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One hundred fifteen Americans die every day from opioid overdose. These overdose

fatalities have been augmented by the increased availability of potent synthetic opioids,

such as fentanyl and its derivatives. The death rate of synthetic opioids, other than

methadone, increased by 72.2% from 2014 to 2015, and doubled from 2015 to

2016, situating the USA in the midst of an opioid overdose epidemic. The analytical

identification of these opioids in postmortem samples and the correct toxicological

data interpretation is critical to identify and implement preventive strategies. This

article reviews the current knowledge of postmortem toxicology of synthetic opioids

and the chemical and pharmacological factors that may affect drug concentrations

in the different postmortem matrices and therefore, their interpretation. These factors

include key chemical properties, essential pharmacokinetics parameters (metabolism),

postmortem redistribution and stability data in postmortem samples. Range and ratios of

concentrations reported in traditional and non-traditional postmortem specimens, blood,

urine, vitreous humor, liver and brain, are summarized in tables. The review is focused on

fentanyl and derivatives (e.g., acetyl fentanyl, butyryl fentanyl, carfentanil, furanyl fentanyl,

4-methoxybutyrylfentanyl, 4-fluorobutyrylfentanyl, ocfentanil) and non-traditional opioid

agonists (e.g., AH-7921, MT-45, U-47700). All of these data are critically compared

to postmortem data, and chemical and pharmacological properties of natural

opioids (morphine), semi-synthetic (oxycodone, hydrocodone, hydromorphone, and

oxymorphone), and synthetic opioids (methadone and buprenorphine). The interpretation

of drug intoxication in death investigation is based on the available published literature.

This review serves to facilitate the evaluation of cases where synthetic opioids may be

implicated in a fatality through the critical review of peer reviewed published case reports

and research articles.
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INTRODUCTION

Opioid overdose deaths continue to increase in the United States, killing more than 42,000
people in 2016. The opioids detected in these cases, in increasing order, were methadone, natural
and semi-synthetic opioids (e.g., oxycodone, hydrocodone), heroin and synthetic opioids (e.g.,
fentanyl, fentanyl-analogs). Synthetic opioids (excludingmethadone) and heroin deaths specifically
experienced a sharp increase from 2015 to 2016 (20 and 100%, respectively) (Seth et al., 2018).
Fentanyl and its derivatives have been increasingly present as adulterants mainly in heroin,
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but also in other drugs such as cocaine and synthetic
cannabinoids (Coopman and Cordonnier, 2017; Armenian et al.,
2018), due to their ease of manufacturing and readily available
precursors shipped from China (Armenian et al., 2018). In
addition to being present in other drugs supply, fentanyl analogs
have been also marketed as “research chemicals” and can easily
be acquired over the internet. Due to their high potency and
the increased use of heroin as an initiating opioid of abuse
(8.7% in 2005 vs. 33.3% users in 2015) (Cicero et al., 2017;
O’Donnell et al., 2017), the number of opioid-related deaths
have drastically increased in the recent years. Given that opioid
novices have limited tolerance to opioids, a slight imprecision
in dosing inherent in heroin use and/or the presence of potent
fentanyl and analogs, can be fatal.

Fentanyl, its analogs (e.g., acetyl fentanyl, 3-methylfentanyl,
alphamethylfentanyl, furanyl fentanyl) and the new generation
synthetic opioids (e.g., AH-7921, U-47700, MT-45) have a
chemical core structure totally different from morphine, a
naturally occurring opioid from Papaver somniferum and
reference compound of the opioids group; but all of them act on
the opioid receptor (mu-receptor) reducing the intensity of pain
and showing a high addiction potential. These opioid receptor
agonists also induce dose-dependent respiratory depression
(Pattinson, 2008), which is the main reason for their life-
threatening risk (Ujváry et al., 2017). Fentanyl is approximately
200 times more potent than morphine, and the potencies of its
analogs are variable, from 7 times more potent than morphine
for butyrfentanyl and furanyl fentanyl, to more than 4,000
and 10,000 times for sufentanil and carfentanil, respectively
(UNODC, 2017). The new generation opioids AH-7921 and
MT-45 show similar potency to morphine (Brittain et al., 1977;
EMCDDA, 2015), and U-47700 about 7.5 times more potent
(Cheney et al., 1985).

Synthetic opioids are widely regulated by the United States
Controlled Substances Act of 1970 (CSA) in order to control
their use and distribution. As new compounds arise and threaten
public safety, compounds can be emergency scheduled by the
DEA to slow production and use of these harmful substances
and aid in prosecution of drug diverters for a temporary period
until the formal procedures have gone through (US Drug
Enforcement Administration, 2017). Substances are classified
into schedules in the CSA based on their safety, medicinal use
and potential for abuse. A Schedule I substance is classified
as having no currently accepted medical use and a high abuse
potential. Examples of synthetic opioids in Schedule I include
furanyl fentanyl, U-47700, acetyl fentanyl and 3-methyl fentanyl.
Schedule II classified opioids have a high potential for abuse but
have current medicinal uses like fentanyl which is used as an
anesthetic and analgesic, as well as carfentanil, remifentanil and
sufentanil (US Drug Enforcement Administration, 2017). Most
recently, the DEA issued a temporary scheduling order for all
fentanyl –related substances (to include all analog modifications)
in February of 2018, which cover all substances that were not
already classified into Schedule I of the CSA in an aggressive
attempt to regulate themanufacture and subsequent trafficking of
new synthetic opioids into the United States (Drug Enforcement
Administration, 2018).

The expansion of these new synthetic opioids constitutes an
important challenge in forensic toxicology. First of all, most
of these substances are not detected in the routine screening
and confirmation methods in the laboratory. Also, due to
the low doses employed of these highly potent drugs, the
concentrations expected in the biological samples are in the low
ng to pg/mL or ng to pg/g range, requiring extremely sensitive
methods of analysis. Recently, Marchei et al. (2018) and Liu
et al. (2018) reviewed the currently available screening and
confirmation methods of new synthetic opioids in biological
and non-biological samples. As indicated by Marchei et al.
(2018), gas chromatography combined with mass spectrometry
(GC-MS) and more frequently liquid chromatography tandem
mass spectrometry (LC-MSMS) are the most common
techniques due to their sensitivity and specificity. However,
given the continued development of new derivatives, the
major disadvantage of these target techniques, which employ
quadrupole mass spectrometers, is that are limited by the
reference standards available. High resolution mass spectrometry
(time-of-flight, orbitrap) offers potential advantages to identify
unknown compounds without the availability of a reference
standard, but this technology is not readily available in most
forensic laboratories (Marchei et al., 2018).

Regarding biological samples, most of these methods have
been developed in blood or urine, and the target analytes are
the parent compounds and rarely the metabolites (Marchei et al.,
2018). In postmortem toxicology, other biological specimens
such as vitreous humor, liver and brain are commonly analyzed.
Unfortunately, fully validated methods for the determination of
synthetic opioids in these specimens are lacking in the literature.
This is in part due to the constant changes in illicit synthetic
opioids being identified and laboratories being unable to justify
the extensive time and cost associated with fully validating a
method for a drug that may only be present in cases for a short
time. Analytical methods in forensic toxicology are commonly
validated in the corresponding biological sample following the
guidelines published by the ScientificWorking Group in Forensic
Toxicology (SWGTOX) (Scientific Working Group for Forensic
Toxicology, 2013) to guarantee the analytical quality of the
measured concentrations. The analysis of metabolites in the
different biological matrices may improve the interpretation of
the results, extending the detection window and indicating if
it was an acute or a delayed-death evaluating the metabolite-
to-parent ratios. Recent publications about the identification of
new metabolites of the synthetic opioids are available (Wohlfarth
et al., 2016; Steuer et al., 2017; Watanabe et al., 2017; Krotulski
et al., 2018a); however, its application to authentic samples is still
scarce (Poklis et al., 2015; Staeheli et al., 2016; Martucci et al.,
2017; Allibe et al., 2018).

Besides the analytical challenges associated with synthetic
opioids, due to the scarcity of available postmortem data, the
interpretation of the results is extremely difficult. Conducting
postmortem toxicology interpretation provides a number of very
significant challenges to the forensic toxicologist. The range of
postmortem specimens (blood, urine, vitreous humor, tissues,
hair), the lack of reference databases, the presence of other
substances (e.g., benzodiazepines, alcohol), opioid tolerance,
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and postmortem phenomena (postmortem redistribution and
drug instability) complicates the interpretation of the analytical
findings. Pichini et al. (2018) and Zawilska (2017) discussed non-
fatal and lethal intoxications involving the new synthetic opioids,
and Drummer (2018) focused his review on fatalities due to these
compounds.

The present review is focused on fentanyl derivatives
and new generation opioids due to the limited knowledge
concerning these substances and their high prevalence in
opioid-overdose related cases. This work complements the
previously published literature reviewing the current knowledge
of postmortem toxicology of synthetic opioids and the chemical
and pharmacological factors that may affect drug concentrations
in the different matrices and therefore, their interpretation
in postmortem samples. These factors include key chemical
properties, essential pharmacokinetics parameters, postmortem
redistribution and stability data in postmortem samples. All of
these data are critically compared to postmortem data of natural
opioids (morphine), semi-synthetic (oxycodone, hydrocodone,
hydromorphone, and oxymorphone), and synthetic opioids
(methadone and buprenorphine). The interpretation of drug
intoxication in death investigation is based on the available
published literature. This review serves to facilitate the evaluation
of cases where synthetic opioids may be implicated in a fatality
through the review of peer reviewed published case reports and
research articles.

METHODS

PubMed, Scopus and Google Scholar were searched for
appropriate articles. Forensic case-reports and research articles
of natural, semi-synthetic and synthetic opioids were reviewed
up to May 2018. All articles were manually reviewed for
content and references in each manuscript were further queried.
Included articles were limited to peer-reviewed journals indexed

by the Institute for Scientific Information (ISI) and published
in English. Chemical properties were retrieved from the public
databases PubChem (https://pubchem.ncbi.nlm.nih.gov/) and
DrugBank (https://www.drugbank.ca/drugs).

CHEMICAL AND PHARMACOLOGICAL
PROPERTIES

The chemical structure of the diverse synthetic opioids,
including fentanyl and analogs, differs significally from the
chemical structure of morphine and semi-synthetic opioids (e.g.,
oxycodone, hydrocodone, buprenorphine). Figure 1 summarizes
the chemical structure of selected classic opioids. Fentanyl is
a piperidinyl derivative with moieties on the nitrogen and
the 4-position (Figure 2). The different fentanyl derivatives
show substitutions on the propionyl moiety (e.g., acetylfentanyl,
acrylfentanyl, butyrfentanyl, furanyl fentanyl), phenethyl moiety
(e.g., ohmefentanyl), N-phenyl ring (e.g., ocfentanil, 4-methoxy-
butyrylfentanyl) and/or at the 4-piperidinyl-position (e.g.,
carfentanil). The chemical structures of the new generation
synthetic opioids (AH-7921, U-47700, MT-45) are different from
fentanyl. Figure 3 shows 20 fentanyl derivatives and 3 new
generation synthetic opioids not related to fentanyl. Due to
the close chemical structure among fentanyl derivatives, some
compounds, such as cyclopropyl fentanyl and crotonyl fentanyl,
have exactly the samemolecular formula, and therefore, the same
molecular weight. As a consequence of this, special attention
has to be paid in the development of the analytical methods
for the determination of these compounds, and a complete
chromatographic separation is required to guarantee their correct
identification by gas or liquid chromatography coupled to mass
spectrometry (GC-MS, LC-MSMS).

Chemically, opioids are predominantly basic drugs with pKa
ranging from 7.5 to 10.9. The chemical parameter log P, the
decimal logarithm of the partition coefficient Kp, is a useful

FIGURE 1 | Chemical structures of selected classic opioids.
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FIGURE 2 | Chemical structure of fentanyl.

indication of the lipophilicity of a compound. In the case of
opioids, log P range is wide, from 0.8 (oxymorphone) to 5
(methadone). Morphine and related compounds show the lowest
log P values (0.8–2). Fentanyl and analogs show a log P between
1.5 and 4.3. The high lipophilicity of fentanyl and its analogs
enables rapid diffusion throughmembranes, including the blood-
brain barrier. Also, this lipophilicity along with their basic
characteristics make these group of drugs candidates to undergo
postmortem redistribution. Table 1 summarizes the molecular
weight, pKa and log P of selected opioids.

Volume of distribution (Vd) and protein binding also help to
predict the drugs that may exhibit postmortem redistribution.
Vd is defined as the volume into which the total amount of
the drug would have to be uniformly distributed to reach the
concentrations measured in plasma. It is expressed in L/kg of
body weight (amount of drug in the body divided by the plasma
drug concentration). Drugs highly bound to plasma proteins but
not to tissue components would be expected to have a small
Vd, while those drugs which distribute into muscle, adipose
tissue and other intracellular components will have a high Vd.
Drugs with a Vd greater than 3 L/kg are considered to have a
greater potential to undergo postmortem redistribution. Table 2
summarizes the Vd and protein binding data currently available
for selected opioids.

One of the critical issues related to fentanyl, its derivatives and
the new synthetic opioids, is the low concentrations expected in
the biological samples (ng to pg/mL or ng to pg/g range) due
to their high potency. However, the potency of these type of
drugs varies considerably within this group, and therefore the
concentrations reported show a wide range, depending on the
drug. Table 2 summarizes the potencies relative to morphine for
selected opioids.

METABOLISM

The identification and quantification of metabolites in
postmortem samples may improve the interpretation of the
analytical results. The determination of metabolites may extend
the window of detection, and also can be employed to calculate
metabolite-to-parent ratios in urine and other biological samples
to differentiate acute or delayed death. In certain cases, as it
happens in morphine and buprenorphine, metabolites can be
pharmacologically active. Although this type of information is
limited in the case of the synthetic opioids, fentanyl, sufentanil,
and alfentanil’s metabolites are inactive in the opioid system
(Schneider and Brune, 1986).

Although the utility of metabolite determination in biological
samples is known, its application to authentic specimens is
still scarce in the case of synthetic opioids due to the limited
data available about their metabolism (Poklis et al., 2015;
Staeheli et al., 2016; Martucci et al., 2017; Allibe et al., 2018).
Recent publications about the identification of new metabolites
of the synthetic opioids in vivo and in vitro are available
(Wohlfarth et al., 2016; Steuer et al., 2017; Watanabe et al.,
2017; Krotulski et al., 2018a). While in vitro studies utilizing
human liver hepatocytes or microsomes can identify multiple
primary and secondary metabolites for a particular fentanyl
derivative, actual human specimens typically show lower number
and/or a different metabolite prevalence profile, so studies
investigating the presence of the in vitrometabolites in authentic
human samples are highly encouraged. Table 3 summarizes
recent publications about the identification of new metabolites
of synthetic opioids in vitro and in vivo.

Fentanyl-derivatives metabolism studies showed similarities
and differences from fentanyl metabolism pathways and
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FIGURE 3 | Chemical structures of 20 fentanyl derivatives and 3 new generation opioids not related to fentanyl.

rates. These different metabolic pathways observed for certain
derivatives, demonstrate the need to perform individual
metabolism studies for each new compound. In the case of
fentanyl, only less than 8% of fentanyl is excreted unchanged.
Approximately 85% of the dose is excreted within 72 h
in feces and urine, the majority as metabolites mainly as
norfentanyl generated by N-dealkylation at the piperidine
nitrogen (McClain and Hug, 1980). Minor fentanyl metabolites

are despropionylfentanyl, also known as 4-ANPP, which is
formed by carboxamide hydrolysis, and hydroxyfentanyl and
hydroxynorfentanyl metabolites, both hydroxylated at the
propionyl moiety (Goromaru et al., 1984; Mahlke et al., 2014).

Several synthetic opioids follow a similar metabolic pathway
to fentanyl. Alfentanil undergoes piperidine N-dealkylation
to noralfentanil (Meuldermans et al., 1988). Major alpha-
methylfentanyl metabolites in rats were norfentanyl and
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TABLE 1 | Monoisotopic molecular weight (g/mol), pKa and Log P of selected natural, semi-synthetic and synthetic opioids.

Group Analyte Monoisotipic molecular

weight (g/mol)

pKa Log P

Natural and semi-synthetic opioids Morphine 285.136 8.2 0.9

Codeine 299.152 9.2 1.3

Hydrocodone 299.152 8.6 2.0

Hydromorphone 285.133 8.6 1.6

Oxycodone 315.147 8.2 1.0

Oxymorphone 301.131 10.9 0.8

Buprenorphine 467.300 7.5 4.5

Synthetic opioids Fentanyl 336.220 8.8 3.8

Methadone 309.445 9.1 5.0

Tramadol 263.189 9.2 2.5

Synthetic opioids-Fentanyl derivatives alphamethylacetylfentanyl;

acetyl-alpha-methylfentanyl

336.220 9.01 3.5

Alfentanil 416.253 7.5 2.8

Butyryl fentanyl;

butyr fentanyl

350.235 8.77 4.3

Carfentanil 394.225 8.05 3.7

3-methylcarfentanil;

lofentanil

408.241 8.36 4.2

4-fluorofentanyl; 4-FBF;

para-fluorofentanyl

354.210 8.74 4.0

beta-hydroxyfentanyl 352.215 8.28 2.9

alpha-methylfentanyl 350.235 9 4.2

cis-3-methylfentanyl;

3-MF; mefentanyl

350.235 9.08 4.3

beta-hydroxy-3-methylfentanyl;

ohmefentanyl

366.230 8.59 3.4

Remifentanil 376.199 7.51 1.5

Sufentanil 386.202 8.86 3.6

3-methylthiofentanyl 356.192 9.07 4.2

hydroxypropionyl norfentanyl metabolites, exactly as fentanyl
(Sato et al., 2010). Meyer et al. (2012) investigated the
metabolism in rats of isofentanyl and 3-methyl fentanyl. After the
administration of suspected recreational doses, the parent drugs
could not be detected in urine and their common nor-metabolite
was the predominant compound.

Patton et al. (2014) detected high concentrations of
acetylfentanyl and acetyl norfentanyl (>16,500 ng/mL,
180min post-dose) in urine samples from rats treated
with a toxic dose of acetylfentanyl (3 mg/kg); however,
Melent’ev et al. (2015), showed that the main pathway of the
biotransformation of acetylfentanyl was hydroxylation by the
phenylethyl moiety rather than N-dealkylation in authentic
human samples. Melent’ev et al. (2015) and Watanabe et al.
(2017) recommended as target analytes in human urine
hydroxy-methoxy at phenylethyl moiety and monohydroxylated
metabolites, although the reported hydroxylation position in
both publications was different. In both publications, the parent
compound acetylfentanyl was highly abundant in urine samples,
indicating that the parent drug is a suitable target.

Acrylfentanyl underwent N-dealkylation at the piperidine
nitrogen producing the major nor-metabolite (Watanabe

et al., 2017). The parent compound was also detected at
high concentrations in urine samples. N-Dealkylation and
monohydroxylation of the piperidine ring were the dominant
metabolic pathways for carfentanil in vitro (Feasel et al., 2016).
In that study, the authors observed a slow parent depletion in the
hepatocytes. For 4-fluoroisobutyrylfentanyl the main metabolites
identified in urine were the nor-metabolite, and monohydroxy
metabolites at the piperidine ring or at the ethyl linker, as well as
the parent compound. In terms of specificity, Watanabe et al.,
recommended as target compounds in urine the monohydroxy
metabolites and the hydroxymethoxy metabolite (Watanabe
et al., 2017).

In the case of butyrfentanyl, hydroxylation of the butanamide
side chain followed by subsequent oxidation to the carboxylic
acid represented the major metabolic step (Steuer et al.,
2017). Although the norbutyrfentanyl was not among the
most abundant metabolites in human samples in that study,
the authors suggested its inclusion as a recommended target
analyte because it showed a high intensity in the in vitro
experiment. In authentic postmortem blood and urine samples,
butyrfentanyl was still detected at 66 and 1,000 ng/mL,
respectively.
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TABLE 2 | Critical pharmacological properties in postmortem toxicology, volume of distributon (Vd), protein bining and potency relative to morphine, of selected natural,

semi-synthetic and synthetic opioids.

Group Analyte Vd (L/kg) Protein binding (%) Potency relative to

morphine

References

Natural and

semi-synthetic opioids

Morphine 1–6 30–40 1 Baselt, 2017

Codeine 2.5–3.5 7–25 0.3 Baselt, 2017

Hydrocodone 3.3–4.7 19–45 0.5–1 Patanwala et al., 2007; Baselt,

2017

Hydromorphone 2.9 20 5–10 Bruera et al., 1996; Patanwala

et al., 2007; Baselt, 2017

Oxycodone 2.6 45 1 Patanwala et al., 2007;

Al-Asmari et al., 2009

Oxymorphone 3 10–12 10 Patanwala et al., 2007; Smith,

2009

Buprenorphine 3–5 96 40 Dahan et al., 2005

Synthetic opioids Fentanyl 3–8 80–85 224 Jumbelic, 2010

Methadone 1–8 85–90 3–5 Patanwala et al., 2007; Baselt,

2017

Tramadol 3 20 0.1 Christoph et al., 2007; Oertel

et al., 2011

Synthetic opioids-Fentanyl

derivatives

Acetylfentanyl NA NA 15 Higashikawa and Suzuki, 2008

Acrylfentanil NA NA 170 Ujváry et al., 2017

Alfentanil 0.4–1 92 72 Vardanyan and Hruby, 2014

Butyryl fentanyl; butyr fentanyl NA NA 7 Higashikawa and Suzuki, 2008

Isobutyrylfentanyl NA NA 1.3–6.9 Higashikawa and Suzuki, 2008

Carfentanil NA NA 10,000 Van Bever et al., 1976

Furanyl fentanyl NA NA 7 Higashikawa and Suzuki, 2008

alpha-methylfentanyl NA NA 56.9 Higashikawa and Suzuki, 2008

cis-3-methylfentanyl; 3-MF;

mefentanyl

NA NA 6000 Higashikawa and Suzuki, 2008

Remifentanil 0.35 70 220 Wax et al., 2003

Sufentanil NA NA 4,520 Niemegeers et al., 1976

Synthetic opioids-Not

related to fentanyl

AH-7921 NA NA 1 Hayes and Tyers, 1983

U-47700 NA NA 7.5 Cheney et al., 1985

MT-45 NA NA 1 EMCDDA, 2015

NA, not available.

Furanylfentanyl contains a furan group that affects its
metabolic profile. This structure seemed to favor the amide
hydrolysis, which is the main metabolite in vitro and in vivo
(Watanabe et al., 2017). In terms of specificity of the
target metabolites, Watanabe et al. (2017) recommended the
dihydrodiol-metabolite and Goggin et al. (2017) recommended
the same metabolite, as well as the sulfate of the metabolite
that results from the amide hydrolysis. As it happened with
butyrfentanyl (Steuer et al., 2017), the hepatocyte experiment also
suggested high prevalence for the nor-metabolite, which was not
significantly present in the authentic urine samples, illustrating
the need to analyze human specimens. Furanylfentanyl parent
compound was detected in authentic urine samples. For
ocfentanyl, the predominant metabolite detected in blood, along
with the parent drug, was the O-desmethylatedmetabolite (Allibe
et al., 2018).

In the case of the new synthetic opioids not structurally related
to fentanyl, different metabolic pathways has been reported.
For AH-7921, the preferred metabolic sites were the amine
function and the cyclohexyl ring. The two most dominant
metabolites after hepatocyte incubation (also identified in a
urine case specimen) were desmethyl and di-desmethyl AH-
7921. Together with the glucuronidated metabolites, they were
recommended as suitable analytical targets for documenting
AH-7921 intake (Wohlfarth et al., 2016). In the case of
MT-45, Montesano et al reported hydroxy-MT-45-glucuronide
and di-hydroxy-MT-45-glucuronide as the most abundant
metabolites in rat urine, while the parent drug was found
at concentrations <10 ng/mL after 300min (Montesano et al.,
2017). Although similar in chemical structure, U-47700 and U-
49900 showed specific metabolites. N-Desmethyl-U-47700 was
identified as the major metabolite in human urine specimens,

Frontiers in Pharmacology | www.frontiersin.org 7 October 2018 | Volume 9 | Article 1210

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Concheiro et al. Postmortem Toxicology New Synthetic Opioids

TABLE 3 | In vitro and in vivo metabolism of synthetic opioids.

Compound Study

type

Matrix

(species)

Total #

phase I

metabolites

Major metabolites

(decreasing order of

relative intensity)

Phase II

metabolites

Recommended

target analytes

in urine

References

Acetyl Fentanyl In vivo Urine

(humans)

6 – Hydroxylated

metabolite at

phenylethyl ring

– Hydroxy-methoxy

metabolite at

phenylethyl ring

Glucuronide of

hydroxylated

metabolites

– Hydroxylated

metabolite at

phenylethyl ring

– Hydroxy-

methoxy

metabolite at

phenylethyl ring

– Acetyl fentanyl

Melent’ev

et al., 2015

In vitro Pool human

liver

hepatocytes

7 – N-dealkylated

metabolite at the

piperidine moiety

– Hydroxylated

metabolites at the

ethyl linker

– Dihydroxylation at

phenylethyl ring

Watanabe

et al., 2017

In vivo Urine (human) 24 – Hydroxy-methoxy

metabolite at

phenylethyl ring

– Hydroxy metabolite

at the ethyl linker

– N-dealkylated

metabolite at the

piperidine moiety

Glucuronides

and sulfates of

hydroxy-

metabolites

– Hydroxy

metabolite at

the ethyl linker

– Hydroxy-

methoxy

metabolite at

phenylethyl ring

– Acetyl fentanyl

In vitro Pluripotent

stem

cell-derived

hepatocytes

6 – N-dealkylated

metabolite at the

piperidine moiety

– Hydroxylated

metabolite at

phenylethyl ring

– Hydroxylated

metabolites at the

ethyl linker

Kanamori

et al., 2018

Acrylfentanyl In vitro Pool human

liver

hepatocytes

8 – N-dealkylated

metabolite at the

piperidine moiety

– Hydroxylated

metabolite at the

piperidine moiety

– Hydroxylated

metabolite at the

ethyl linker

Watanabe

et al., 2017

In vivo Urine (human) 12 – N-dealkylated

metabolite the

piperidine moiety

– Hydroxylated at the

ethyl linker

– Dihydroxylated

metabolite at the

piperidine and at the

ethyl linker

– Hydroxy-methoxy

metabolite at

phenylethyl ring

Glucuronides of

hydroxy-

metabolites

– Hydroxylated at

the ethyl linker

– Dihydroxylated

metabolite at

the piperidine

and at the ethyl

linker

– Acrylfentanyl

Butyrfentanyl In vitro Human liver

microsomes

36 – N-dealkylated

metabolite

– Hydroxy-metabolite

at butanamide chain

– Dihydroxy-metabolite

at phenylethyl ring

Steuer et al.,

2017

(Continued)
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TABLE 3 | Continued

Compound Study

type

Matrix

(species)

Total #

phase I

metabolites

Major metabolites

(decreasing order of

relative intensity)

Phase II

metabolites

Recommended

target analytes

in urine

References

In vivo Urine (human) – Carboxy-metabolite

at butanamide chain

– Hydroxy-metabolite

at butanamide chain

– Carboxy at

butanamide chain

and hydroxy at

phenylethyl ring

metabolite

Glucuronides of

hydroxy-

metabolites

– N-dealkylated

metabolite

– Hydroxy-

metabolite at

butanamide

chain

– Carboxy-

metabolite at

butanamide

chain

Blood

(human)

– Carboxy-metabolite

at butanamide chain

Carfentanil In vitro Pool human

liver

hepatocytes

11 – Monohydroxylated

metabolite at of

piperidine ring

N-dealkylated

metabolite

Glucuronide of

hydroxylated

metabolite

– Monohydroxylated

metabolite at of

piperidine ring

Feasel et al.,

2016

Furanylfentanyl

(Fu-F)

In vitro Human

hepatocytes

Pooled

human

hepatocytes

13 – Amide hydrolysis

– N-dealkylated

metabolite

– Dihydrodiol

metabolite at furan

group

Watanabe

et al., 2017

In vivo Urine (human) 9 – Amide hydrolysis

– Dihydrodiol

metabolite at furan

group

– Dihydrodiol at furan

group and hydroxy at

ethyl linker

metabolite

Glucuronide and

sulfate of

hydroxylated

metabolites

– Dihydrodiol

metabolite at

furan group

In vivo Urine (human) – Amide hydrolysis

– Dihydrodiol

metabolite at furan

group

Sulfate

metabolite of

amide hydrolysis

metabolite

– Sulfate

metabolite of

amide hydrolysis

metabolite

– Dihydrodiol

metabolite at

furan group

Goggin et al.,

2017

In vitro Human liver

microsomes

17 – Despropnionyl

fentanyl

– Monohydroxylated

metabolite

– N-dealkylated

metabolite

Gaulier et al.,

2017

In vitro HepaRG cell

Line

17 – Despropnionyl

fentanyl

– N-dealkylated

metabolite

– Dihydrodiol

metabolite (at furan

group)

Glucuronide

hydroxylated

metabolite

4-Fluoro-

isobutyrylfentanyl

In vitro Pooled

human

hepatocytes

9 – N-dealkylated

metabolite of the

piperidine moiety

– Monohydroxy

metabolite at the

piperidine ring or at

the ethyl linker

– N-oxidation at the

piperidine ring

Watanabe

et al., 2017

(Continued)
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TABLE 3 | Continued

Compound Study

type

Matrix

(species)

Total #

phase I

metabolites

Major metabolites

(decreasing order of

relative intensity)

Phase II

metabolites

Recommended

target analytes

in urine

References

In vivo Urine (human) 13 – N-dealkylated

metabolite of the

piperidine moiety

– Monohydroxy

metabolite at the

piperidine ring or at

the ethyl linker

– Hydroxymethoxy

metabolite at

phenylethyl ring

Glucuronide

hydroxylated

metabolites

– Monohydroxy

metabolite at

the piperidine

ring or at the

ethyl linker

– Hydroxymethoxy

metabolite at

phenylethyl ring

Isofentanyl In vitro Urine (rats) 11 – N-dealkylation

followed by

hydroxylation of the

alkyl and aryl moiety

– Hydroxylation of the

propanamide side

chain followed by

oxidation to the

carboxylic acid

– Hydroxylation of the

benzyl moiety

followed by

methylation

– N-oxidation

Glucuronides of

hydroxy

metabolites

– N-dealkylated

metabolite

Meyer et al.,

2012

3-methylfentanyl In vivo Urine (rats) 9 /5 – N-dealkylation

followed by

hydroxylation of the

alkyl and aryl moiety

– Hydroxylation of the

propanamide side

chain followed by

oxidation to the

carboxylic acid

– Hydroxylation of the

benzyl moiety

followed by

methylation

Glucuronides of

hydroxy

metabolites

– N-dealkylated

metabolite

Meyer et al.,

2012

Ocfentanil (OcF) In vitro Human liver

microsomes

3 – O-desmethyl

metabolite

– Monohydroxylated

metabolite at

phenylethyl ring

– O-desmethyl

metabolite

hydroxylated at

phenylethyl ring

Glucuronide of

O-

desmethylated

metabolite

Allibe et al.,

2018

In vivo – Blood

(human,

n = 1)

– Bile

(human,

n = 1)

3 – O-desmethyl

metabolite

– Monohydroxylated

metabolite at

phenylethyl ring

– O-desmethyl

metabolite

hydroxylated at

phenylethyl ring

– O-

desmethylated-

metabolite

(Continued)
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TABLE 3 | Continued

Compound Study

type

Matrix

(species)

Total #

phase I

metabolites

Major metabolites

(decreasing order of

relative intensity)

Phase II

metabolites

Recommended

target analytes

in urine

References

AH-7921 In vitro Human

hepatocytes

11 – N-demethyl

metabolite

– N-dis-demethyl

metabolite

– N-demethyl

metabolite

hydroxylated at

cyclohexyl

Glucuronide

demethylated

metabolite

Wohlfarth

et al., 2016

In vivo Urine (human) 10 – N-demethylation

– N-dis-demethyl

metabolite

Glucuronide

demethylated

metabolite

– N-demethylation

– N-dis-demethyl

metabolite

MT-45 In vitro Rat

hepatocytes

10 – Hydroxy metabolite

– Dihydroxy metabolite

– 1-cyclohexyl-

piperazine

Glucuronides of

hydroxy

metabolites

Montesano

et al., 2017

In vivo Urine (rat) 10 – Hydroxy metabolite

– Dihydroxy metabolite

– 1-cyclohexyl-

piperazine

– OH-1-cyclohexyl-

piperazine

Glucuronides of

hydroxy

metabolites

– Hydroxy

metabolite

– Dihydroxy

metabolite

U-47700 In vitro Human liver

microsomes

4 – N-desmethyl-U-

47700

– N,N-didesmethyl-U-

47700

– N-desmethyl-

hydroxy-U-47700

– N,N-didesmethyl-

hydroxy-U-47700

Krotulski

et al., 2018a

In vivo Urine (human,

n = 5)

5 – N-desmethyl-U-

47700

– N,N-didesmethyl-U-

47700

– N-desmethyl-

hydroxy-U-47700

– N,N-didesmethyl-

hydroxy-U-47700

– N,N-didesmethyl-N-

desmethyl-U-47700

– N-desmethyl-U-

47700

– N,N-

didesmethyl-U-

47700

U-49900 In vitro Human liver

microsomes

5 – N-desethyl-U-49900

– N,N-didesethyl-U-

49900;

– N,N-didesethyl-N-

desmethyl-U-49900

– N-desethyl-

hydroxyo-U-49900

– N-desethyl-N-

desmethyl-U-49900

Krotulski

et al., 2018a

In vivo Urine (human,

n = 5)

5 – N-desethyl-U-49900

– N,N-didesethyl-U-

49900

– N,N-didesethyl-N-

desmethyl-U-49900

– N-desethyl-

hydroxyo-U-49900

– N-desethyl-N-

desmethyl-U-49900

– N,N-didesethyl-

N-desmethyl-U-

49900
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and N,N-Didesethyl-N-desmethyl-U-49900 was identified as the
most abundant metabolite present. Unlike U-47700 specimens,
U-49900 was detected in low abundance in urine samples
(Krotulski et al., 2018a).

As indicated by Watanabe et al. (2017), the target metabolites
should generally be abundant, specific of the parent drug, and
prevalent in most, if not all, case samples. Given the strong
structural similarities among emerging designer fentanyls, many
of them are coincidentally biotransformed to the exact same
metabolite. This fact can make identification of the specific
parent drug in a case difficult. The ability to identify minor
metabolites that are unique and specific to the parent drug is
therefore of considerable importance. 4-ANPP can be formed
by fentanyl and other different fentanyl analogs metabolism,
and it is also a precursor contaminant found in seized
illicit fentanyl and analogs, so its presence is not particularly
diagnostic. Other common metabolites are: acetylnorfentanyl
from acetyl-alpha-methylfentanyl or acetylfentanyl (Watanabe
et al., 2017); norfentanyl from fentanyl, beta-hydroxythiofentanyl
and alpha-methyl-fentanyl (Sato et al., 2010); norcarfentanil from
carfentanil, sufentanil and remifentanil (Feasel et al., 2016).
3,4-dichloro-N-(2-aminocyclohexyl)-N-methyl-benzamide is a
common metabolite of U-47700 and U-49900, but it is not a
major metabolite in urine for either compound (Krotulski et al.,
2018a).

Another important aspect of the metabolism is the
identification of the enzymes involved. Pharmacokinetic
interactions may be produced due to the presence of other
substances metabolized by the same enzymes, ultimately
affecting the drug blood concentrations. Fentanyl, sufentanyl
and alfentanil are mainly metabolized by CYP 3A4 (Feierman
and Lasker, 1996; Guitton et al., 1997). Steuer et al., identified
CYP 3A4 and CYP 2D6 as the isoforms involved in the
metabolism of butyrfentanyl (Steuer et al., 2017). Meyer et al.,
reported that CYP 3A4, CYP 3A5 and CYP 2C19 are involved
in the metabolism of 3-methylfentanyl and isofentanyl and,
in the case of isofentanyl, additionally CYP2D6 (Meyer et al.,
2012). Remifentanil is the only family member of this class
found to be ∼95% metabolized in the blood and tissues by
non-CYP enzymes, probably due to an easily accessible ester
group allowing rapid hydrolysis by circulating blood esterases
(Bürkle et al., 1996).

CONCENTRATIONS IN POSTMORTEM
SPECIMENS AND OTHER FINDINGS

The concentrations determined in postmortem specimens varied
considerably depending on the type of synthetic opioid detected.
Derivatives with potencies relative to morphine of more than
170, showed concentrations in femoral blood in the low ng/mL
or pg/mL range, while those derivatives with potencies similar
to morphine showed concentrations of hundreds, and even
thousands, of ng/mL. An exception happens with furanyl
fentanyl, which is seven times more potent than morphine
(Higashikawa and Suzuki, 2008), but the reported femoral
concentrations were less than 50 ng/mL. Typical morphine

postmortem concentrations in blood in fatalities are from
200 to 2,300 ng/mL, for methadone 400 to 1,800 ng/mL, for
buprenorphine 1.1–29 ng/mL and norbuprenorphine (active
metabolite) 0.2–13 ng/mL (Baselt, 2017), and for oxymorphone
23–554 ng/mL (Crum et al., 2013). The potency of the different
drugs affects their lethal levels, but other important issues,
such as the presence of other CNS depressant drugs, and
developed opioids tolerance, have to be taken into account in
the interpretation of the concentrations. The derivative with the
highest number of published cases was acrylfetanyl, and with
the lowest MT-45. Table 4 summarizes the concentrations of the
parent drugs found in case reports and articles where overdose
due to a specific opioid was the cause of death.

In several cases, multiple synthetic opioids were detected.
Acetylfentanyl and fentanyl were frequently found together
(Pearson et al., 2015; Poklis et al., 2015; Dwyer et al., 2018).
Other combinations were butyryl fentanyl and acetyl fentanyl
(McIntyre et al., 2016b; Poklis et al., 2016), or U-47700 (Mohr
et al., 2016); furanyl fentanyl and acetyl fentanyl (Papsun et al.,
2017), acryl fentanyl (Butler et al., 2017), butyryl fentanyl (Mohr
et al., 2016), fentanyl (Guerrieri et al., 2017a), or carfentanil
(Shanks and Behonick, 2017); carfentanil and fentanyl (Shanks
and Behonick, 2017); and tetrahydrofuran fentanyl and U-49900
(Krotulski et al., 2018b). The femoral concentrations reported in
those combination cases were frequently below the range of the
concentrations summarized in Table 4. Acetylfentanyl median
and concentration range in multiple synthetic opioids cases were
9.4, 0.4–240 ng/mL (n = 15); acrylfentanyl 0.3 ng/mL (n = 1);
butyrfentanyl 14.9, 0.3–58 ng/mL (n = 4); carfentanil 0.08, 0.05–
0.1 ng/mL (n = 2); fentanyl 8.2, 1.1–38 ng/mL (n = 14); furanyl
fentanyl 1.7, 0.6–6.1 ng/mL (n = 4) and U-47700 17 ng/mL
(n= 1).

In all of the reports mentioned in Table 4 and above,
synthetic opioids were commonly detected with other drugs,
especially other CNS depressants, such as benzodiazepines,
ethanol and other opioids. This combination may produce
a pharmacodynamic interactions and increase the risk of
respiratory depression. This possible interaction between
opioids, alcohol and benzodiazepines has been previously
described for other opioids, such as buprenorphine (Häkkinen
et al., 2012; Seldén et al., 2012), methadone (Jones et al., 2012;
Pilgrim et al., 2013; Nielsen et al., 2015), oxycodone (Ogle et al.,
2012), and heroin (Thaulow et al., 2014). Among the reviewed
cases positive for synthetic opioids other than fentanyl, 44
reported as cause of death intoxication due to multiple drugs and
77 intoxication mainly due to one specific opioid. The manner of
death was predominantly accidental (n = 99), and suicides were
reported in 7 cases.

POSTMORTEM REDISTRIBUTION AND
STABILITY

Postmortem changes in drug concentrations can happen via
postmortem redistribution (PMR) from tissues of a higher to
a lower concentration. Physicochemical and pharmacological
properties of the analytes, such as pKa, log P, volume of
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TABLE 4 | Postmortem concentrations in different biological samples for synthetic opioids (median, range, number of cases).

Analyte Blood (ng/mL) Vitreous

humor

(ng/mL)

Brain (ng/g) Liver (ng/g) Urine (ng/mL)

Femoral Cardiac Subclavian Non-specified

3-Methylfentanyl – – – 0.4 (0.3–0.9)

n = 3

– – – –

4–fluorobutyr fentanyl – – – 91–112

n = 2

– 248

n = 1

902

n = 1

200

n = 1

Acetylfentanyl 223.5 (16–600)

n = 12

270 (170–2,100)

n = 11

220

n = 1

– 140–240

n = 2

620

n = 1

1,000–1,100

n = 2

2,660 (240–3,420)

n = 4

Acrylfentanyl 0.2 (0.01–5)

n = 42

– – – – – – –

Butyryl fentanyl 99 (66–145.2)

n = 3

60.5 (39–220)

n = 3

– – 32

n = 1

93–200

n = 2

41–57

n = 2

64

n = 1

Carfentanil 0.2 (0.01–0.5)

n = 9

0.1–0.2

n = 2

0.03

n = 1

– – – – –

Fentanyl 11 (1–60)

n = 207

13 (1.8–139)

n = 81

– 13 (2–383)

n = 66

14.8 (8–20)

n = 4

49

n = 1

78 (5.8–16,983)

n = 99

97 (2.9–1,200)

n = 31

Furanyl fentanyl 2.7 (0.4–42.9)

n = 13

2.8

n = 1

– – – – – –

Ocfentanyl 9.1 (3.7–15.3)

n = 3

23.3 (3.9–27.9)

n3

– – 12.5

n = 1

37.9

n = 1

31.2

n = 1

6–480

n = 2

AH–7921 350 (30–9,100)

n = 13

480–3,900

n = 2

– – 190

n = 1

7,700

n = 1

530–26,000

n = 2

760–6,000

n = 2

MT–45 520–660

n = 2

1,300

n = 1

– – 260

n = 1

– 24,000

n = 1

370

n = 1

U–47700 358 (189–1,460)

n = 12

691.5

(260–1,347)

n = 4

– – 130

(90–170)

n = 2

(0.9–380)

n = 3

142.1

(3.1–1,700)

n = 4

1620.5

(360–4,600)

n = 4

3-Methylfentanyl references: (Ojanperä et al., 2006).

4-fluorobutyr fentanyl references: (Rojkiewicz et al., 2017).

Acetylfentanyl references: (Pearson et al., 2015; Poklis et al., 2015; Cunningham et al., 2016; Fort et al., 2016; McIntyre et al., 2016a; Takase et al., 2016; Yonemitsu et al., 2016; Dwyer

et al., 2018).

Acrylfentanyl references: (Butler et al., 2017; Guerrieri et al., 2017b).

Butyryl fentanyl references: (Poklis et al., 2016; Staeheli et al., 2016).

Carfentanil references: (Shanks and Behonick, 2017; Swanson et al., 2017; Hikin et al., 2018).

Fentanyl references: (Anderson and Muto, 2000; Kuhlman et al., 2003; Martin et al., 2006; Coopman et al., 2007; Biedrzycki et al., 2009; Carson et al., 2010; Krinsky et al., 2011, 2014;

Palamalai et al., 2013; Marinetti and Ehlers, 2014; McIntyre et al., 2014; Bakovic et al., 2015; Moore et al., 2015; Pearson et al., 2015; Poklis et al., 2015; Rodda et al., 2017; Dwyer

et al., 2018).

Furanyl fentanyl references: (Mohr et al., 2016; Guerrieri et al., 2017a; Martucci et al., 2017; Papsun et al., 2017).

Ocfentanyl references: (Coopman et al., 2016; Dussy et al., 2016; Allibe et al., 2018).

AH-7921 references: (Karinen et al., 2014; Kronstrand et al., 2014; Vorce et al., 2014; Fels et al., 2017).

MT-45 references: (Papsun et al., 2016; Fels et al., 2017).

U-47700 references: (Elliott et al., 2016; Mohr et al., 2016; Dziadosz et al., 2017; Papsun et al., 2017; Rohrig et al., 2017).

distribution (Vd) and protein binding, may indicate drugs
that experience this postmortem phenomenon. Lipophilic basic
drugs with a Vd > 3 L/kg, such as fentanyl, may undergo
PMR. Fentanyl has been reported to undergo extensive PMR
(Luckenbill et al., 2008; Olson et al., 2010; Palamalai et al., 2013;
Brockbals et al., 2018). In the case of the synthetic opioids,
limited data is currently available about PMR, and as well as
information about pKa, log P and Vd (Tables 2, 3). Staeheli
et al. (2016) reported postmortem concentration changes of
butyrfentanyl andmetabolites, suggesting these compounds were
prone to PMR. PMR reports about other synthetic opioids are not
currently available.

Based on currently published case reports and articles, the
cardiac blood-to-femoral blood and liver-to-femoral blood ratios
were calculated to predict candidates of PMR. Results are

summarized in Table 5. Due to the scarce amount of data
available (1–4 cases per analyte), no conclusions could be
drawn. Synthetic opioids showed median cardiac-to-femoral
ratios around 1, and a tendency to accumulate in the liver.
Regarding the distribution to vitreous humor, it may be slow
showing higher concentrations in blood. Other factors, such as
time of death and sample collection, or rapid vs. delayed deaths,
has not been taken into account in this analysis due to the limited
data available.

PMR is still a controversial issue for classic opioids.
Hargrove and Molina (2014) showed insignificant redistribution
of morphine from central sites within 24 h after death in
bodies kept at 4◦C, while Staeheli et al. (2017) observed
a significant increase of morphine concentration, although
these changes were not relevant for forensic interpretation.
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TABLE 5 | Postmortem concentration ratios in different biological samples for synthetic opioids (median, range, number of cases).

Analyte Cardiac-to-

femoral

Liver-to-femoral Vitreous humor-

to-femoral

References

Acetylfentanyl 1.2 (0.8–1.6)

n = 4

3.8–5.7

n = 2

0.6–0.9

n = 2

Cunningham et al., 2016;

Fort et al., 2016; McIntyre

et al., 2016a; Yonemitsu

et al., 2016

Butyryl fentanyl 0.6 (0.4–2.2)

n = 3

0.4–0.9

n = 2

0.3

n = 1

Poklis et al., 2016; Staeheli

et al., 2016

Fentanyl (0.7–4.6) n = 54 6.6 (1.4–539.4)

n = 75

1.5 (1.1–1.8)

n = 3

Anderson and Muto, 2000;

Krinsky et al., 2011, 2014;

Palamalai et al., 2013;

McIntyre et al., 2014;

Bakovic et al., 2015

Furanyl fentanyl 1.5

n = 1

– – Martucci et al., 2017

Ocfentanyl 1.5 (1.1–3.1)

n = 3

2

n = 1

0.8

n = 1

Coopman et al., 2016;

Dussy et al., 2016; Allibe

et al., 2018

AH–7921 0.4–1.1

n = 2

1.2–2.9

n = 2

0.4

n = 1

Vorce et al., 2014; Fels

et al., 2017

MT-45 2

n = 1

36.4

n = 1

0.4

n = 1

Fels et al., 2017

U-47700 1.5 (0.7–2.6)

n = 4

0.4 (0.003–8.9)

n = 4

0.2–0.9

n = 2

Dziadosz et al., 2017;

Rohrig et al., 2017

Morphine-derivatives, such us hydrocodone (Saitman et al.,
2015), codeine (Frost et al., 2016), and oxycodone (Brockbals
et al., 2018), are unlikely to undergo substantial PMR changes.
More lipophilic opioids with higher Vd, like methadone (Jantos
and Skopp, 2013; Holm and Linnet, 2015; Brockbals et al., 2018),
may undergo PMR.

Several studies have been conducted to evaluate stability
of fentanyl and some of its derivatives in fortified biological
samples, such as blood, plasma and urine. Eleven fentanils
(fentanyl, norfentanyl, carfentanil, norcarfentanil, sufentanil,
norsufentanil, lofentanil, 3-methylfentanyl, alfa-methylfentanyl,
ohmefentanyl, and remifentanil acid metabolite), were stable
in urine samples stored at −20◦C or below for at least 2
months. However, remifentanil in urine samples decreased by
approximately 90% within 1 week at room temperature and by
more than 50% in samples stored for 1 week at 4◦C. Because
of the instability of that analyte, the authors recommended
to analyze the primary metabolite, remifentanil acid (Wang
and Bernert, 2006). Fentanyl and its metabolites norfentanyl,
despropionylfentanyl and hydroxynorfentanyl were stable in
urine after 3 freeze-thaw cycles, and after storage at −20◦C for
2 months (Mahlke et al., 2014).

Fentanyl, norfentanyl, acetyl fentanyl and acetyl norfentanyl
spiked into whole blood were stable after three freeze-thaw cycles
and at room temperature for 72 h (Poklis et al., 2015). No loss
of fentanyl concentration could be observed after 3 months of
storage at 4–8◦C and−20◦C in blood samples at 5 and 10 ng/mL
(Andresen et al., 2012). However, another study showed
fentanyl and its metabolites norfentanyl, despropionylfentanyl

and hydroxynorfentanyl lose up to 51.6% after 3 freeze-thaw
cycles, and fentanyl and despropionylfentanyl up to 34.8%
after storage at −20◦C for 2 months (Mahlke et al., 2014).
Furanylfentanyl showed no significant degradation in blood
samples at 5 and 10 ng/mL 48 h room temp and at 4◦C 7
days (Guerrieri et al., 2017a) and up to 30 days (Mohr et al.,
2016).

Regarding the new synthetic opioids not related to fentanyl,
U-47700 was stable in blood refrigerated for up to 30 days
(Mohr et al., 2016). AH-7921 was found to be stable for at least
21 days in blood and plasma at room temperature (Soh and
Elliot, 2014). In the case of MT-45, a loss of 50% was observed
after 12 months of storage (Papsun et al., 2016). Further studies
are necessary to evaluate the stability of the different synthetic
opioids and metabolites, and in additional biological samples of
forensic interest, such as vitreous humor and tissues.

CONCLUSION

We performed a critical review of the currently available
literature to assist in the toxicological interpretation of synthetic
opioids postmortem cases. Synthetic opioids constitute a
heterogenous group of compounds related or not to fentanyl,
mostly basic and lipophilic, with a wide range of potencies
related to morphine, from 1 to 10,000. Research has been
conducted in the investigation of metabolic pathways and
identification of target metabolites of fentanyl derivatives and
non-structurally related synthetic opioids, showing similarities
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and differences from fentanyl depending on the compound.
Postmortem concentrations seemed to correlate with their
potency, although the presence of other CNS depressants, such
as ethanol and benzodiazepines has to be taken into account.
Further research is guaranteed to investigate postmortem
redistribution phenomena of this class of compounds, and
stability issues in postmortem samples.
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