been reported to be covalently linked, by their
N-terminal domain, to NaV channel α-subunits (Namadurai
et al., 2015). Recently, β4-subunit has been highlighted as a
painkiller target because of its action of regulating fast resurgent
Na currents in sensory neurons associated with pain disorders
(Xie et al., 2013; Lewis and Raman, 2014; Barbosa et al., 2015).

Seven over the ten NaV channel subtypes (NaV1.1, 1.3,
1.6–1.10) which are expressed in DRG neurons are detailed
in Table 3. All these subtypes are thus potentially involved
in conveying noxious stimuli and may represent a target for
pain treatment. Indeed, the NaV1.6–1.9 subtypes, as main
actors of pain anatomical and physiological integrities, have
been genetically proved to be linked to human pain disorders.
However, the high expression of Nav1.7 subtype in DRG neurons
(see Figure 4) and its multiple reported mutations inducing
genetic-painful and painless disorders, largely documented in the
literature, make this subtype one of the most promising target
to alleviate pain. The contribution of NaV1.1 and 1.10 subtypes
to pain message was evidenced by pharmacological approaches,
and the NaV1.3 (fetal) subtype was reported to be overexpressed
during injury-induced pain. It is worth noting that NaV1.2 is the
only subtype that does not transmit pain message in the PNS,
although present in DRG neurons. In the CNS, mutations in the
sequence coding for this subtype have been reported to induce
epileptogenic and/or neurodevelopmental disorders (Liao et al.,
2010; Hackenberg et al., 2014; Ben-Shalom et al., 2017; Wolff
et al., 2017).

NaV1.1, encoded by the SCN1A gene, is a TTX-sensitive,
fast-activating and inactivating NaV channel. Its expression is
located in the CNS, PNS (more precisely in DRG neurons) and
keratinocytes (Trimmer and Rhodes, 2004; Black and Waxman,
2013). This subtype was recently reported as a potential pain
target involved in neuropathic pain (Irritable Bowel Syndrome,
visceral hypersensitivity) and in acute pain and mechanical
allodynia, due to the correlation between its activity and pain
behaviors in rodent models using the activating spider toxin
Hm1a and the selective inhibitory small molecule ICA-121431
(Osteen et al., 2016, 2017; Salvatierra et al., 2018). The important
function of NaV1.1 in the CNS is highlighted by more than
500 mutations in its coding sequence that cause epileptic
syndromes (Febrile Seizure, Generalized Epilepsy with Febrile
Seizures+, and Severe Myoclonic Epilepsy of Infancy also known
as Dravet syndrome) (Catterall et al., 2010). Moreover, three
of these mutations are also correlated to familial hemiplegic
migraine, and several copy number variants have been linked
to neurodevelopmental disorders such as intellectual disability,
autism and psychiatric disease (Dichgans et al., 2005; Fry et al.,
2016; Xiong et al., 2016).

NaV1.3, encoded by the SCN3A gene, is also a TTX-sensitive,
fast-activating and inactivating NaV channel (Cummins et al.,
2001). This fetal subtype is normally expressed in early postnatal
periods. However, it is also expressed at very low levels in
adult sensory primary afferents, and is rapidly upregulated
in DRG after peripheral axotomy by sciatic nerve transection
or chronic constriction (Waxman et al., 1994; Black et al.,
1999; Dib-Hajj et al., 1999) or by tight ligation of the spinal
nerve (Boucher et al., 2000; Kim et al., 2001), and in painful

diabetic neuropathy (Tan et al., 2015; Yang et al., 2016). NaV1.3
promotes the spontaneous ectopic discharge observed during
nerve injury. In particular, its over-expression after spinal cord
injury leads to rhythmic oscillatory burst firing, alternating with
single spikes and silent periods, in second order dorsal horn
sensory neurons, and to spindle wave firing mode in thalamus
(ventral posterior lateral) neurons with identifiable peripheral
receptive fields (Hains et al., 2003; Lai et al., 2003). The central
neuropathic pain is also explained by NaV1.3 upregulation which
induces neuronal hyperexcitability and alters the process of
somatosensory information (Hains et al., 2003; Hains et al., 2005,
2006). Recently, loss-of-function of the SCN3A gene, resulting
in reduced expression or deficient trafficking to the plasma
membrane of the protein, was reported to contribute to increased
seizure susceptibility (Lamar et al., 2017).

NaV1.6, encoded by the SCN8A gene, is a TTX-sensitive
fast-activating and inactivating NaV channel expressed in the
PNS (DRG neurons, nodes of Ranvier of motoneurons, Schwann
cells), in the CNS (Purkinje, pyramidal and granule neurons,
nodes of Ranvier and initial segment of axons, astrocytes,
microglia) and in non-neuronal tissues such as cancer cells,
endothelial cells, fibroblasts, keratinocytes and macrophages
(Trimmer and Rhodes, 2004; Black and Waxman, 2013; Israel
et al., 2017). This subtype is upregulated in various peripheral
pain pathways including oxaliplatin-induced cold allodynia
(Deuis et al., 2013), type-2 diabetic neuropathic pain (Ren et al.,
2012) and inflammatory pain (Xie et al., 2013). The NaV1.6
α-subunit, covalently linked to the β4-subunit, can underlie
excitatory, persistent and resurgent currents which induce
repetitive firing and abnormal spontaneous activity of sensory
neurons (Lewis and Raman, 2014; Barbosa et al., 2015; Xie et al.,
2016). A NaV1.6-gene mutation resulting in gain-of-function
has been reported to potentiate transient and resurgent Na
currents, leading to increased excitability in trigeminal neurons,
exacerbating thus the pathophysiology of vascular compression
and contributing to idiopathic trigeminal neuralgia (Grasso et al.,
2016; Tanaka et al., 2016). In contrast to NaV1.1 and 1.2, NaV1.6
is involved in seizure resistance (Makinson et al., 2014). The
knock-down of NaV1.6 in the brain was shown to compensate
the NaV1.1-gene mutation-induced imbalance of excitation over
inhibition involved in epileptogenic disorders, which motivates
the necessity to find specific NaV1.6 inhibitors to treat debilitating
or fatal form of epilepsy such as the Dravet syndrome (Catterall,
2012; Anderson et al., 2017). Finally, more than ten human de
novo mutations of NaV1.6 gene have been identified in patients
with two types of CNS disorders, epileptic encephalopathy and
intellectual disability (O’Brien and Meisler, 2013).

NaV1.7, encoded by the SCN9A gene, is a TTX-sensitive
fast-activating and inactivating NaV channel. It is expressed in
the somatosensory system (mainly in C- and Aβ-type DRG
neurons) and in the sympathetic ganglion neurons (myenteric
and visceral sensory neurons) of PNS, but only in the olfactory
sensory neurons of CNS. This subtype is also present in smooth
myocytes (Jo et al., 2004; Israel et al., 2017; Vetter et al., 2017),
and in non-excitable cells such as prostate and breast tumor cells,
human erythroid progenitor cells, fibroblasts and immune cells
(Black and Waxman, 2013; Israel et al., 2017). This subtype is
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FIGURE 4 | Relative proportion of NaV channel α-subunits detected in mammalian dorsal root ganglia (DRG) neurons by RT-PCR. DRG neurons are from some
representative mammals of different orders reported in the literature: primates, artyodactyla and rodents. The first order, including human and monkey, is closely
related to the pig, belonging to the second order. The rodents, more distant from the human, represent the model often used for pain studies. The adult
post-mortem human DRG neurons were obtained from healthy donors. All the data are from DRG neurons of adult mammals except those from 7 day-old rats. ND,
non-determined. Adapted from Raymond et al. (2004), Berta et al. (2008), Ho and O’Leary (2011), Muroi and Undem (2014), and Chang et al. (2018).

a threshold channel since it is involved in the action potential
(i.e., pain message) triggering by regulating the resting membrane
potential of DRG. The implication of NaV1.7 in neuropathic
(diabetes) and inflammatory pain, as well as in acute noxious
mechanosensation, has been explained by gene upregulation
or variants (Dib-Hajj et al., 2013; Blesneac et al., 2018). In
addition, multiple NaV1.7 genetic mutations have been linked
to painless or painful phenotypes. Hence, congenital SCN9A
loss-of-function mutations, such as congenital insensivity to pain
and type IID of hereditary sensory and autonomic neuropathy,
can induce genetic diseases with a complete absence of pain. In
contrast, the SCN9A gain-of-function mutations cause genetic
painful neuropathies such as small fiber neuropathy, primary
erythromelalgia and paroxysmal extreme pain disorder (de Lera
Ruiz and Kraus, 2015; Vetter et al., 2017). The NaV1.7 expression
in the CNS is responsible for anosmia and hyposmia, always
linked to painless phenotypes, and epilepsy (presence of different
variants in patients showing seizures and Dravet syndrome, and
of two SCN9A mutations related to epilepsy phenotype), as well
as to autism spectrum disorder (Dib-Hajj et al., 2013; Mulley
et al., 2013; Rubinstein et al., 2018; Yang C. et al., 2018). NaV1.7
has also been reported to be the major NaV subtype in irritating,
itchy cough conveyed by DRG neurons (Muroi and Undem,
2014; Sun et al., 2017).

NaV1.8, encoded by the SCN10A gene, is a TTX-resistant
NaV channel that exhibits slow activation and inactivation,
as well as rapid repriming kinetics in C- and Aβ-type DRG
neurons. With its slow kinetics and high activation threshold,
this subtype corresponds to 80–90% of the inward current
necessary to the rising phase of action potentials (Renganathan
et al., 2001; Patrick Harty and Waxman, 2007). It is ectopically
expressed in the CNS Purkinje neurons during multiple sclerosis
disorder, and becomes thus a target of choice to develop a
treatment for this disorder (Han et al., 2016). NaV1.8 mRNAs
were also detected and quantified in astrocytes, Müller glia,
endothelial cells, fibroblasts, keratinocytes and T lymphocytes
(Black and Waxman, 2013). This subtype has been reported
to contribute to neuropathic pain, notably associated with
acquired immunodeficiency syndrome, diabetes and cancer, as
well as to inflammatory pain (Thakor et al., 2009; Qiu et al.,
2012; Belkouch et al., 2014; Liu X. D. et al., 2014). Moreover,
SCN10A gain-of-function mutations are associated, not only
with the above mentioned neuropathic pain, but also with small
fiber neuropathy and inherited erythromelalgia (Faber et al.,
2012; Huang et al., 2016; Kist et al., 2016). Finally, genetic
variations of SCN10A have been reported to correlate with
cardiac conduction abnormalities in patients suffering from
hypertrophic cardiomyopathy-like atrial fibrillation and Brugada
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syndrome (Zimmer et al., 2014; Behr et al., 2015; Iio et al.,
2015).

NaV1.9, encoded by the SCN11A gene, is a TTX-resistant
NaV channel with very slow activation and inactivation kinetics.
This subtype is also a threshold channel but exhibits different
biophysical properties, compared with NaV1.7 subtype. Roughly
80% of small-diameter sensory DRG neurons but only a few
large-diameter ones and trigeminal ganglia (including C-type
nociceptive cells) were reported to express NaV1.9 mRNAs (Dib-
Hajj et al., 1998). The expression pattern of this subtype is
merely limited to the PNS, despite spots of expression in the
CNS (hypothalamus, astrocytes, Müller glia), endothelial cells,
fibroblasts, and T lymphocytes. It was also detected in some
cancers such as lymphoma and small cell lung cancer (Black and
Waxman, 2013; Israel et al., 2017). NaV1.9 plays a major role
(i) in inflammatory, heat and mechanical pain hypersensitivity,
as revealed in both (sub) acute and chronic inflammatory pain
models, (ii) in the maintenance of bone cancer pain (with the
NaV1.8 subtype), (iii) in the perception of cold pain under normal
and pathological conditions, and (iv) in visceral pain (Lolignier
et al., 2011; Qiu et al., 2012; Dib-Hajj et al., 2015; Lolignier et al.,
2015; Hockley et al., 2016; Lolignier et al., 2016). More recently,
multiple NaV1.9 genetic mutations were linked to painless or
painful phenotypes, making this subtype the second target of
interest (after the NaV1.7 subtype) to treat pain. Hence, on
one hand, congenital SCN11A loss-of-function mutations, such
as congenital insensitivity to pain and type VII of hereditary
sensory and autonomic neuropathy, were reported to result in
genetic diseases with a complete absence of pain (Leipold et al.,
2013; Woods et al., 2015; Phatarakijnirund et al., 2016; Huang
et al., 2017; King et al., 2017). On the other hand, the SCN11A
gain-of-function mutations lead to genetic painful neuropathies
such as small fiber neuropathy and rare inheritable pain disorders
(Zhang et al., 2013; Huang et al., 2014; Han et al., 2015; Leipold
et al., 2015; Kleggetveit et al., 2016; Okuda et al., 2016; Han et al.,
2017). Finally, NaV1.9 expression has also been linked to the
Hirschprung’s disease (affecting the mega colon motility), and
implicated in the development of inflammation-based bladder
motility dysfunction and in essential tremor associated with
familial episodic pain (Ritter et al., 2009; O’Donnell et al., 2016;
Leng et al., 2017).

NaV1.10, encoded by the SCN7A gene and also named NaV1.x
or NaV2.12.3 (according to the species), is an atypical subtype
associated with leak currents and considered as descendant
of NaV channel α1-subunits despite, notably, a less than 50%
sequence homology and marked discrepancies in S4 segments
and the intracellular loop connecting DIII and DIV domains
(Goldin et al., 2000; Yu and Catterall, 2003; Nehme et al.,
2012). In addition and in contrast to other NaV channel
subtypes, NaV1.10 is not activated by the membrane potential
but is sensitive to extracellular concentration of Na ions with a
threshold value of 150 mM (Hiyama et al., 2002). It is expressed
in the lung, uterus and heart, in the PNS neurons (e.g., medium
to large-sized DRG neurons, non-myelinating Schwann cells) and
in the CNS (e.g., thalamus, hippocampus, cerebellum, median
preoptic nucleus) (Fukuoka et al., 2008; Garcia-Villegas et al.,
2009) In particular, this subtype is clearly present in the primary

regions implicated in hydromineral homeostasis, such as the
subfornical organ, the vascular organ of the lamina terminalis
and the median eminence which control the Na-intake behavior
by changing neuronal excitability (Watanabe et al., 2006; Xing
et al., 2015; Kinsman et al., 2017). It is involved in autoimmunity
process causing chronic hypernatremia (Hiyama et al., 2010)
and in epilectogenic process (Gorter et al., 2010). Recently, the
inhibition or suppression of NaV1.10 was reported to reduce
pain behaviors in a bone cancer-induced model by decreasing the
excitability of DRG neurons (Ke et al., 2012).

Using electrophysiological studies of DRG neurons in vitro
for drug-discovery research may be limited by the relative
proportions of targeted NaV channel subtypes, as exemplified
by the plant alkaloid paclitaxel whose effects differ between
the models used (Chang et al., 2018). Indeed, the relative
proportion of NaV channel subtypes varies between small- and
large-diameter DRG neurons, the first one expressing more
TTX-resistant and less TTX-sensitive subtypes than the second
one in both rodent and human neurons (Djouhri et al., 2003;
Zhang et al., 2017). In addition, the relative proportion of
NaV subtypes varies according to the species studied. This is
illustrated in Figure 4 by the relative quantification of each NaV
channel subtype mRNA in small-diameter DRG neurons, the
most documented in the literature because of their interest to
treat pain, in various mammalian species. As expected from their
importance in pain process, NaV1.6–1.9 subtypes are relatively
more expressed than NaV1.1–1.3 subtypes, and the expression of
the pain-unrelated NaV1.4 and 1.5 subtypes, when detected, is
extremely low and their function unknown (Ho et al., 2013).

The DRG neurons from rodent models are preferentially
used for pain studies, compared with those from human,
because they are rapidly available, easy to manipulate, cheap and
exhibit well-conserved anatomical and physiological properties.
However, adult mice and rat differ in their relative proportions of
NaV subtypes: more than 50% of mouse DRG NaV subtypes are
TTX-resistant (i.e., 45% of NaV1.8 and 12% of NaV1.9) whereas
it is the opposite in rat DRG neurons (i.e., 15% of NaV1.1,
23% of NaV1.6 and 36% of NaV1.7) (Berta et al., 2008; Chang
et al., 2018). Interestingly, the level of expression of NaV subtypes
is greatly influenced by the age of mammal, i.e., the neuron
maturation, as exemplified by the high expression of NaV1.9
subtype in pup rat DRG neurons which is replaced by NaV1.1
and 1.6 subtype expression in adult rat DRG neurons (Ho and
O’Leary, 2011). PCR analysis of the seven NaV subtypes expressed
in DRG neurons reveals that post-mortem human DRG neurons
from healthy donors show relatively high expression of NaV1.7
(49%) and low expression of NaV1.8 (12%), whereas the mouse
DRG neurons present high expression of NaV1.8 (45%) and low
expression of NaV1.7 (18%), the adult rat DRG neurons having
an intermediate expression of NaV1.7 (36%) and NaV1.8 (23%)
(Chang et al., 2018).

The mammals closely related to human (i.e., adult
monkey and pig) roughly conserve the NaV subtype
expression pattern of post-mortem human DRG neurons,
i.e., NaV1.7 ≥ NaV1.9 ≥ NaV1.8 (Raymond et al., 2004; Muroi
and Undem, 2014). Although the adult post-mortem human
DRG neurons obtained from healthy donors are valuable in
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terms of physiology to estimate the relative proportions of NaV
subtypes in living humans (Zhang et al., 2017; Chang et al., 2018),
and even if some mammalian models seem closed to human, the
message needs to be always shaded when extrapolated to human.
Moreover, RT-PCR consists in averaging NaV subtype mRNAs
present in nucleus of cell population, and does not represent
strictly the level of functional NaV subtypes located in cell plasma
membranes.

In several mammals DRG neurons, alternative splicing of NaV
α-subunit genes has been detected, resulting in the expression
of multiple proteins. However, the functional significance of this
process has not been completely elucidated (Dietrich et al., 1998;
Schirmeyer et al., 2014). Some variants seem to lead to subunits
showing redundant or no obvious pharmacological and/or
functional differences, compared with the wild-type subunit
(Schirmeyer et al., 2014). However, different pharmacological
and functional properties between variant and wild-type subunits
are evidenced in the literature, such as their sensitivity to
drugs/toxins (Dietrich et al., 1998; Tan et al., 2002; Thompson
et al., 2011; Boullot et al., 2017), their functional specificity
regarding tissue/cell localization (Song et al., 2004), and their
involvement in membrane excitability via the regulation of
translational repression (Lin and Baines, 2015). Some alternative
splice events are unique to DRG neurons. Hence, significant
changes in the splicing patterns of Scn8a and Scn9a genes
were observed in a rat model of neuropathic pain, leading
to down-regulation of all transcripts (Raymond et al., 2004).
Moreover, four alternative splice variants of SCN9A gene were
reported to be expressed in human DRG neurons. The difference
between two of them at the exon 5 level (exons 5A and 5N)
results in two different amino acid residues, located in the S3
segment of DI domain acid. One of them, negatively charged,
may be involved in modifications of NaV channel activation
and de-activation, impacting thus the paroxysmal extreme pain
disorder disease phenotype (mutation I1461T). The two other
alternative splice variants differ at the exon 11 level, leading to
the presence (11L) or absence (11S) of an 11-amino acid sequence
in the intracellular loop connecting DI and DII domains of NaV
channels, an important region for protein kinase A regulation
which will thus influence neuronal excitability and pain sensation
(Chatelier et al., 2008; Jarecki et al., 2009). Recently, a (NAT)
was reported to be a potential candidate gene for patients with
inherited (primary erythromelalgia, paroxysmal extreme pain
disorder, and painful small fiber neuropathy) or acquired chronic
pain disorders linked to the SCN9A locus, taking into account
that the sense gene must not contain mutations which lead to
sense gene-NAT pairing. This is the first example of a new therapy
based on increased native antisense mRNAs to treat chronic pain
in humans (Koenig et al., 2015).

ANALGESIC SPIDER TOXINS
TARGETING THE NAV1.7 CHANNEL
SUBTYPE

Arachnids (araneae order) are the most diverse group of
venomous animals with more than 46,000 extant species

subdivided in araneomorph (crossing fangs) and mygalomorph
(parallel fangs) suborders. Theraphosidae, the most studied and
represented family in Arachnoserver 3.0 database, belongs to the
latter suborder, with approximatively 470 species, a bit more than
one quarter of all species (Pineda et al., 2018). Each spider venom
contains from 100s to 1000s peptides (Escoubas, 2006), meaning
that more than 10 million spider-venom peptides with an original
sequence remain to be discovered since only approximatively
0.01% of these toxins have been explored until now (Klint et al.,
2012, 2015b). The major components of most spider venoms are
small disulfide-rich peptide toxins (Saez et al., 2010).

Because of their major role in action potential genesis and
propagation in CNS, PNS, heart, smooth and skeletal muscles,
NaV channels are crucial for vital functions and are thus targeted
by various groups of toxins that interact with at least six specific
channel receptor-sites (Cestele and Catterall, 2000; Catterall
et al., 2007; Gilchrist et al., 2014; Israel et al., 2017). Toxins
that alter these channels may affect one or more of their three
essential properties: activation, inactivation and ion selectivity.
In that regard, toxins that have been isolated from different
venomous animals (such as spiders, scorpions, cone snails, sea
anemones and centipedes) may be classified as pore blockers
and/or gating modifiers (Israel et al., 2017). The main source
of the approximately 20 analgesic peptide toxins targeting the
NaV1.7 subtype is the venoms of tarantula constitutive of the
theraphosidae family (Figure 5) (Klint et al., 2015b; Vetter et al.,
2017). It is worth nothing that this family also contains many
NaV channel activators (Deuis et al., 2017b), such as Hm1a toxin
which has been reported to induce a painful behavior when
injected in rodents (Jami et al., 2017). A small amount of these
toxins also target other ion channel types located at the level of
DRG neurons and, thus, taking part into pain processing such as
TRP channels A1 antagonized by Protoxin (ProTx)-I and Phα1β,
acid-sensitive ionic channel (ASIC)1a inhibited with high affinity
by psalmotoxin (PcTx)-1, and N-type CaV channels targeted by
Phα1β, although with less potency than for TRPA1 (de Souza
et al., 2013; Gui et al., 2014; Osmakov et al., 2014; Tonello et al.,
2017).

Spider toxins targeting the NaV1.7 subtype with an IC50 less
than 500 nM are considered as analgesic toxin inhibitors (Klint
et al., 2015a), and belong to the three first classes of spider
NaV channel toxins (NaSpTx), based on their primary structure
and disulfide framework (Figure 5). It is worth noting that this
classification also includes spider toxins which target not only
the NaV1.7 channel subtype but also other subtypes of ionic
channels, as exemplified by the ω-TRTX-Gr2a toxin (GpTx-1)
which was initially reported as a CaV3.1 subtype blocker after
isolation from the Chilean tarantula, Grammostola rosea, venom
(Ono et al., 2011). The NaSpTx peptides are gating modifier
toxins (GMTs) because they alter channel gating by stabilizing
voltage-sensors (mainly S3–S4 segments of DII domain) in a
closed, or resting, configuration state (Table 4) (Klint et al.,
2012). The NaV1.7 analgesic spider toxin inhibitors are shaped
by inhibitory cystine knot (ICK) scaffold due to 6 cysteines,
arranged into a ring composed of two disulfide-bridges crossed by
a third one (Saez et al., 2010). These peptides share a conserved
amphipathic surface profile characterized by a high proportion
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FIGURE 5 | Sequence alignment obtained by Multalin (version 5.4.1) of different potential analgesic toxins sorted by NaV spider toxins families, using their UniProtKB
identifiers. The consensus sequence is shown above each alignment, with the disulfide bond connectivity. In dark blue, highly conserved amino acid residues
(100%), and in light blue, poorly conserved amino acid residues (>50%). The Greek letter(s) before the toxin name is associated to its type of action: µ for NaV

channel inhibition, β for shift in the voltage-dependence of NaV channel activation, ω for CaV channel inhibition, and κ for KV channel inhibition. ProTx, protoxin;
HnTx, hainantoxin; CcoTx, ceratotoxin; HwTx, huwentoxin; JzTx, jingzhaotoxin; aa, amino acid residues; NaSpTx, spider NaV channel toxin.

of hydrophobic/aromatic amino acid residues, such as Trp, Tyr
and Phe, surrounded by charged amino acids which constitute a
dipole potential with negative (Asp and Glu) and positive (Lys
and Arg) zones (Jung et al., 2005; Cai et al., 2015). Finding more
selective GMTs than pore-blockers of NaV1.7 subtypes is likely
because the voltage-sensors are more variable in terms of amino
acid sequence than the pore region of NaV channels (Catterall
et al., 2005a; Payandeh et al., 2011).

ProTx-III, ceratotoxin-1, GpTx-1, Cd1a, huwentoxin
(HwTx)-IV, hainantoxin (HnTx)-IV, Hd1a, HnTx-III and HnTx-I
are NaV1.7 potential analgesic peptide toxins, composed of
33–35 amino acid residues, that belong to NaSpTx-1 family,
with nanomolar affinities (IC50 between 2.1 and 440 nM)
for this NaV subtype. According to their electrophysiological
properties, these toxins act as pore blockers of the NaV1.7
subtype and, except for ProTx-III and ceratotoxin-1, induce

minor alterations (less than 5 mV) in the voltage-dependence
of its activation and steady-state inactivation (Figure 5 and
Table 4). Various mutants of ProTx-III and ceratotoxin-1were
produced, showing a 10–20-mV shift in the voltage-dependence
of NaV1.7 activation without any change in its fast and
steady-state inactivation (Bosmans et al., 2006; Cardoso
et al., 2015), in agreement with their interaction with the
receptor-site 4 of NaV channels (i.e., S3–S4 segments of DII
domain). Models of docking toxins on NaV channels have
been reported, placing toxin peptides in the cleft between the
channel S1–S2 and S3–S4 transmembrane α-helices (Minassian
et al., 2013; Cai et al., 2015; Murray et al., 2016). Even the
main channel amino acid residues involved in toxin-channel
interactions were located in the extracellular loop connecting
S3 and S4 segments of DII domain, some residues of the
extracellular loop connecting S1 and S2 segments of DII
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domain helping to stabilize the toxin binding to the channel
(Figure 3).

Pn3a, Df1a, ProTx-I, Phlo1b and jingzhaotoxin (JzTx)-34
are NaV1.7 potential analgesic peptide toxins, composed of
34–35 amino acid residues, belonging to the NaSpTx-2 family
and having also nanomolar affinities (IC50 between 0.9 and
610 nM) for this NaV subtype (Figure 5 and Table 4). This toxin
family produces important alterations in the voltage-dependence
of both activation (10–37-mV positive shifts) and steady-state
inactivation (2.7–17.5-mV negative shifts). In addition, the fast
inactivation of some TTX-sensitive NaV channels is also affected
by some of these toxins. This is in agreement with the known
toxin receptor-sites 3 (i.e., S3-S4 segments of DIV domain) and
4 of NaV channels (Deuis et al., 2017b).

ProTx-II, JzTx-V, GsAF1, GrTx-1 and Phlo2a are NaV1.7
potential analgesic peptide toxins from the NaSpTx-3 family,
composed of 26–30 amino acid residues, and showing nanomolar
affinities (IC50 between 0.3 and 333 nM) for this NaV
subtype (Figure 5 and Table 4). The toxin action consists
in major alterations in the voltage-dependence of activation
(10–31-mV positive shifts) with only minor modifications of
the voltage-dependence of steady-state inactivation (up to 5-mV
positive shifts). The channel binding sites of these toxins are
the receptor-site 4 alone for JzTx-V or in addition with the
receptor-site 3 for ProTx-II, those for the other toxins having
not been reported (Smith et al., 2007; Moyer et al., 2018). As a
consequence, the channel fast inactivation is altered by ProTx-II
but not by JzTx-V.

Pn3a is the toxin that has been studied on the biggest panel
of ionic channels and receptors reported so far (Deuis et al.,
2017a), including all NaV channel subunits, some cardiosafety
targets (such as KV11.1 and CaV1.2 channel subtypes) and
other transmembrane proteins expressed at the membrane
of DRG neurons (KV2.1, α3-α7 nAChR, CaV2.2 subtypes).
In particular, this toxin was tested on human and rodent
(mouse and rat) NaV1.7 subtypes, showing minor loss of
potency (between 2 and 5 fold) for mouse and rat. These
results are in agreement with the 93.0% (human versus mouse)
and 92.8% (human versus rat) sequence identities between
species [data obtained from high quality protein multiple
sequence alignments using CLUSTAL Oméga version 1.2.3
(web version)]. The other toxins have not been screened
exhaustively: mainly human NaV subtypes and cardiovascular
targets, such as KV11.1, CaV1.2 and CaV3.1 subtypes. Big
efforts were engaged to decrease toxin potency for NaV1.4 and
1.5 subtypes to avoid neuromuscular and cardiac side-effects
(Murray et al., 2016) or to directly find toxin possessing these
characteristics (Xiao et al., 2008). Moreover, the interest to find
analgesic toxins highly selective for NaV1.1 and 1.6 subtypes,
or to improve the toxin selectivity for these two subtypes,
decreased during the past years because of the consequent
inhibition of action potential transmission via axonal nodes
of Ranvier which leads to central and peripheral (at the level
of neuromuscular junctions) side-effects. Hence, the HwTx-IV
mutant m3-HwTx-IV, presenting an additional hydrophobic
patch (Gly1-Gly4-Trp33) has a reinforced inhibitory potency for
the NaV1.7 subtype while improving NaV1.1, 1.2 and 1.6 subtype

selectivity (Rahnama et al., 2017). Moreover, the ProTx-II mutant
JNJ63955918/GP-ProTX-II (W7Q-W30L) presents a 14-fold
decreased potency for the NaV1.7 subtype but an improved
selectivity against NaV1.1, 1.2, 1.4, and 1.6 subtypes, thus avoiding
side-effects such as seizures, arrhythmias and impaired motor
functioning (Flinspach et al., 2017; Goncalves et al., 2018).
A new strategy was recently proposed to increase the selectivity
among the off-target panel, consisting in finding antagonist
antibodies specific of NaV1.7 subtype. The results obtained are
controversial and need to be further confirmed (Lee et al., 2014;
Liu et al., 2016). More recently, another approach was reported,
using an antibody-drug conjugated: a potent NaV1.7 toxin
inhibitor (a GpTx-1 analog), connected by a PEG-linker to an
antibody, showed greater stability in plasma and a biodistribution
restricted to the regions expressing NaV1.7 subtype, decreasing
thus possible side-effect occurrence (Biswas et al., 2017).

Bilayer membranes that surrounded channel proteins seem to
be important to stabilize the interactions between amphipathic
GMTs and NaV channels. Toxins and their mutants brought
a better understanding of the so-called trimolecular complex
relations. Hence, the affinity of GMTs for bilayer membrane
lipids highlighted the type of amino acid residues implicated
in these interactions that could also impact the toxin selectivity
for NaV channels (Deplazes et al., 2016; Henriques et al., 2016;
Agwa et al., 2017, 2018; Zhang et al., 2018). Moreover, the
pharmacological sensitivity of NaV channels for toxins may be
modulated by PTMs on the NaV channel protein itself (Liu et al.,
2012). Indeed, palmitoylation of rat NaV1.2 subtype was reported
to modify the subtype sensitivity to phrixotoxin (PaurTx)-3 and
ProTx-II, producing a 10-fold increased affinity by binding to
simultaneously the voltage-sensor domain and the surrounding
membrane, without affecting ProTx-I binding (Bosmans et al.,
2011; Henriques et al., 2016). PTMs could thus be of major
interest and have to be also considered as potential therapeutic
targets.

GpTx-1, HwTx-IV, HnTx-IV, HnTx-III, Pn3a, JzTx-34,
ProTx-II and JzTx-V were tested on rodent DRG neurons,
revealing high affinity for TTX-sensitive NaV channels associated
with high selectivity against TTX-resistant NaV channels in
mouse and rat DRG neurons (Liu et al., 2002, 2013; Peng et al.,
2002; Deuis et al., 2016, 2017a; Flinspach et al., 2017; Goncalves
et al., 2018; Moyer et al., 2018; Zeng et al., 2018). The action
of HwTx-IV, meanwhile, is not equivalent on TTX-sensitive
NaV channels of rat and mouse DRG neurons, the IC50 being
4-fold lower in rat neurons likely due to the presence of high
sensitive NaV subtypes that are poorly or not expressed in
mouse DRG neurons (Peng et al., 2002; Goncalves et al., 2018).
Electrophysiological recordings under physiological conditions
or quantification of altered expression of some proteins relevant
in pain processing, in DRG neurons after toxin application,
allowed characterizing the toxin potential analgesic effect at
the cellular level. Hence, in DRG neurons, a JzTx-V mutant
[CyA-JzTx-V (M6J-E17X-I28G), i.e., AM-0422] and ProTx-II
were reported to inhibit or diminish action potential firing
induced by chemical (capsaicin) and mechanical stimulation, or
to alter spinal nociceptive processing induced by burn injury,
respectively (Moyer et al., 2018; Torres-Perez et al., 2018).
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Acute pain is a physiological function associated with injury
that is essential for human survival. This kind of pain is normally
short-lasting (<3 months). Beyond this period of time and
without real injury, pathologic chronic pain is considered to
result from damage in the transmission pain system itself. Several
bioassays are available to appraise acute or chronic pain using
standard or specific rodent models. Hence, mechanical and
thermal stimulation assays or global gait analysis are classical
to evaluate acute pain. The manual or electronic von Frey
filament (or paw pressure) test is commonly used to assess
to mechanical pain, while tail flick or water immersion and
hot/cold plate tests are dedicated to assess to thermal pain.
In these tests, the pain is provoked by pressure or extreme
temperature on healthy rodent models. The inflammatory
(caused by subcutaneously injected formalin, carrageenan or
Freund’s adjuvant compound, or intraperitoneally injected acid
acetic) and neuropathic (caused by nerve constriction or ligation
injury, chemotherapy-induced neuropathy) chronic pain are
usually evaluated with the above mentioned mechanical and
thermal stimulation assays, associated to a global evaluation
of animal behavior. However, under these conditions, the
pathological pain transmission system induced by inflammatory
proteins or nerve injury is evaluated (Bridges et al., 2001; Mogil,
2009).

Various analgesic toxins have been proposed as candidates
to replace opioids, because of their well-known side-effects.
Hence, HwTx-IV, HnTx-IV, Pn3a and ProTx-II were shown to
decrease pain at the level of morphine relief, in a dose-depending
manner, in neuropathic (mainly spared nerve injury and diabetic
neuropathy) and all inflammatory pain models, revealing a real
evidence of their analgesic potential as drugs (Liu et al., 2014a,b,
Tanaka et al., 2015; Deuis et al., 2017a; Flinspach et al., 2017).
Pn3a and the ProTx-II mutant JNJ63955918 were also described
as being effective on acute thermal pain tests (Deuis et al.,
2017a; Flinspach et al., 2017). Despite the large number of
pain tests, a new and original pharmacological one was recently
proposed. It consists in specifically inhibiting fast inactivation
and increasing peak current associated to NaV1.7 subtype, by
the local or systematical injection of OD1 scorpion toxin whose
(EC50) being in the nanomolar range (Deuis et al., 2016). This test
has the advantages of being less invasive and more sensitive than
neuropathic and inflammatory tests. Indeed, only a low amount
of toxin candidate to be evaluated is necessary to relieve pain,
as exemplified by GpTx-I, Cd1a, m3-HwTx-IV and Pn3a (Deuis
et al., 2016; Cardoso et al., 2017; Rahnama et al., 2017; Sousa et al.,
2017). However, the question of lack of physiological relevance of
this test may be raised.

The best galenic form to make the patients compliant with
their treatment is the pills for oral administration. However,
in the pain tests, NaV1.7 potential analgesic peptide toxins are
often administrated by peripheral routes, such as subcutaneous
(intraplantar), intraperitoneal or intramuscular injection) or
intrathecal route. ProTx-II and its mutant, despite being the
best candidate toxins with the highest affinity and selectivity, are
unable to pass through the BNB (see Figure 2) and inhibit action
potential transmission along nerves, except if a disruption of the
perineurial barrier occurs (Schmalhofer et al., 2008; Hackel et al.,

2012). After 24 h of intravenous infusion in vivo, ProTx-II can
access DRG neurons but not sciatic nerves and CNS tissues (Liu
et al., 2018). Thus, the fenestrations in Blood-Glangia-Barrier
(BGB, see Figure 2) are the entry doors for large peptide toxins
but their spreading to dorsal root of spinal cord and to distal
nerve endings will depend on BNB. The intrathecal route is one
possibility to bypass both the BBB and BNB, showing analgesic
effects of ProTx-II in rodent pain tests with the risk of the post-
lumbar puncture syndrome (headache down to the shoulders,
nausea, vertigo and tinnitus) or the effects of the chemical
compound itself if the injection is failed. The other possibility
consists of toxin co-injection with hypertonic saline solution to
disturb BNB (decrease claudin-1 mRNA, one protein responsible
for tight-junction) and lead to toxin penetration (Hackel et al.,
2012; Tanaka et al., 2015; Flinspach et al., 2017).

CONCLUSION

Venoms are usually associated with a lethal effect due to
the presence in this complex mixture of toxins that have
been selected during the evolution process to target crucial
physiological systems of the preys. Nevertheless, due to their
high affinity and selectivity profiles for specific receptors and
ion channels involved in various pathophysiological processes,
peptide toxins may be exploited as pharmacological tools and/or
therapeutic drugs. Currently, six venom-derived drugs are used
for the treatment of hypertension, acute coronary syndromes or
diabetes, but the most promising therapeutic area is probably the
pain and more precisely, the chronic pain. One peptide, isolated
from cone snail venom, has been approved by FDA more than
14 years ago for the treatment of severe chronic pain (ziconotide),
and several drug-leads, mainly issue from spider venoms, are
actually in development. Among the various receptors and ion
channels involved in pain transmission and which are targeted
by venom peptides, the NaV1.7 subtype is one of the most
promising due to its peripheral location in DRG neurons which in
addition present facilitated permeability to high molecular weight
drugs. Furthermore, human genetic diseases, associated with
NaV1.7 mutations and leading to painless/painful phenotypes,
validate this subtype as a pain target. Several spider toxins have
been recently identified and characterized for their analgesic
property due to their interactions with NaV1.7. Furthermore,
their engineering was associated with the optimization of their
pharmacological (affinity for NaV1.7 and selectivity profile) and
biodistribution properties, reinforcing the potential of these
venom-derived peptides as leads for therapeutic development.
Finally, new paradigm used in the venom-peptide discovery,
based on transcriptomic/proteomic technologies and on a toxin-
driven approach, should increase the diversity of toxins identified
and the rate of new drug lead discovery, more particularly for the
treatment of chronic pain.
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