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Objectives: The purpose of this study is to investigate the anti-inflammatory activity

of a hexa-herbal Chinese formula (HHCF) using spontaneously immortalized human

epidermal keratinocytes (HaCaT) and to predict the active components by correlating

the LC-MS-based metabolite profiles of the HHCF and its 12 varied formulae with their

anti-inflammatory activity using partial least-squares regression analysis.

Methods: The HHCF comprises the rootstock of Scutellaria baicalensis, Rheum

tanguticum, Sophora flavescens, the root bark of Dictamnus dasycarpus, the bark

of Phellodendron chinense, and the fruit of Kochia scoparia in equal proportions. Its

12 varied formulae were developed by uniform design with varied proportions of the

component botanical drugs. The decoctions of the HHCF and its 12 varied formulae

were profiled using liquid chromatography (LC) combined with triple quadrupole mass

spectrometry (MS) and their effects on tumor necrosis factor (TNF)-α -plus-interferon

(IFN)-γ-induced C-C motif chemokine ligand 17 (CCL17) production in HaCaT were

investigated. Partial least-squares regression analysis was conducted to assess the

relationship between the LC-MS-based metabolite profiles of the decoctions to

anti-CCL17 production in HaCaT.

Results: Compounds with potential to promote anti-CCL17 production in HaCaT were

identified (e.g., berberine, pyrogallol and catechin dimers) as a result of the developed

model and their potential to act as anti-inflammatory agents were also supported by

relevant literature.

Conclusion: This promising approach should assist in the screening process of

active components from complex Chinese herbal preparations and will better inform the

necessary pharmacological experiments to take forward.

Keywords: CCL17, Chinese herbal medicine formula, chemometric, HaCaT, inflammation, LC-MS-based

metabolite profiles, partial least-squares regression
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INTRODUCTION

Chinese medicine views a disease condition as the result of
different syndromes and treats the diagnosed disorders using
a combination of botanical drugs—a formula that has been
optimized based on centuries of clinical experiences. The
formulae of Chinese herbal medicine (CHM) act as mixture-
based libraries for development of multicomponent therapeutic
agents that may interact favorably with multiple targets, to
achieve therapeutic effects with fewer side effects (Medina-
Franco et al., 2013; Koeberle andWerz, 2014). Instead of isolating
and testing pharmacological activities of individual chemical
components of a CHM drugs or formulae, here we use a strategy
in which we first want to understand the exact composition used
in one specific preparation (in this case an aqueous extract).
This strategy has been used far less commonly and offers the
opportunity to understand the composition and the effects of
the preparations used. Advancements in analytical techniques
open up the possibility of profiling a multitude of small molecule
metabolites in the complex CHM extracts. These fingerprints of
CHM extracts can potentially be used to assess the composition
of preparations and consistency of chemical constituents from
batch-to-batch extracts and to ensure reproducible clinical effects
by monitoring the bioactive components. Specifically, correlating
metabolites profiles of CHM formulae to their bioactive effects
using chemometrics has become an alternative approach to
investigate the bioactive ingredients of CHM (Xu et al., 2014).
For example, Wang et al. explored the bioactive components
of a CHM formula by analyzing the relationship between the
peaks area of prominent peaks in its HPLC fingerprints and
the biological effects in vivo (Wang et al., 2014). While Su
et al. explored the bioactive components of a CHM formula by
analysing the relationship between the peak areas of prominent
peaks in its GC fingerprints and the biological effects in vitro (Su
et al., 2008).

In the present work, a method of predicting the active
components in a Chinese herbal formula was used by correlating
the metabolites in the LC-MS-based metabolite profiles of
the Chinese herbal formula and related formulae to their
respective levels of in vitro activity using chemometrics. In
previous published works, only peak areas of characteristic
peaks were used as the independent variables in building
the multivariate regression models. Here, metabolites are
selected based on their ion intensity levels in the extracts in
descending order. Ion intensities of compounds in the LC-MS
fingerprints were used as the independent variables that are
more specific than peak areas in representing the metabolites in
the extracts. The specific preparation is a hexa-herbal Chinese
formula (HHCF) comprising rootstock of Scutellaria baicalensis
Georgi (Lamiaceae; SCU), Rheum tanguticum Maxim. ex Balf.

Abbreviations: CHM, Chinese herbal medicine; DIC, the root bark of Dictamnus

dasycarpus Turcz.; HaCaT, spontaneously immortalized human epidermal

keratinocytes; HHCF, hexa-herbal Chinese formula; KOC, the fruit of Kochia

scoparia (L.) Schrad.; PHE, the bark of Phellodendron chinensisC.K. Schneid.; PLS-

R, partial least-squares regression; RC, regression coefficient; RHE, the rootstock

of Rheum tanguticumMaxim. ex Balf.; SCU, the rootstock of Scutellaria baicalensis

Georgi; SOP, the rootstock of Sophora flavescens Aiton.

(Polygonaceae; RHE), Sophora flavescens Aiton (Fabaceae; SOP),
root bark of Dictamnus dasycarpus Turcz. (Rutaceae; DIC), bark
of Phellodendron chinense C. K. Schneid. (Rutaceae; PHE), and
fruit of Kochia scoparia (L.) Schrad. (Amaranthaceae; KOC). The
HHCF consists of four botanical drugs that are used in the “San
Huang Xi Ji” formula. “San Huang Xi Ji” is a skin wash prepared
by decocting equal amounts of PHE, RHE, SCU and SOP in water
and is indicated for inflammatory skin conditions associated with
pathogenic-heat, dampness and wind such as atopic dermatitis
(Liang, 1993). In the HHCF, DIC and KOC are added to the “San
Huang Xi Ji” formula in order to enhance the therapeutic effect.
The actions of each botanical drugs in the HHCF according to the
concepts of TCM are summarized in Table 1.

To explore the active components of the HHCF, the major
metabolites in the LC-MS-based metabolites profiles of the
HHCF and its 12 varied formulae decoctions were correlated with
their effects on TNF-α -plus-IFN-γ-induced CCL17 production
in HaCaT, using partial least-squares regression (PLS-R).

MATERIALS AND METHODS

Materials
All botanical drugs were purchased from commercial Chinese
herbal medicine stores in China. SCU, RHE, SOP, DIC, KOC,

TABLE 1 | Actions of botanical drugs in the HHCF.

Pattern Botanical drugs in the HHCF

Clearing heat and

dry-dampness

Dried rootstock of Sophora flavescens Aiton,

Dried rootstock of Scutellaria baicalensis Georgi

Dried bark of Phellodendron chinense C. K. Schneid.

Removing wind to stop

itchiness

Dried root bark of Dictamnus dasycarpus Turcz.

Dried fruit of Kochia scoparia (L.) Schrad.

Clearing heat and toxin Dried rootstock of Rheum tanguticum Maxim. Ex Balf.

Dried rootstock of Scutellaria baicalensis Georgi

Dried bark of Phellodendron chinense C. K. Schneid.

Dried root bark of Dictamnus dasycarpus Turcz.

TABLE 2 | Percentage of 6 botanical drugs in the 12 varied formulae of the HHCF

under uniform design.

SOP (%) SCU (%) PHE (%) RHE (%) DIC (%) KOC (%)

V1 47 17 12 4 1 19

V2 34 12 8 18 4 25

V3 27 6 1 53 3 11

V4 22 1 31 5 12 29

V5 18 33 9 13 10 17

V6 14 19 3 41 10 12

V7 12 10 39 3 20 17

V8 9 3 20 18 31 19

V9 7 51 3 21 13 5

V10 5 25 46 1 19 5

V11 3 14 23 13 42 6

V12 1 6 10 38 43 2
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FIGURE 1 | The schematic diagram of the proposed approach. N9, Nll, N13, N21 and N27, and P14, P16, PIS, P26, and P31 are the top 5 most abundant

metabolites in the HHCF in negative and positive ionization mode, respectively. Chemical structures of these metabolites are shown in Figure 2.
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TABLE 3A | Putatively identified compounds in the HHCF by LC-MS/MS in positive ionization mode.

Rt

(min)

No. m/z Adduct ion(s) Source Identity (CAS number)

3.36 P1 191 [M+H]+ SOP Cytisine (485-35-8)

P2 196 [M]+ PHE Atraric acid (4707-47-5)

P3 205 [M+H]+ SOP N-Methylcytisine (6220-47-9)

P4 215 [M]+ RHE Mecoprop (93-65-2)

P5 261 [M+H]+ SOP Baptifoline (732-50-3)

3.75 P6 265 [M+H]+ SOP 5α-Hydroxymatrine (3411-37-8)/9α-Hydroxymatrine (88509-92-6)

4.15 P7 265 [M+H]+ SOP 14β-Hydroxymatrine (183074-18-2)

4.40 P8 180 [M]+ PHE Candicine (6656-13-9)

4.75 P9 245 [M+H]+ SOP Anagyrine (486-89-5)

P10 265 [M+H]+ SOP 5α-Hydroxymatrine (3411-37-8)/9α-Hydroxymatrine (88509-92-6)

5.00 P11 247 [M+H]+ SOP Isosophocarpine (68398-59-4)

5.52 P12 263 [M+H]+ SOP (-)-9α-hydroxy-7, 11-dehydromatrine (1257392-34-9)

5.72 P13 192 [M+H]+ PHE Noroxyhydrastinine (21796-14-5)

P14 249 [M+H]+ SOP Allomatrine (641-39-4)/Isomatrine (17801-36-4)/Matrine

(519-02-8)/Sophoridine (6882-68-4)

6.47 P15 247 [M+H]+ SOP Sophocarpine (6483-15-4)

P16 249 [M+H]+ SOP Allomatrine (641-39-4)/Isomatrine (17801-36-4)/Matrine

(519-02-8)/Sophoridine (6882-68-4)

8.02 P17 263 [M+H]+ SOP Oxysophocarpine (26904-64-3)

P18 265 [M+H]+ SOP Oxymatrine (16837-52-8)/Oxysophoridine (1217501-78-4)

P19 266 [M+NH4]
+ SOP Lupanine (550-90-3)

10.42 P20 247 [M+H]+ SOP (+)-7,11-Dehydromatrine (46862-63-9)

11.30 P21 263 [M+H]+ SOP 9α-Hydroxysophocarpine (220961-52-4)

11.48 P22 263 [M+H]+ SOP Leontalbinine N-oxide (147731-96-2)

P23 265 [M+H]+ SOP Oxymatrine (16837-52-8)/Oxysophoridine (1217501-78-4)

11.88 P24 243 [M+H]+ / DIC Dasycarpusenester A (1419709-60-6)

[M]+ O-Ethylnor-γ-fagarine (105988-99-6)

16.77 P25 314 [M]+ PHE (-)-Oblongine (152230-57-4)

20.08 P26 342 [M+H]+ PHE Phellodendrine (6873-13-8)

22.08 P27 344 [M+H]+ PHE Tembetarine (18446-73-6)

22.91 P28 342 [M+H]+ PHE Magnoflorine (2141-09-5)

26.84 P29 314 [M+H]+ PHE Evoeuropine (524-20-9)

31.32 P30 356 [M+H]+ PHE Menisperine (25342-82-9)

52.87 P31 336 [M]+ PHE Berberine (2086-83-1)

and PHE were sourced from Hebei (Chengde), Gansu (Maqu
county), Hebei (Chengde), Liaoning (Anshan), Hebei (Chengde),
and Sichuan (Dujiangyan), respectively, and were authenticated
by the first author based on her experience with CHMs. Samples
were deposited at the School of Pharmacy Medicinal Plant
Herbarium and are numbered as JC1–6. MS grade formic acid
and LC-MS grade acetonitrile were obtained from Sigma-Aldrich

and LC-MS grade water was obtained from Fisher Scientific.

HaCaT were obtained from Cell Lines Service, Eppelheim,
Germany. Dulbecco’s modified Eagle medium (DMEM),

Ca2+ and Mg2+ -free phosphate buffer saline (PBS) and 100
U/mL penicillin and 100µg/mL streptomycin were obtained

from Gibco. 10% heat inactivated fetal bovine serum, DMSO

and 3-(4,5-dimethylthizaol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) were obtained from Sigma-Aldrich. Human
TNF-α and IFN-γ were obtained from Peprotech. The
human CCL17 DuoSet enzyme linked-immunosorbent

assay (ELISA) kit was obtained from R&D
Systems.

Preparation of the HHCF and the 12 Varied
Formulae Decoctions
All botanical drugs, except SCU, were blended into a powder
and SCU was cut into small blocks of 1 × 1 cm (powdered
SCU will result in a too viscous extract that cannot be filtered)
before the decoction process. For the HHCF decoction, the same
ratio of each botanical drug (i.e., SCU, RHE, SOP, DIC, PHE,
and KOC) was used. A six-factor, 12-level uniform design was
applied to establish differences among the 12 varied formulae of
the HHCF (i.e., V1-V12; Table 2). Table 2 was developed based
on the U12 (125) uniform deign table and method described in
Fang (1994).

For each formula, botanical drugs were first macerated in
distilled water (at a volume of 5 fold the dry weight of botanical
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TABLE 3B | Putatively identified compounds in the HHCF by LC-MS/MS in negative ionization mode.

Rt

(min)

No. m/z Adduct ion(s) Source Identity (CAS number)

2.34 N1 193 [M-H]− SCU Glucuronic acid (6556-12-3)

2.46 N2 191 [M-H]− PHE Quinic acid (77-95-2)

N3 223 [M-H]− SOP Sinapic acid (530-59-6)

3.50 N4 191 [M-H]− PHE Citric acid (77-92-9)

N5 331 [M-H]− RHE Galloylglucose [i.e., 1-O-Galloyl-β-D-glucose (13405-60-2) or

4.08 N6 331 [M-H]− RHE 6-O-Galloyl-β-D-glucose (34781-46-9)]/Glucopyranosyloxyl gallic acid [i.e. Gallic

4.61 N7 331 [M-H]− RHE acid-3-O-β-D-glucoside (91984-84-8) or Gallic acid-4-O-β-D-glucoside

(84274-52-2)]

5.35 N8 125 [M-H]− RHE Pyrogallol (87-66-1)

N9 169 [M-H]− RHE Gallic acid (149-91-7)

N10 331 [M-H]− RHE Galloylglucose [i.e. 1-O-Galloyl-β-D-glucose (13405-60-2) or

6-O-Galloyl-β-D-glucose (34781-46-9)]/Glucopyranosyloxyl gallic acid [i.e. Gallic

acid-3-O-β-D-glucoside (91984-84-8) or Gallic acid-4-O-β-D-glucoside

(84274-52-2)]

8.71 N11 255 [M-H]− SOP Piscidic acid (35388-57-9)

13.88 N12 577 [M-H]− RHE Procyanidin B (15514-06-4)

16.48 N13 289 [M-H]− RHE Catechin (154-23-4)

N14 353 [M-H]− PHE Chlorogenic acid (327-97-9)

18.15 N15 367 [M-H]− PHE 3-O-Feruloylquinic acid (1899-29-2)

21.10 N16 325 [M-H]− RHE 4-(4′-Hydroxylphenyl)-2-butanone 4′-O-β-D-glucoside (38963-94-9)

N17 415 [M+Na-2H]− RHE 6-Hydroxymusizin-8-O- β-D-glucoside(23566-96-3)

22.77 N18 289 [M-H]− RHE Epicatechin (490-46-0)

N19 337 [M-H]− PHE p-coumaroylquinic acid (87099-71-6/93451-44-6)

24.72 N20 303 [M-H]− SCU 2′,3,5,6′,7-Pentahydroxyflavanone (1402054-86-7/80366-15-0)

26.26 N21 367 [M-H]− PHE 5-O-Feruloylquinic acid (40242-06-6)

26.65 N22 389 [M-H]− RHE Resveratrol-4′-O-β-D-glucoside (38963-95-0)/Resveratrol 3-O-β-glucoside

(27208-80-6)

32.06 N23 301 [M-H]− SCU 3,5,7,2′,6′-Pentahydroxyflavone (92519-95-4)

34.57 N24 441 [M-H]− RHE Epicatechin 3-O-gallate (1257-08-5)

N25 477 [M-H]− RHE Isolindleyin (87075-18-1)

N26 547 [M-H]− SCU Chrysin-6-C-arabinosyl-8-C-glucoside (185145-33-9/ 1884390-97-9)

36.56 N27 477 [M-H]− RHE Lindleyin (59282-56-3)

N28 545 [M-H]− RHE Rhein-8-O-D-[6′-O-(3′′-methoxylmalonyl)] glucoside (1333328-11-2)

37.25 N29 547 [2M-H]− SCU Chrysin-6-C-glucosyl-8-C-arabonoside (185145-34-0/ 1884390-98-0)

38.43 N30 541 [M-H]− RHE Resveratrol-4′-O-β-D-(2′′-O-galloyl) glucoside (105304-51-6)

39.20 N31 541 [M-H]− RHE Resveratrol-4′-O-β-D-(6′′-O-galloyl) glucoside (64898-03-9)

45.08 N32 301 [M-H]− SCU Trihydroxy-methoxyflavanone (92519-96-5)

46.91 N33 431 [M-H]− RHE Emodin-1-O-β-D-glucoside (38840-23-2)/Emodin-8-O-β-D-glucoside

(23313-21-5)/Aloe-emodin 8-O-β-D-glucoside

(33037-46-6)/Aloe-emodin-3-CH2-O-β-D-glucoside (50488-89-6)

55.48 N34 481 [M+Cl]− SOP (-)-Maackiain-3-O-glucoside (6807-83-6)

58.94 N35 431 [M-H]− RHE Emodin-1-O-β-D-glucoside (38840-23-2)/Emodin-8-O-β-D-glucoside

(23313-21-5)/Aloe-emodin 8-O-β-D-glucoside

(33037-46-6)/Aloe-emodin-3-CH2-O-β-D-glucoside (50488-89-6)

63.95 N36 233 [M-H]− RHE (5Z)-6-Hydroxy-3,4-dioxo-6-phenyl-5-hexenoic acid (NA)

71.02 N37 269 [M-H]− SCU 5,6,7-Trihydroxyflavone (491-67-8) OR 5,7,8-Trihydroxyflavone (4443-09-8)

drug used) for 1 h and then heated under reflux for 95min. The
extracted solution was filtered through nylon cloth of pore size
∼0.1mm, followed by centrifugation at 10,000 rpm for 5min.
The collected supernatant was lyophilized.

LC-MS/MS Profiling of the HHCF and Its 12
Varied Formulae
Lyophilized decoctions of the HHCF and its 12 varied formulae
were dissolved in LC-MS grade water to achieve a concentration
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FIGURE 2 | The top 5 most abundant metabolites in the HHCF in positive and negative ionization mode.

of 20 mg/mL, centrifuged at 10,000 rpm for 10min and filtered
through 0.22µm filter membrane before analysis. They were
subsequently profiled by LC-MS using the method described in
the “LC-MS/MS analysis” section of the previous publication
(Chang et al., 2016).

Partial Least-Squares Regression (PLS-R)
Analysis
The abundance of major metabolites in the HHCF and its 12
varied formulae were used as the independent variables. The
reciprocal levels of CCL17 produced by HaCaT after treatment
with the HHCF and its 12 varied formulae at a concentration
of 60µg/mL were used as the dependent variables. At this
concentration, all tested samples demonstrated statistically
significant CCL17 inhibition in HaCaT stimulated with TNF-
α-plus-IFN-γ. The independent and dependent variables were
mean-centered and scaled and were subsequently imported to

JMP Pro 12 software from SAS to build the PLS-R model. Leave-
one-out cross validation was carried out to select the optimal
number of latent variables for the PLS-R analysis based on the
root-mean-square error of cross-validation (RMSECV) value.

Cell Culture
The HaCaT (Boukamp et al., 1988) were cultured in DMEM
containing 10% heat inactivated fetal bovine serum and 100
U/ml penicillin and 100µg/mL streptomycin, in 5% CO2 at 37
(Turksen, 2004).

Enzyme Linked Immunosorbent Assay
(ELISA)
HaCaT were seeded into a 96-well plate (200 µl per well of
2 × 104 cells/mL). After 24 h, the medium was replaced with
serum-free medium and cells were cultured for another 24 h.
The medium was then removed and cells were treated with
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FIGURE 3 | TICs of the 12 varied formulae (Vl-V12) of the HHCF in positive ionization mode.

fresh serum-free medium containing the test sample. After 5min,
30 ng/mL TNF-α and 30 ng/mL IFN-γ were added and the
cells were cultured for 24 h. After incubation, the medium was
collected and analyzed for CCL17 by ELISA according to the
manufacturer’s instruction (Fujita et al., 2011).

Cell Viability Assay
Cells were assessed for viability using the 3-(4,5-dimethylthizaol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. HaCaT
were seeded into a 96-well plate (200 µL per well of 2 × 104

cells/mL). After 24 h, the medium was replaced with serum-free
medium and cells were cultured for another 24 h. The medium
was then replaced with fresh medium containing the test sample.
After incubation for 24 h, the medium was removed and cells

were washed once with PBS and exposed to 0.5 mg/mL of MTT
for 3 h, in 5%CO2 at 37

◦C. Cells were then washed once with PBS
and the formazan precipitate was dissolved in DMSO (200 µL)
and the absorbance at 570 nm was measured using a microplate
reader. The percentage of cell viability was assessed as [mean
absorbance in tested wells]/[mean absorbance in control wells]×
100 (Qi et al., 2009). Assays were performed with two replicates
in three independent experiments (n= 3).

RESULTS AND DISCUSSION

HHCF and Its 12 Varied Formulae
The findings of this study underline the power of LC-MS-
based metabolite profiling, coupled with PLS-R to predict
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FIGURE 4 | TICs of the 12 varied formulae (Vl-V12) of the HHCF in negative ionization mode.

potential active components in CHM decoctions. The schematic
diagram of this study is shown in Figure 1. The PLS-
R model was developed based on the hypothesis that in
vitro activity of CHM decoctions varied with differences in
chemical components. To create the differences, 12 varied
formulae of the HHCF were developed by a uniform mixture
design approach. Uniform mixture design seeks to spread
the experimental points uniformly over the design space
and hence, facilitate the exploration of the relationship
between the in vitro biological response and the chemical
components with fewer number of runs when compared to
other experimental design methods such as factorial design
(Liang et al., 2001; Fang and Lin, 2003).

LC-MS/MS Metabolite Profiling
In previous publication (Chang et al., 2016), the chemical
compounds characterized in the HHCF in both positive
(Table 3A) and negative (Table 3B) modes were putatively
identified based on mass measurement and characteristic
fragment ions and by reference to the mass and MS/MS
spectra of reported compounds. The sources of these
compounds were defined by matching the retention times
and masses of ions detected in the HHCF decoction and
the single botanical drug decoctions, using an in-house
developed EXCEL template. Figures S1, S2 show the total
ion count (TIC) chromatograms of the single botanical drug
decoctions (i.e., DIC, KOC, PHE, RHE, SCU, and SOP) in
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FIGURE 5 | Effect of the HHCF (15, 30, 60, and 120 µ/ml) and its twelve varied formulae (Vl-V12; 30 and 60 µ/ml), SB202190 monohydrochloride hydrate (positive

control; 2.5 and 5µ) on TNF-a plus IFN-y-induced CCL17 production in HaCaT. Data are represented as mean ± standard error of three independent experiments (n

= 3). Statistical significance was determined using one-way analysis of variance with Dunnett’s multiple comparisons test. *p < 0.05 vs. TNF-a plus IFN-y treatment

alone.

positive and negative modes, respectively. The top 5 most
abundant compounds in the HHCF in positive ionization
mode are P14(allomatrine/ isomatrine/matrine/sophoridine),
P16 (allomatrine/isomatrine/matrine/sophoridine), P26
(phellodendrine), and P31 (berberine). The top 5 most abundant
compounds in the HHCF in negative ionization mode are N9
(gallic acid), N11(piscidic acid), N13 (catechin/epicatechin), N18
(catechin/epicatechin), N21(5-O-feruloylquinic acid), and N27
(lindleyin). The chemical structures of these compounds are
shown in Figure 2.

The TICs of the 12 varied formulae of the HHCF in
positive and negative ionization modes are shown in Figures 3,4,
respectively. The abundance of the characterized metabolites in
the HHCF and its 12 varied formulae decoctions are shown in
Table S1. These values of abundance were mean-centered and
scaled (Table S2) and were used as the independent variables for
building the PLS-R model.

Effects of the HHCF and Its 12 Varied
Formulae on CCL17 Production in HaCaT
Stimulated With TNF-α-Plus-IFN-γ
CCL17 have previously been demonstrated to be linked to
the pathogenesis of atopic dermatitis. They have been detected
in lesional AD skin but not in normal or non-lesional AD
tissue (Vestergaard et al., 2000; D’Ambrosio et al., 2002). In
addition, increased serum levels of CCL17 in individuals with
AD were correlated with disease severity (Kakinuma et al., 2001).
CCL17 are ligands for the CC chemokine receptor 4 (CCR4)
that are primarily expressed on Th2 lymphocytes (Saeki and
Tamaki, 2006). Hence, CCL17 contribute to the infiltration of
Th2 lymphocytes in skin inflammation sites. TheHCCF inhibited

the production of CCL17 in HaCaT stimulated with TNF-α-
plus-IFN-γ (Figure 5). To investigate which compounds in the
LC-MS metabolites profile of the HHCF were most likely to be
the contributors to the observed CCL17 inhibition, the effects of
the 12 varied formulae (V1-V12) of the HHCF against CCL17
production in HaCaT were also tested. The HHCF decoction
and its 12 varied formulae showed different degree of CCL17
inhibition in the HaCaT stimulated with TNF-α-plus-IFN-γ
(Figure 5). Results from the MTT assay demonstrated that
the decreased CCL17 levels were not due to any toxic effects
(Figure S3) of the samples on the cells.

The levels of CCL17 produced by TNF-α-plus-IFN-γ-
stimulated HaCaT after treatment with HHCF and its 12 varied
formulae (V1-V12) decoctions at a concentration of 60µg/ml
were used as the dependent variables for building the PLS-R
model. A lower absolute value of CCL17 represents a higher
inhibition effect, thus, a reciprocal was applied to the obtained
data. These data were then centered and scaled before model
building (Table S3).

Prediction of Potential Active Compounds
in HHCF Using PLS-R
Compounds in the LC-MS metabolites profile of the HHCF
that were most likely to be the contributors to the observed
CCL17 inhibition were predicted using PLS-R. PLS-R analysis
was used as (1) the number of dependent variables (response;
Table S3) was less than the number of independent variables (also
known as predictor variable; Table S2) and (2) this approach
uses linear combinations of the independent variables and avoids
the multicollinearity problem among the variables (Miller and
Miller, 2010). The number of latent variables for the PLS-R
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TABLE 4 | Relevance [regression coefficient (RC)] between the chemical

compounds putatively identified in the LC-MS profile of the HHCF decoction and

CCL17 response.

Ingredients PLS-RC Ingredients PLS-RC

P1 −0.0117 N1 −0.0655

P2 −0.0417 N2 0.0559

P3 0.0001 N3 0.0469

P4 0.0722 N4 −0.0379

P5 0.0071 N5 0.0724

P6 −0.1063 N6 0.0036

P7 −0.1002 N7 0.0763

P8 −0.0453 N8 0.0842

P9 −0.02 N9 0.0513

P10 −0.0445 N10 −0.026

P11 −0.0627 N11 −0.0415

P12 −0.0358 N12 0.0828

P13 0.0183 N13 0.0491

P14 0.0047 N14 −0.0203

P15 0.0205 N15 −0.0309

P16 0.0184 N16 0.0947

P17 0.0348 N17 −0.0623

P18 0.0066 N18 −0.0331

P19 0.005 N19 −0.0807

P20 −0.0046 N20 −0.0957

P21 −0.0263 N21 −0.0066

P22 −0.0186 N22 0.0726

P23 −0.0097 N23 0.0131

P24 0.0276 N24 −0.0403

P25 −0.0003 N25 −0.0759

P26 −0.0119 N26 −0.0036

P27 0.0069 N27 0.0685

P28 −0.0128 N28 −0.0059

P29 0.0016 N29 0.0273

P30 0.0149 N30 0.0742

P31 0.0823 N31 0.0765

N32 −0.0016

N33 −0.0114

N34 −0.0237

N35 0.0212

N36 −0.0144

N37 −0.0658

The top five contributors in the HHCF toward the CCL17 inhibition in the PLS-R model

were underlined.

analysis was selected based on the RMSECV value and the
percentage of variance explained by the PLS-R model. The
number of latent variables for the PLS-R analysis was selected
to be 9, representing the point of final drop in the prediction
error before the curve reaches a plateau (Figure S4). The 9
latent variables in the PLS-R model explained 100% of the
variation and 88.19% of the variance was explained by the
regressors (Table S4). Table 4 shows the regression coefficient of
the independent variables calculated using PLS-R analysis. The
positive and negative values of the regression coefficient (RC)

indicate a positive and negative contribution to the response
(i.e., CCL17 inhibition), respectively. Additionally, a higher
absolute value represents a larger contributory effect (Wang et al.,
2014). The top five contributors in the HHCF that promote
CCL17 inhibition in the PLS-R model were P31 (berberine), N8
(pyrogallol), N12(catechin dimers), N16 (4-(4′-hydroxyphenyl)-
2-butanone 4′-O-β-D-glucoside) and N31 (resveratrol 4′-O-
β-D-(6′′-O-galloyl) glucoside). Other glycosides of resveratrol
i.e., N30 (resveratrol-4′-O-β-D-(2′′-O-galloyl) glucoside) and
N22 (resveratrol-4′-O-β-D-glucoside OR resveratrol 3-O-β-
glucoside) in the HHCF are also important contributors to
the CCL17 inhibition, ranking 7th and 8th, respectively. Of
these, berberine, pyrogallol, catechin dimers, and resveratrol 3-
O-β-glucoside have shown anti-inflammatory effects in various
studies. Berberine was observed to inhibit the production of
proinflammatory cytokines interleukin (IL)-6 and chemokines
IL8 in HaCaT stimulated with sulfur mustard (Lang et al.,
2018) and their anti-inflammatory effects have been linked
to the inhibition of the nuclear factor-κB (NF-κB) signaling
pathway (Li et al., 2016). Catechin dimers (Andre et al., 2012)
and resveratrol 3-O-β-glucoside (Potapovich et al., 2011) have
also been shown to inhibit NF-κB activation in TNF- α-
stimulated-NF-κB/SEAP (Secreted alkaline phosphatase) HEK
293 cell lines and TNF-α-plus-IFN-γ-stimulated primary human
keratinocytes. Pyrogallol was shown to inhibit mRNA expression
of pro-inflammatory cytokines IL-6, chemokines (IL-8, CXCL1,
and CXCL3) and Intercellular adhesion molecules-1 (ICAM-
1) in cystic fibrosis bronchial epithelial cell lines (IB3-1
cells) stimulated with P. aeruginosa PAO1 (Nicolis et al.,
2008). Thus, these suggest the underlying mechanisms for
their respective potential anti-inflammatory roles in the HHCF
decoction.

CONCLUSION

In conclusion, an approach to predict potential active
components in a CHM formula was demonstrated by
correlating the LC-MS-based metabolite profiles of CHM
formulae to their anti-inflammatory activities based on
chemometrics. The results suggested that berberine, pyrogallol,
catechin dimers, 4-(4′-hydroxyphenyl)-2-butanone 4′-O-
β-D-glucoside and resveratrol 4′-O-β-D-(6′′-O-galloyl)
glucoside are the core anti-CCL17 bioactive ingredients
in the HHCF. Further evaluation and validation of the
activities of the predicted active components may support
the application of metabolite profiling of a CHM formula as
a quality control tool. This approach might also assist in the
optimization of CHM formulae and drug discovery. Though
the in vitro experimental studies were purely exploratory,
they also indicate potential areas for further research of
the HHCF as a botanical remedy for treatment of skin
inflammation.

The strategy employed in this research can facilitate a better
understanding of complex multiherbal preparations commonly
used not only in TCM but also in other local and traditional
medicines. While still time consuming it offers a strategy to
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clearly define the chemical basis of a complex preparation with
regards to the preparation’s pharmacological (or toxicological)
activity.

AUTHOR CONTRIBUTIONS

This study is a part of JC’s Ph.D. thesis defended in 2017. MH, JC,
andML designed the strategy of research,MH andML supervised
the project as first and second supervisor, respectively. JC

conducted the experiments and analyzed the data.MY supervised
the MS-based experiments. All authors read and commented on
earlier drafts of the MS.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphar.
2018.01091/full#supplementary-material

REFERENCES

Andre, C. M., Greenwood, J. M., Walker, E. G., Rassam, M., Sullivan, M., Evers,

D., et al. (2012). Anti-inflammatory procyanidins and triterpenes in 109 apple

varieties. J. Agric. Food Chem. 60, 10546–10554. doi: 10.1021/jf302809k

Boukamp, P., Petrussevska, R. T., Breitkreutz, D., Hornung, J., Markham,

A., and Fusenig, N. E. (1988). Normal keratinization in a spontaneously

immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 106, 761–771.

doi: 10.1083/jcb.106.3.761

Chang, J. B., Lane, M. E., Yang, M., and Heinrich, M. (2016). A hexa-

herbal TCM decoction used to treat skin inflammation: an LC-MS-based

phytochemical analysis. Planta Med. 82, 1134–1141. doi: 10.1055/s-0042-

108206

D’Ambrosio, D., Albanesi, C., Lang, R., Girolomoni, G., Sinigaglia, F.,

and Laudanna, C. (2002). Quantitative differences in chemokine receptor

engagement generate diversity in integrin-dependent lymphocyte adhesion. J.

Immunol. 169, 2303–2312. doi: 10.4049/jimmunol.169.5.2303

Fang, K. T. (1994). Uniform Design and Design Tables. Beijing: Science Press.

Fang, K. T., and Lin, D. K. J. (2003). “Uniform experimental designs and their

applications in industry,” in Handbook of Statistics, eds C. R. Rao, and R.

Khattree (Amsterdam: Elsevier Science), 131–170.

Fujita, T., Matsuoka, T., Honda, T., Kabashima, K., Hirata, T., and Narumiya,

S. (2011). A GPR40 agonist GW9508 suppresses CCL5, CCL17, and CXCL10

induction in keratinocytes and attenuates cutaneous immune inflammation. J.

Invest. Dermatol. 131, 1660–1667. doi: 10.1038/jid.2011.123

Kakinuma, T., Nakamura, K., Wakugawa, M., Mitsui, H., Tada, Y., Saeki,

H., et al. (2001). Thymus and activation-regulated chemokine in atopic

dermatitis: serum thymus and activation-regulated chemokine level is closely

related with disease activity. J. Allergy Clin. Immunol. 107, 535–541.

doi: 10.1067/mai.2001.113237

Koeberle, A., and Werz, O. (2014). Multi-target approach for natural

products in inflammation. Drug Discov. Today 19, 1871–1882.

doi: 10.1016/j.drudis.2014.08.006

Lang, S., Popp, T., Kriegs, C. S., Schmidt, A., Balszuweit, F., Menacher, G.,

et al. (2018). Anti-apoptotic and moderate anti-inflammatory effects of

berberine in sulfur mustard exposed keratinocytes. Toxicol. Lett. 293, 2–8.

doi: 10.1016/j.toxlet.2017.09.004

Li, Z., Zheng, J., Zhang, N., and Li, C. (2016). Berberine improves

airway inflammation and inhibits NF-kB signaling pathway in an

ovalbumin-induced rat model of asthma. J. Asthma 53, 999–1005.

doi: 10.1080/02770903.2016.1180530

Liang, J. H. (1993). Handbook of Traditional Chinese Dermatology, 2nd Edn.

Boulder, CO: Blue Poppy Press.

Liang, Y. Z., Fang, K. T., and Xu, Q. S. (2001). Uniform design and its applications

in chemistry and chemical engineering. Chemom. Intell. Lab. Syst. 58, 43–57.

doi: 10.1016/S0169-7439(01)00139-3

Medina-Franco, J. L., Giulianotti, M. A., Welmaker, G. S., and Houghten, R. A.

(2013). Shifting from the single to the multitarget paradigm in drug discovery.

Drug Discov. Today 18, 495–501. doi: 10.1016/j.drudis.2013.01.008

Miller, J. N., and Miller, J. C. (2010). Statistics and Chemometrics for Analytical

Chemistry.Harlow: Pearson Education.

Nicolis, E., Lampronti, I., Dechecchi, M. C., Borgatti, M., Tamanini, A.,

Bianchi, N., et al. (2008). Pyrogallol, an active compound from the

medicinal plant Emblica officinalis, regulates expression of pro-inflammatory

genes in bronchial epithelial cells. Int. Immunopharmacol. 8, 1672–1680.

doi: 10.1016/j.intimp.2008.08.001

Potapovich, A. I., Lulli, D., Fidanza, P., Kostyuk, V. A., De Luca, C.,

Pastore, S., et al. (2011). Plant polyphenols differentially modulate

inflammatory responses of human keratinocytes by interfering with

activation of transcription factors NFkB and AhR and EGFR-ERK

pathway. Toxicol. Appl. Pharmacol. 255, 138–149. doi: 10.1016/j.taap.2011.

06.007

Qi, X. F., Kim, D. H., Yoon, Y. S., Li, J. H., Jin, D., Teng, Y. C., et al.

(2009). Fluvastatin inhibits expression of the chemokine MDC/CCL22

induced by interferon-gamma in HaCaT cells, a human keratinocyte cell

line. Br. J. Pharmacol. 157, 1441–1450. doi: 10.1111/j.1476-5381.2009.00

311.x

Saeki, H., and Tamaki, K. (2006). Thymus and activation regulated

chemokine (TARC)/CCL17 and skin diseases. J. Dermatol. Sci. 43, 75–84.

doi: 10.1016/j.jdermsci.2006.06.002

Su, S., Hua, Y., Duan, J. A., Shang, E., Tang, Y., Bao, X., et al. (2008). Hypothesis of

active components in volatile oil from a Chinese herb formulation, ‘Shao-Fu-

Zhu-Yu decoction’, using GC-MS and chemometrics. J. Sep. Sci. 31, 1085–1091.

doi: 10.1002/jssc.200700492

Turksen, K. (ed.). (2004). Epidermal Cells: Methods and Protocols, Vol. 289.

Totowa, NJ: Human Press.

Vestergaard, C., Bang, K., Gesser, B., Yoneyama, H., Matsushima, K., and Larsen,

C. G. (2000). A Th2 chemokine, TARC, produced by keratinocytes may

recruit CLA+CCR4+ lymphocytes into lesional atopic dermatitis skin. J. Invest.

Dermatol. 115, 640–646. doi: 10.1046/j.1523-1747.2000.00115.x

Wang, J., Tong, X., Li, P., Liu, M., Peng, W., Cao, H., et al. (2014). Bioactive

components on immuno-enhancement effects in the traditional Chinese

medicine Shenqi Fuzheng Injection based on relevance analysis between

chemical HPLC fingerprints and in vivo biological effects. J. Ethnopharmacol.

155, 405–415. doi: 10.1016/j.jep.2014.05.038

Xu, G. L., Xie, M., Yang, X. Y., Song, Y., Yan, C., Yang, Y., et al. (2014). Spectrum-

effect relationships as a systematic approach to traditional chinese medicine

research: current status and future perspectives. Molecules 19, 17897–17925.

doi: 10.3390/molecules191117897

Conflict of Interest Statement: JC was a self-funded Ph.D. student in MH’s and

ML’s group.

The authors declare that the research was conducted in the absence of any

commercial or financial relationships that could be construed as a potential

conflict of interest.

The reviewer WZ and handling Editor declared their shared affiliation.

Copyright © 2018 Chang, Lane, Yang and Heinrich. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Pharmacology | www.frontiersin.org 11 October 2018 | Volume 9 | Article 1091

https://www.frontiersin.org/articles/10.3389/fphar.2018.01091/full#supplementary-material
https://doi.org/10.1021/jf302809k
https://doi.org/10.1083/jcb.106.3.761
https://doi.org/10.1055/s-0042-108206
https://doi.org/10.4049/jimmunol.169.5.2303
https://doi.org/10.1038/jid.2011.123
https://doi.org/10.1067/mai.2001.113237
https://doi.org/10.1016/j.drudis.2014.08.006
https://doi.org/10.1016/j.toxlet.2017.09.004
https://doi.org/10.1080/02770903.2016.1180530
https://doi.org/10.1016/S0169-7439(01)00139-3
https://doi.org/10.1016/j.drudis.2013.01.008
https://doi.org/10.1016/j.intimp.2008.08.001
https://doi.org/10.1016/j.taap.2011.06.007
https://doi.org/10.1111/j.1476-5381.2009.00311.x
https://doi.org/10.1016/j.jdermsci.2006.06.002
https://doi.org/10.1002/jssc.200700492
https://doi.org/10.1046/j.1523-1747.2000.00115.x
https://doi.org/10.1016/j.jep.2014.05.038
https://doi.org/10.3390/molecules191117897
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

	Disentangling the Complexity of a Hexa-Herbal Chinese Medicine Used for Inflammatory Skin Conditions—Predicting the Active Components by Combining LC-MS-Based Metabolite Profiles and in vitro Pharmacology
	Introduction
	Materials and Methods
	Materials
	Preparation of the HHCF and the 12 Varied Formulae Decoctions
	LC-MS/MS Profiling of the HHCF and Its 12 Varied Formulae
	Partial Least-Squares Regression (PLS-R) Analysis
	Cell Culture
	Enzyme Linked Immunosorbent Assay (ELISA)
	Cell Viability Assay

	Results and Discussion
	HHCF and Its 12 Varied Formulae
	LC-MS/MS Metabolite Profiling
	Effects of the HHCF and Its 12 Varied Formulae on CCL17 Production in HaCaT Stimulated With TNF-α-Plus-IFN-γ
	Prediction of Potential Active Compounds in HHCF Using PLS-R

	Conclusion
	Author Contributions
	Supplementary Material
	References




