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Background: Nephrotoxicity is a notable adverse effect in cisplatin treated patients
characterized by tubular injury and/or increased serum creatinine (SCr) with incidence
varying from 20 to 70%. Pharmacogenomics has been shown to identify strongly
predictive genetic markers to help determine which patients are more likely to experience,
for example, a serious adverse drug reaction or receive optimal benefit through
enhanced efficacy. Genetic variations have been reported to influence the risk of cisplatin
nephrotoxicity; however, a comprehensive overview is lacking.

Methods: A systematic review was performed using Pubmed, Embase and Web of
Science on clinical studies that used cisplatin-based chemotherapy as treatment, had
available genotyping data, and evaluated nephrotoxicity as an outcome. The quality of
reporting was assessed using the STrengthening the REporting of Genetic Association
Studies (STREGA) checklist.

Results: Twenty-eight eligible studies were included; all were candidate gene studies.
Over 300 SNPs across 135 genes were studied; 29 SNPs in 14 genes were significantly
associated with cisplatin-induced nephrotoxicity. A variation in SLC22A2 rs316019, a
gene involved in platinum uptake by the kidney, was associated with different measures
of nephrotoxicity in four independent studies. Further, variants of ERCC1 (rs11615 and
rs3212986) and ERCC2 (rs13181), two genes involved in DNA repair, were found to be
positively associated with increased risks of nephrotoxicity in two independent studies.

Conclusion: Three genes consistently associated with cisplatin-induced nephrotoxicity.
Further research is needed to assess the biological mechanism and the clinical value of
modifying treatment based on SLCC22A2 and ERCC1/2 genotypes.
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INTRODUCTION

Platinum-based  chemotherapeutics, such as cisplatin,
carboplatin, and oxaliplatin are among the most widely used
antineoplastics for the treatment of solid tumors. Specifically,
cisplatin is part of the first-line regimens used to treat head and
neck, lung, testis, ovarian, and bladder cancers (Hanigan and
Devarajan, 2003; Pabla and Dong, 2008; McWhinney et al., 2009;
Wen et al., 2015). Cisplatin [molecular formula: Cl,HgN,Pt; also
known as cisplatinum or cis-diamminedichloroplatinum(II)]
is a first generation platinum anticancer agent with a square
planar geometry metal ion core (Dasari and Tchounwou, 2014).
Cisplatin induces cancer cell death by binding to the N7 reactive
center of purine residues and causes irreversible DNA damage
in cancer cells during division (Dasari and Tchounwou, 2014),
thus blocking cell division and promoting apoptosis. Despite
its benefit in cancer therapy, cisplatin is also known for its
adverse reactions, such as ototoxicity, neurotoxicity, emesis
and nephrotoxicity (Percie du Sert et al., 2011; Wensing and
Ciarimboli, 2013; Dasari and Tchounwou, 2014).

Cisplatin-induced nephrotoxicity manifests as acute tubular
necrosis (Arany and Safirstein, 2003; Hanigan and Devarajan,
2003; Pabla and Dong, 2008; Miller et al., 2010; Stathopoulos,
2013; Derungs, 2015). Since 27-50% of cisplatin is excreted
within 48hours through the kidneys (Gullo et al, 1980), a
high concentration of cisplatin and alteration in renal transport
mechanisms (Peres and da Cunha, 2013) has been proposed to
lead directly to renal inflammation, oxidative damage, apoptosis,
and finally to nephrotoxicity (Yao et al., 2007). The efficacy of
cisplatin is dose dependent, but the high risk of nephrotoxicity
frequently hinders the use of higher doses to maximize its
antineoplastic effects (Schellens et al, 2001; Hanigan and
Devarajan, 2003). Previous research has demonstrated that high-
dose cisplatin can cause severe renal dysfunction in 20% patients
(Yao et al., 2007; Peres and da Cunha, 2013), but the incidence
may reach as high as 66% in elderly (Peres and da Cunha, 2013)
and over 70% in children (Jimenez-Triana et al., 2015). Long-
term platinum retention can be found in the plasma of cancer
patients even 20 years after discontinuation of cisplatin-based
chemotherapy (Gietema et al., 2000; Hjelle et al., 2015), raising
concerns about the long-term nephrotoxicity risks over time.

There is a growing interest in the role of genetic variation
in the development of cisplatin nephrotoxicity (Liu et al., 2014;
Skinner, 2017). Variations in organic transporter molecules genes
(Yonezawa and Inui, 2011; Zhang and Zhou, 2012), DNA
repair enzyme genes (Khrunin et al., 2010b; Zhang et al., 2012;
Xu et al, 2013), tumor suppressor genes (Liu et al, 2014)
and metabolic enzymes involved in platinum detoxification
(Barahmani et al, 2009; Khrunin et al., 2012) have been
associated with the risk of nephrotoxicity. Although several
genetic variants have been identified to influence cisplatin-
induced nephrotoxicity in oncology patients, a comprehensive
overview on which genetic variations are consistently associated
with nephrotoxicity-induced cisplatin-based chemotherapy is
lacking.

We conducted a systematic review to identify which
genetic variants consistently associated with cisplatin-induced

nephrotoxicity in oncology patients and assessed whether there
are genetic variants that might be clinically relevant to guide
cisplatin treatment.

METHODS

We carried out a systematic review according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
guidelines (PRISMA) (Moher et al., 2009). The protocol was
registered in the international prospective register of systematic
reviews (PROSPERQO; CRD42017064011; Zazuli and Maitland-
van der Zee, 2017).

Data Sources and Search Strategy

Our search strategy included articles indexed in
PubMed/MEDLINE, EMBASE and Web of Science. See
Supplementary Table 1 for Medical Subject Headings (MeSH)
terms and keywords used in this study. Additional research
papers were identified by screening the reference sections of
included articles.

Study Selection

We constructed a PICOS (population-intervention/exposure-
comparison-outcome-study design) framework to set out our
review objectives (see Supplementary Table2). All studies
needed to fulfil the following inclusion criteria: (1) genetic
association studies, (2) studies using cisplatin-containing
chemotherapy, (3) studies that included nephrotoxicity as an
adverse outcome (any definition), (4) studies published in the
English language, and (5) studies involving cancer patients.
Preclinical studies (animal experiment or in vitro studies) and
studies in which patients were treated with both chemotherapy
and radiation therapy were excluded.

After identifying the articles, primary screening by ZZ was
performed to determine whether the study met the inclusion
criteria based on the abstract. The full paper was evaluated to
determine whether an analysis of the association between genetic
polymorphisms and platinum induced nephrotoxicity had been
performed.

Data Collection and Quality Assessment
The following data were extracted from each publication:
source of study (reference), study design (retrospective, case-
control, prospective), setting (type of chemotherapy treatment,
type and stage of cancer), patient selection (sample size,
inclusion and exclusion criteria), observation period (number
of treatment cycles) and nephrotoxicity data (definition, scoring
system, level of severity) and genetic polymorphisms (genes
investigated, genes involved, name and number of Single
Nucleotide Polymorphisms (SNPs), main results).

Two independent reviewers (ZZ and ES) assessed whether the
articles met the inclusion criteria. Disagreements were resolved
through co-author team discussion. Each reviewer also assessed
quality of the reporting of the studies and the risk of bias using
a scoring system modified from a previously published study
(Leusink et al., 2016) based on STREGA recommendations [see
Supplementary Table 3; (Little et al., 2009)]. The scoring system
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resulted in an overall quality score of 0-10; studies with greater
than or equal to half of the maximum points were regarded as of
sufficient quality.

Data Analysis

A meta-analysis could not be performed because of substantial
differences in outcome definitions where some studies reported
categorical outcome variables (e.g., CTCAE and the RIFLE
classification [Risk, Injury, Failure, Loss of kidney function, and
End-stage kidney disease]) while others reported continuous
outcome variables (e.g., differences in serum creatinine [SCr],
cystatin C, and estimated glomerular filtration rate [eGFR]).
Further, we identified heterogeneity in statistical methods and in
the reporting of effect size (few studies reported odds ratios while
most reported only p-values), or in exposure categorization (i.e.,
dominant, co-dominant, or additive genetic inheritance models
were assumed in different studies). Many articles lacked key
data required for meta-analysis, such as the number of subjects
experiencing nephrotoxicity per genotype category. Therefore,
we report descriptively the results of SNPs that had been found to
be associated with nephrotoxicity when they had been assessed in
at least two independent study populations.

RESULTS
Study Eligibility

The article selection process is shown in Figure 1. The initial
search delivered 359 articles; after removal of duplicates,
292 abstracts were primarily screened of which 105 full-text
articles remained. After reading the full-text, 77 publications
were excluded: three studies did not investigate cisplatin-based
chemotherapy regimens, 72 studies did not evaluate relationships
with nephrotoxicity, and two studies were confounded by
concurrent radiation treatment. In the end, 28 studies were
analyzed.

Study Characteristics

The study characteristics of the 28 articles included, all were
candidate gene studies published between 2008 and 2017, are
shown in Table 1. Most were cohort studies (Wang et al., 2008;
Filipski et al., 2009; Goekkurt et al., 2009; Chen et al., 2010;
Khrunin et al.,, 2010a, 2012, 2014; KimCurran et al., 2011;
Tzvetkov etal., 2011; Erculj et al., 2012; Iwata et al., 2012; Windsor
et al,, 2012; Xu et al,, 2012, 2013; Zhang and Zhou, 2012; Zhang
et al,, 2012; Hinai et al., 2013; Khokhrin et al., 2013; Lamba
et al.,, 2014; Yuan et al,, 2015; Hattinger et al., 2016; Powrozek
et al., 2016; Chang et al., 2017) and none were genome wide
association studies (GWAS). Key details of subject characteristics
[e.g., ethnicity and inclusion criteria (Sprowl et al., 2012)], type
of chemotherapy regimens (Erculj et al., 2012; Sprowl et al., 2012;
Powrozek et al., 2016), and nephrotoxicity criteria (Goekkurt
et al., 2009; Kim et al., 2012; Khrunin et al., 2014) were not
reported in some studies.

Study Population
Of 3,799 adult subjects across these 28 studies, 1,443 patients
(n = 13 studies) were predominantly of European Caucasians

and 1,948 (n = 12 studies) were performed in East Asian
populations. However, most studies did not explain how ancestry
was determined. Individual study sizes ranged from 47 to 365
patients. Only six studies included more than 200 patients, while
12 studies had fewer than 100 subjects.

Ten studies involved lung cancer patients; five involved
ovarian cancer; one study each evaluated gastric cancer,
osteosarcoma, esophageal cancer, testicular cancer, and
mesothelioma patients; six studies included various cancer
types or did not mention the cancer type.

Chemotherapy Regimens Used

Different cancer sites used diverse drug combinations with
cisplatin, and most studies evaluated more than one type of
cisplatin combination therapy. Combinations with other drugs
(Moon et al,, 2011) and the dosage of cisplatin (Bennis et al.,
2014) can influence the incidence of nephrotoxicity. Cisplatin
+ gemcitabine was the most commonly reported treatment
regimen (n = 11 studies), followed by cisplatin + taxane (either
cisplatin + docetaxel or cisplatin + paclitaxel, n = 10), cisplatin
+ etoposide (n = 7), cisplatin + cyclophosphamide (n = 5)
and cisplatin + vinorelbine (n = 5). Cisplatin dosage also varied
widely among studies: the lowest dose mentioned was 20 mg/m?
and the highest was 100 mg/m? under a three-weekly schedule.

Outcome

The National Cancer Institute Common Terminology Criteria
of Adverse Events (NCI-CTCAE) (Institute, 2016) criteria
was the most commonly used classification of drug-induced
nephrotoxicity (n = 15). Serum creatinine was used for
classifying the severity of nephrotoxicity. The NCI-CTCAE
4.03 grading of acute kidney injury were as follows (Institute,
2016): Grade 1, a creatinine level increase of >0.3 mg/dL or
a creatinine level that was 1.5-2.0 times above baseline; Grade
2, a creatinine level that was 2-3 times above baseline; Grade
3, either a creatinine that was >3 times above baseline or an
absolute creatinine level of over 4.0 mg/dL or any rise that
required hospitalization; Grade 4, life-threatening consequences
or dialysis indicated. However, we found marked variability
in the standard grading to determine nephrotoxicity. Eight
studies defined nephrotoxicity as >grade 1, while three studies
described nephrotoxicity as >grade 2, two studies provided
no information regarding the standard, and other studies used
changes in creatinine serum (n = 4), WHO criteria (n = 3),
changes in creatinine clearance (n = 2) or changes in a novel
urinary biomarker (n = 1). Three studies did not describe the
nephrotoxicity criteria at all.

Quality Assessment and Quality of
Reporting

Quality assessment was performed by two reviewers (ZZ and
ES) using recommendations for reporting genetic association
studies [(Little et al, 2009); Supplementary Table 4]. Only
16 studies (42.8%) provided sufficient information according
to the STrengthening the REporting of Genetic Association
Studies (STREGA) recommendations. One of the items in the
predetermined reporting criteria (multiple testing correction)
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Articles identified by
database searching
n =357
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Screened articles
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Excluded articles after
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)
v
= Articles included in
=] qualitative analysis
@)
K= n=28

FIGURE 1 | Flow chart of the selection of articles. This flow diagram is created according to the PRISMA recommendation (Moher et al., 2009).

was not reported by most studies because unlike GWAS,
the majority of the studies were not investigating multiple
genetic markers at once. Therefore, a large number of studies
(n = 22; 79%) received a lower quality score. Note that if
certain reporting requirements are of low relevance to the
circumstances of the individual article, lower quality reporting
scores do not necessarily reflect the research quality. As many
as 24 studies (92%) did not report the power and sample size
calculation, of which 12 studies (43%) showed no statistically
significant associations. Nevertheless, seven of eight studies
that showed a statistically significant association for ERCCI,
ERCC2 and SLC22A2 also did not report power or sample
calculations. Nine of 14 studies that showed no statistically
significant association failed to report whether there were issues
concerning genotyping quality, for example, by reporting the
percentage of successful genotyping attempts or a cross validation
with a different genotyping technique. For nine studies (32%),
there were concerns about the quality of the study design
and analysis. For example, the authors did not calculate and
interpret the statistical interaction adequately. Within their
Results sections, 15 and 10 studies did not report participants’
characteristics and outcomes stratified by genotype, respectively.
As many as 13 studies did not mention limitations of the
study and sources of potential bias. In 19 studies (67.9%), the

clinical information was of sufficient quality as the authors
mentioned the specific cisplatin-based chemotherapy regimens
and the dosage per cycle and the number of cycles, and
there was an adequate methodologic description including
participant selection, baseline characteristics, inclusion criteria,
nephrotoxicity criteria (including objective lab parameters).

Genes Studied in Cisplatin-Induced
Nephrotoxicity

Candidate genes of all 28 studies were chosen based on platinum
pharmacokinetic or pharmacodynamic pathways. As many as
135 genes involved in DNA repair, drug transport, tumor
suppression, regulation of intracellular process, or detoxification
were investigated. The number of variants assessed per study
ranged from 1 to 228 SNPs. From those 135 genes, 14 genes were
associated with cisplatin-induced nephrotoxicity in at least one
study: ERCCI and ERCC2 (XPD), SLC22A2 (OCT2), SLC31A1
(CTRI1), SLC47A1 (multidrug and toxin extrusion protein 1;
MATEL1), ABCC2 (multidrug resistance protein 2; MRP2), Kelch-
like ECH-associated protein 1 (KEAPI), nuclear factor erythroid
derived 2 like 2 (NFE2L2), GSTPI1 (Glutathione S-Transferase
Pi 1), GSTT1, methylene tetrahydrofolate reductase (MTHFR),
epoxide hydrolase 1 (EPHX1), eukaryotic translation initiation
factor 3 subunit A (eIF3a) and MMSI9L. However, only SNPs
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TABLE 2 | Effect size of SNPs that had been replicated at least one positive association.

Outcome Study Value in variants Value in reference OR (95% ClI) Mean difference P
genotype/allele genotype/allele

ERCC1rs11615

CTCAE >grade 0 Khrunin et al., 2010b, CT (46.7%) TT/CC (no values 2.51 (1.09-5.57) N/A 0.037
Russia reported)

Change in the Tzvetkov et al., 2011, CC =6.91+9.1 TT/CTCT =-11.8+ N/A N/R 0.004

estimated glomerular Germany mi/min/1.73 m? 1.7 ml/min/1.73 m?

filtration rate (eGFR) TT=-128+4.2

ml/min/1.73 m?

ERCC1 rs3212986

CTCAE >grade 0 Khrunin et al., 2010b, CA (562.8%) CC/AA (no values 3.29 (1.40-7.73) N/A 0.009
Russia reported)

Change in the Tzvetkov et al., 2011, AA=24+34 CC/CACA=-102 £ N/A N/R 0.0002

estimated glomerular Germany ml/min/1.73 m? 2.6 mli/min/1.73 m?

filtration rate (eGFR) CC=-126+25

mi/min/1.73 m?

ERCC2 rs13181

Change in eGFR Windsor et al., 2012, AC/CC = -23 AA = —4 mL/min/1.73 N/A —19 ml/min/1.73 m?2 0.021
the UK mL/min/1.73 m? m?

CTCAE >grade O Windsor et al., 2012, AC/CC (no values AA (no values reported) 4.4 (1-18.8) N/A 0.044
the UK reported)

CTCAE >grade 1 Powrozek et al., 2016, C allele (no values A allele (no values 0.07 (0.02-0.31) N/A <0.0001
Poland reported) reported)

SLC22A2 rs316019

% changes in serum Filipski et al., 2009, GT (no values GG (no values reported) N/A N/R 0.0009

creatinine after the 1st Netherlands reported)

cycle

Increase of SCr Iwata et al., 2012, GT=0.92 £0.15 GG=1.11+£0.37 N/A —0.19 mg/dL 0.04
Japan mg/dL mg/dL
Zhang et al., 2012, GT/TT =2.091 + GG =0.833 + 7.394 N/A 1.258 mg/dL 0.346
China 6.302 mg/dL mg/dL

Changes in cystatin C. Zhang et al., 2012, GT/TT = -0.013 GG =0.043 £ 0.107 N/A 0.056 mmol/L 0.009
China + 0.120 mmol/L mmol/L

Fold changes in protein Chang et al., 2017, the GT (no values GG (no values reported) N/A 1.77 x 10171 0.038

biomarkers (KIM-1)

USA

reported)

SNPs, single nucleotide polymorphisms; OR, odds ratio; CTCAE, Common Terminology Criteria for Adverse Effects; SCr, serum creatinine; KIM-1, kidney injury molecule-1; N/A, not

available; N/R, not reported.

from ERCCI1, ERCC2 (XPD), and SLC22A2 (OCT?2), consistently
showed a positive association in at least two studies (Table 2).

Genetic Polymorphisms in ERCC1
Polymorphisms in the nucleotide excision repair genes ERCCI
and ERCC2 (XPD) have been linked to alterations of the DNA
repair process and capacity (Giachino et al., 2007; Friboulet et al.,
2013; Xiong et al., 2017); this is postulated to affect nephron
repair after injury by platinum agent exposure. Furthermore,
ERCCI may affect target cell sensitivity to platinum-based
therapy (Li et al.,, 2012, 2014; Bogush et al., 2015; Han et al,,
2016) and patient response (Ryu et al., 2004; Cheng et al., 2012;
Lv et al,, 2014; Kaewbubpa et al., 2016; Li et al., 2016). Carriers of
the wild-type C/C genotype of ERCCI C118T (CC) (rs11615) had
a higher chance of responding to platinum-based chemotherapy
than patients carrying variant alleles (Cheng et al., 2012; Lv et al.,
2014).

SNPs of ERCCI (synonymous rs11615 and rs3212986 located
at the 3 UTR) were the most studied polymorphisms for
cisplatin-induced nephrotoxicity. Associations between this gene
and cisplatin nephrotoxicity were reported in two studies by
(Khrunin et al., 2010b) and (Tzvetkov et al., 2011) in which the
same SNPs (rs11615 and rs3212986) were investigated. (Khrunin
etal,,2010b) observed that an increased risk for renal dysfunction
was observed among epithelial ovarian cancer patients carrying
the heterozygous genotype (TC) of rs11615 (46.7%) with an
OR = 2.51 (95% CI 1.09-5.57; P = 0.037) and for carriers of
the rs3212986 CA genotype (52.8%) with an OR = 3.29 (95%
CI 1.40-7.73; P = 0.009), when compared with the patients
carrying the homozygous variant genotype. (Tzvetkov et al.,
2011) confirmed these results reporting that both SNP variants
were statistically significantly associated with a fall in eGFR
in various late-stage cancer patients (P < 0.05). However, the
majority of the subjects (n = 47, 58.0%) had been previously
treated with cisplatin. This may have affected the eGFR baseline
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which ranged from 40 to 167 ml/min/1.73 m? and acted as a
potential source of bias. Khrunin et al. (Khrunin et al., 2010b)
defined nephrotoxicity as >1 grade of nephrotoxicity of NCI-
CTCAE classification, while Tzvetkov et al. used relative change
in the eGFR.

In contrast to the aforementioned results, 11 other studies,
mostly underpowered, reported no statistically significant
association between the ERCCI polymorphisms and cisplatin
nephrotoxicity (Goekkurt et al, 2009; Chen et al, 2010;
KimCurran et al., 2011; Erculj et al., 2012; Khrunin et al., 2012,
2014; Windsor et al., 2012; Khokhrin et al., 2013; Liu et al., 2014;
Hattinger et al., 2016; Powrozek et al., 2016). Thus, further studies
to disclose molecular mechanisms of ERCC1-mediated cisplatin
nephrotoxicity are needed as a scientific basis for a future clinical
study.

Genetic Polymorphisms in ERCC2 (XPD)

Significant associations between variants in ERCC2 and cisplatin-
induced nephrotoxicity were reported in four studies (Goekkurt
et al,, 2009; Kim et al.,, 2012; Windsor et al., 2012; Powrozek
et al., 2016). However, there was high heterogeneity in study
characteristics. Two studies (Windsor et al., 2012; Powrozek
et al., 2016) were retrospective cohort studies while one was
a prospective cohort (Goekkurt et al., 2009) and one was a
case-control study (Kim et al., 2012). Three studies focused on
individuals of European ancestry (Goekkurt et al., 2009; Windsor
et al,, 2012; Powrozek et al., 2016) while one study focused on
East Asian patients (Kim et al., 2012). Two studies clearly defined
nephrotoxicity based on NCI-CTCAE criteria, but there were
differences in the nephroxicity threshold [>grade 2 vs. >grade 1;
(Windsor et al., 2012; Powrozek et al., 2016)] while two studies
did not mention their definitions (Goekkurt et al., 2009; Kim
et al., 2012). Of the six SNPs that showed statistically significant
associations, only rs13181 survived replication.

Powrozek et al. showed that the A allele of 2251A > C
(rs13181; p.Lys751Gln), a missense variant which potentially
changes XPD protein expression and modulates nucleotide
excision repair (Benhamou and Sarasin, 2002), was associated
with a 14 and 4-fold greater cisplatin nephrotoxicity after the
second and fourth chemotherapy cycle, respectively, through
an allelic (not genotype) association analysis (Powrozek et al.,
2016). Another study (Goekkurt et al, 2009) found that
~22% of 133 patients carrying the variant genotype of the
ERCC2 rs13181 and ERCC2 rs1799793 suffered from grade 2-
4 nephrotoxicity, which was significantly higher than in those
carrying other genotypes; the OR for nephrotoxicity was 2.27
for the ERCC2 Asn312/751GIn (rs179979/rs13181, both are
missense mutations) haplotype [P = 0.005; (Goekkurt et al.,
2009)]. In contrast, Windsor et al. (Windsor et al., 2012) found
that the AA genotype of ERCC2 rs13181 had a marginally
lower nephrotoxicity risk after the second chemotherapy cycle
(OR = 0.23, p = 0.044). Patients carrying AA genotype also
experienced lower drops in eGFR than the AC/CC genotype
(4 vs. 23 mL/min/1.73 m?, P = 0.021). Five studies displayed
contradictory results when compared with the previously
mentioned articles (Khrunin et al., 2010b, 2012, 2014; Erculj
et al, 2012; Hattinger et al, 2016). Since ERCC2’s role in

cisplatin nephrotoxicity has not yet been fully understood, studies
confirming the role of XPD proteins could help to uncover
the molecular mechanisms underlying cisplatin nephrotoxicity.
By manipulating ERCC2 gene expressions in suitable renal cell
models, the role of XPD proteins in cisplatin nephrotoxicity
could potentially be confirmed.

Genetic Polymorphism in SLC22A2 (OCT2)
Genes that encode for drug transport proteins, such as
SLC22A2 (encoding the OCT2 protein) efficiently mediate
the cellular uptake leading to high cisplatin accumulation
particularly in renal proximal tubule in cells (Miller et al., 2010;
Ciarimboli, 2012; Wensing and Ciarimboli, 2013). This condition
accelerates the cytotoxic potential of the drug, including nuclear
and mitochondrial DNA damage and production of reactive
oxygen species (ROS), involved in pathways of apoptosis and
necrosis (Miller et al, 2010). A nonsynonymous, missense
mutation in SLC22A2 rs316019 (p.270Ala > Ser; G > T)
was studied in seven studies in which four studies concluded
that the variant genotype was protective against cisplatin
nephrotoxicity.

Filipski et al. (Filipski et al., 2009) and Iwata et al. (Iwata et al.,
2012) reported that patients carrying the wild-type genotype
of rs316019 (GG) were more susceptible to cisplatin-induced
nephrotoxicity compared to the other genotype, as defined by a
statistically significantly increased serum creatinine (P < 0.05).
Iwata et al. reported that wild-type GG had higher increase of
serum creatinine than patients carrying the variant GT [1.11
=+ 0.37 vs. 0.92 £ 0.15 mg/dL; P = 0.04; (Iwata et al., 2012)].
Zhang et al. (Zhang and Zhou, 2012) reported similar results
in which the patients carrying the wildtype GG had higher
levels of cystatin C than patients carrying the variant genotypes
of GT and TT (0.043 £ 0.107 vs. —0.013 £ 0.120 mmol/L;
P = 0.009). Each of those prospective cohort studies focused
on malignant solid cancers in either European Caucasians or
East Asians populations. The newest study by Chang et al.
(Chang et al., 2017) in American Caucasians patients showed
that patients carrying the GG genotype of rs316019 exhibited
higher urinary fold changes in kidney injury molecule-1 (KIM-
1) at day 3 after cisplatin administration (1.77 x 10'7!; P <
0.05) compared to the carriers of the other genotype. Higher
reduction in eGFR and increase of blood urea nitrogen (BUN)
in rs316019 wild-type GG genotype was also observed in two
studies, although this was not statistically significant (Tzvetkov
et al., 2011; Hinai et al., 2013). In contrast to these four studies,
the remaining three studies (Khrunin et al, 2010a; Tzvetkov
et al, 2011; Hinai et al., 2013) did not find any associations, but
were generally underpowered, involved multiple types of cancer,
and/or included both early and late stages in European and East
Asian predominant populations, which may have contributed to
the differences in results.

DISCUSSION

Summary of Main Results
To our knowledge, this is the first systematic review
conducted to evaluate genetic markers associated with
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cisplatin nephrotoxicity. We report that eight germline
polymorphisms had significant associations with cisplatin
nephrotoxicity, of which variants in the genes ERCCI,

ERCC2 (DNA repair) and SLC22A2 (drug transport)
had consistent results across at least two independent
populations.

Polymorphic variations of genes associated with the uptake of
cisplatin from the renal proximal tubular cells, such as SLC31A1
(CTR1), SLC31A, SLC22A1-3 (OCT transport proteins), ATP7A
and ATP7B (Copper-Transporting ATPases 1 and 2), and those
that regulate the urinary cisplatin efflux from these cells, such as
SLC47A1 (MATE1), ABCBI (MDRI1); ABCG2 (BCRP); ABCCI-2
(MRP1-2) have been evaluated (Aleksunes et al., 2008; Harrach
and Ciarimboli, 2015) but only SLCC2A2 (SNP rs316019)
was associated with cisplatin toxicity. By applying a dominant
genetic model, three studies suggested that genotypes GT/TT
of SLC22A2 rs316019 reported significant changes in kidney
function biomarker that were considered clinically relevant.
Studies from Japan and China reported up to 38% of changes
in SCr [Mean difference: —0.19 mg/dL; (Iwata et al., 2012)]
and up to 41% of changes in cystatin C [Mean difference:
0.056 mmol/L; (Zhang and Zhou, 2012)] compared to normal
values [SCr: 0.6-1.2 mg/dl for male, 0.5-1.1 mg/dl for female;
cystatin C: 0.068-0.118 mmol/L regardless gender; (Hosten,
1990; Finney et al., 2000)]. As SLC22A2 encodes the organic
cation transporter 2 (OCT2), the association between rs316019
and SCr and eGFR might be due to an effect on tubular
creatinine secretion; however, no clear evidence was found for
a relationship between the SNP and cystatin C (Reznichenko
et al, 2013). In addition, an elevation in KIM-1 (1.77 x
107! fold) also indicates possible clinical relevance of this SNP
(Chang et al, 2017). Further research measuring the eGFR
changes and classifying the subjects into widely accepted CTCAE
category would provide more insight into the importance of this
SNP.

Rs316019 (c.808G > T; p.270Ala > Ser), the only common
coding polymorphism within SLCC2A2 with an allele frequency
ranging from 9 to 16%, is reported to cause changes in
transporter function (Zolk, 2012). A report by Filipski et al.
suggested that T allele in rs316019 is associated with decreased
expression of SLC22A2 in a panel of human cell lines (Filipski
et al., 2009). However, polymorphic variants of genes that
regulate such transporters (e.g., OCT2, MATE1) in the cell
still require further study. This will provide insight into
the potential contribution of suspected transporter genes
polymorphisms in cisplatin-induced nephrotoxicity, ototoxicity
and neurotoxicity.

In cisplatin-induced nephrotoxicity, alteration of DNA repair
mechanisms might play a role particularly in renal cells.
Nucleotide excision repair genes are involved in the elimination
of lesions that lead to distortion of the DNA helix structure
(Bowden, 2014) and have been implicated in cisplatin outcome
(ERCC1), sensitivity and resistance [ERCC2; (Bowden, 2014)].
Variations in ERCC may affect the repair function through
alterations of protein or mRNA expression levels (Xiong et al.,
2017) and Erccl mutant mice are deficient in several DNA
repair processes that cause accelerated aging, particularly in

non- or slowly proliferating organs (Niedernhofer et al., 2006).
ERCCI rs11615 is a synonymous variant while rs3212986 is
located at the 3 UTR (non-coding region); hence both SNPs
are unlikely to produce amino acid changes that affect the DNA
repair mechanism. However, the tissue expression quantitative
trait loci (eQTL) analysis from GTEx reported a significant
association between rs11615, rs3212986, and gene expression
in various tissues (Group, 2017). Unfortunately, no association
has been found between these SNPs and ERCCI expression
in kidney cortex tissue. In contrast, ERCC2 rs13181 (c.2251A
> C), a missense non-synonymous variant resulting in amino
acid changes from lysine to glycine (p.751Lys > Gln) is more
likely to alter the DNA repair capacity (Duell et al, 2000;
Lunn et al., 2000). However, the gene involvement in cisplatin-
induced nephrotoxicity pathway have not been extensively
studied (Zhu et al., 2015). Small study sizes, different ethnicities,
varied and mixed cancer types, different combinations of
chemotherapy, and different outcome definitions plague most of
these analyses. Therefore, a large study with renal function as the
primary outcome and with a clinically relevant nephrotoxicity
threshold (e.g., >grade 2 CTCAE classification) should be
conducted, particularly one that will consider a genetic risk
score across multiple germline genes, possibly through a
comprehensive GWAS or whole exome or whole genome
sequencing approach.

Quality and Inconsistency Among Studies
Most studies did not report study power, provide a sample size
calculation or report genotyping quality control tests, raising
the possibility of underpowered false negative results [type
II error; (Krzywinski and Altman, 2013)] and contributing
to inconsistent results (Biau et al., 2008). Other reasons for
conflicting results related to series of heterogeneous confounding
variables typical in the setting of observational studies of toxicity:
(1) differences in definition and grading of nephrotoxicity,
(2) differences in baseline patient characteristics that could
act as confounders of kidney function, (3) differences in
chemotherapy regimens and use of other supportive drugs that
could independently or additively predispose to nephrotoxicity
(e.g., diuretics), (4) differences in cumulative or density of
cisplatin dose and exposure time, (5) differences in the
amount and the schedule of hydration across studies, and (6)
possibility of gene-gene interactions that affect the cisplatin
nephrotoxicity pathway. An example of these inconsistencies
are the seven studies that evaluated the SLC22A2 gene. These
studies varied in sample sizes between 53 and 206 patients,
used five different nephrotoxicity standards, involved patients
across various types of cancer and applied a mix of various
different chemotherapy regimens. Moreover, two studies were
conducted in women only. Despite these quality reporting issues,
we were still able to identify four positively replicated SNPs
across three genes. ERCCI, ERCC2, and SLC22A2 warrant further
investigation.

Research and Clinical Implications
Studies that scan the entire genome, such as GWAS, are
needed urgently (Zhu and Zhao, 2007), and can lead to
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the identification of novel genetic variants associated with
nephrotoxicity. But these hypothesis-free approaches do require
large sample sizes or rigorously phenotyped populations. The
first observational study through genome-wide association
and whole-genome sequencing studies to investigate drug-
induced kidney disease—the DIRECT study is currently
ongoing but the results are still pending (Awdishu et al., 2016).
Because of patient heterogeneity, any genetic associations must
take clinico-epidemiologic and demographic variations into
account [e.g., performance status, regular use of NSAIDs,
hypoalbuminemia, cardiac disease; (Kidera et al, 2014; Liu
et al.,, 2014; Bhat et al., 2015; Miyoshi et al., 2016; Sato et al.,
2016)], through proper documentation, prospective data
collection, and appropriate adjustments during the statistical
genetic analyses. Alternatively, population pharmacokinetic
and/or pharmacodynamic modeling can be used as the basis of
additional pharmacogenetic evaluations.

Despite more abundant reporting on ERCCI and ERCC2
involvement in cisplatin nephrotoxicity, the SLC22A2 gene
appeared to have the most consistent evidence of association
with nephrotoxicity (same genetic models and across three
different biomarkers (serum creatinine, cystatin C, KIM-1),
though none of the studies reported eGFR and a magnitude
of effect (i.e., odds ratio). Some studies reported the variants
of ERCCI and ERCC2 as risk factors while others reported
the same variants as protective factors. In addition, SNP
ERCCI 1511615 and rs3212986 were not associated with changes
in protein and mRNA expression (Woelfelschneider et al,
2008; Gao et al., 2011; Zhuo et al., 2018), and the studies
on ERCCI and ERCC2 polymorphisms primarily investigated
efficacy as the main outcome, with nephrotoxicity as a secondary
endpoint. In contrast, polymorphisms in SLC22A2-known
to be highly expressed in kidney, have been consistently
reported as protective factors against nephrotoxicity. Overall,
SLC22A2 is the most promising candidate gene in predicting
cisplatin nephrotoxicity with regard to having a biological
explanation related to molecular mechanisms on cisplatin
nephrotoxicity, where its encoded protein, OCT2, is directly
involved in renal cisplatin uptake (Ciarimboli et al., 2005;
Filipski et al., 2009; Yonezawa and Inui, 2011; Yonezawa,
2012). If validated further, SLC22A2 genetic testing may
one day be implemented in the clinical setting, especially
variant genotypes of SLC22A2 1s316019 provide protective
factors toward cisplatin nephrotoxicity which may allow
higher cisplatin doses to be administered. On the other
hand, administration of an OCT2 inhibitor might minimize
nephrotoxicity risk (Sprowl et al., 2013; Panesso et al., 2014;
Ikemura et al, 2017) but with comparable hematotoxicity
(Ikemura et al, 2017) in patients carrying the highest risk
genotypes.

In patients at highest risk of nephrotoxicity, a number of
potential other therapeutic options are available: magnesium
supplementation (Crona et al, 2017) may reduce cisplatin
accumulation by regulating the expression of the renal
transporters rOCT2 and rMATEL1 (Saito et al., 2017); switching
to carboplatin may reduce the nephrotoxic potential, even

though carboplatin may have lower response rates than cisplatin,
along with a range of toxicities different from cisplatin (de
Castria et al., 2013).

The systematic approach based on predetermined
comprehensive PICOS criteria using established electronic
databases is a strength of this review. In addition, we conducted
the review according to the PRISMA guideline to minimize
the selection bias (Supplementary Table 5). However, we were
unable to perform a quantitative comparison and meta-analysis
due to heterogeneity in study design, treatments, outcome
measures, statistical measurement and the use of effect size.

To summarize, an increasing number of pharmacogenomics
studies of cisplatin-induced nephrotoxicity has been published
within the past decade. Review of these studies highlighted
several genes that potentially affect the risk of cisplatin
nephrotoxicity although limitations in study design, lack of
reproducible results and lack of studies with sufficient quality
remain a concern. In addition to transporter genes, DNA repair
genes deserve further investigation to discern their putative
role in cisplatin nephrotoxicity. The upcoming results of a
genome-wide approach, such as used in the DIRECT study may
have an advantage to address the limitations of the current
studies, and take one step further toward the application of
personalized and precision medicine in cancer patients treated
with cisplatin.
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