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A prominent role of hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels

has been suggested based on their expression and (dys)function in dorsal root ganglion

(DRG) neurons, being likely involved in peripheral nociception. Using HCN blockers as

antinociceptive drugs is prevented by the widespread distribution of these channels.

However, tissue-specific expression of HCN isoforms varies significantly, HCN1 and

HCN2 being considered as major players in DRG excitability. We characterized the

pharmacological effect of a novel compound, MEL55A, able to block selectively

HCN1/HCN2 isoforms, on DRG neuron excitability in-vitro and for its antiallodynic

properties in-vivo. HEK293 cells expressing HCN1, HCN2, or HCN4 isoforms were

used to verify drug selectivity. The pharmacological profile of MEL55A was tested on

mouse DRG neurons by patch-clamp recordings, and in-vivo in oxaliplatin-induced

neuropathy by means of thermal hypersensitivity. Results were compared to the

non-isoform-selective drug, ivabradine. MEL55A showed a marked preference toward

HCN1 and HCN2 isoforms expressed in HEK293, with respect to HCN4. In cultured

DRG, MEL55A reduced Ih amplitude, both in basic conditions and after stimulation by

forskolin, and cell excitability, its effect being quantitatively similar to that observed with

ivabradine. MEL55A was able to relieve chemotherapy-induced neuropathic pain. In

conclusion, selective blockade of HCN1/HCN2 channels, over HCN4 isoform, was able

to modulate electrophysiological properties of DRG neurons similarly to that reported for

classical Ih blockers, ivabradine, resulting in a pain-relieving activity. The availability of

small molecules with selectivity toward HCN channel isoforms involved in nociception

might represent a safe and effective strategy against chronic pain.

Keywords: neuropathic pain, dorsal root ganglion neurons, hyperpolarization-activated current, HCN channel

blockade, oxaliplatin

Abbreviations: AP, action potential; DRG, dorsal root ganglion; HCN, hyperpolarization activated, cyclic nucleotide-gated

channels; HEK293, human embryonic kidney cells; Ih, hyperpolarization-activated current; FSK, forskolin; V½, voltage of

half-maximal current activation
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INTRODUCTION

During the last decade, hyperpolarizing activated cyclic
nucleotide-gated (HCN) channels emerged as key players
controlling and facilitating neuron excitability. The Na+/K+

inward current flowing during HCN opening, Ih, appears to
contribute to spontaneous or ectopic firing in several tissues,
including central nervous system and peripheral ganglia and

nerves (recently reviewed in Sartiani et al., 2017). Among the
most interesting ones, because of potential pathophysiological
implications, are the nociceptive neurons whose bodies
reside in the dorsal root ganglia (DRG). Recent promising

findings demonstrate that Ih activation plays a facilitating role
in neuropathic pain, an ill-treated disease demanding new
pharmacological strategies (Tsantoulas et al., 2016). Several

pieces of evidence support the over-expression and/or gain of
function of HCN in animal models of chronic, neuropathic
pain (Chaplan et al., 2003; Yao et al., 2003; Jiang et al., 2008).
Mechanisms triggering hyperalgesia or allodynia may involve
gene reprogramming (Papp et al., 2010; Descoeur et al., 2011;
Schnorr et al., 2014) as well as cAMP-mediated channel gating
consequent to receptor stimulation by prostaglandin E2 and
substance P (Jafri andWeinreich, 1998; Momin et al., 2008; Resta
et al., 2016).

A major limitation in assessing and exploiting the
pharmacological impact of HCNmodulation in pain nociception
is the lack of isoform-selective compounds. The HCN family
consists of four main isoforms (HCN1-4), assembling as homo-
or heterotetramers in the naïve channels, whose biophysical
properties and tissue distribution differ substantially within the
nervous system and beyond (Biel et al., 2009). As a matter of fact,
ivabradine, the only clinically available HCN blocker, exerts a
specific, bradycardic action entailed in chronic angina and heart
failure, yet unwarranted in neurological disorders (Savalieva and
Camm, 2006). Ivabradine is a not-isoform selective drug and the
heart rate-reducing effect has been attributed mainly to HCN4
blockade, the most highly expressed isoform in the sinoatrial
node (Sartiani et al., 2017). DRG neurons express HCN isoforms
unevenly, with HCN1 predominating in large neurons, HCN2 in
small-medium ones and HCN3-4 scarcely present in all of them
(Acosta et al., 2012; Schnorr et al., 2014). Altogether, these data
suggest that isoform-selective HCN blockers might represent
novel and safe analgesic arms against neuropathic pain (Tibbs
et al., 2016; Tsantoulas et al., 2016).

The feasibility of an antinociceptive strategy based on
isoform-selective HCN blockers has been confirmed by a
recent paper by some of us in a rat model of neuropathic
pain (Resta et al., 2018). These results were obtained using
MEL57A, a phenylalkylamine structurally related to zatebradine,
displaying significant selectivity for HCN1 over HCN2 and
HCN4 (Melchiorre et al., 2010). Indeed, previous structure-
activity studies from our lab suggested that naïve Ih current,
recorded in DGR neurons, was preferentially reduced by this
HCN1-selective blocker, when compared to another derivative
(EC18) showing selectivity for HCN4 (Del Lungo et al., 2012).
However, due to the relevant function of HCN2 isoform in
the transmission of painful stimuli (Emery et al., 2011) and

the possibility that HCN1/HCN2 co-assemble in heterotetramers
(Chen et al., 2001), a strategy based on HCN1/HCN2 blockade
(but not HCN4 blockade) might represent a promising option.

Based on preliminary proof of concept, we focused our
attention on MEL55A, previously synthesized by us, showing an
interesting pharmacological profile, being able to preferentially
block HCN1 and HCN2 over HCN4 (Melchiorre et al., 2010).
MEL55A is a reduced-flexibility analog of zatebradine, differing
from the lead by the presence of a cis-butene moiety in
place of the three-methylene chain, an endocyclic double
bond, and a stereogenic center (R configuration) close to the
dimethoxyphenyl ring (Supplemental Figure 1). In the present
work, we aimed to test whether the potency of this compound
translates into a modulatory effect of DRG neuron excitability
and underlying Ih, and into an antihyperalgesic activity. These
effects were compared with those of the non-selective drug,
ivabradine.

MATERIALS AND METHODS

HEK Culture
Human embryonic kidney cells (HEK293 cells DSMZ,
Braunschweig, Germany), transfected with mouse HCN1
(mHCN1), mouse HCN2 (mHCN2), and human HCN4
(hHCN4) cDNA (provided by Prof. M. Biel, Ludwig-
Maximilians-Universität München), were cultured as described
previously (Del Lungo et al., 2012) in DMEM medium (DMEM
+ GlutaMaxTM-I x1, Gibco, Italy) supplemented with 10%
fetal bovine serum (FBS), 100 U/ml penicillin, 100µg/ml
streptomycin and 200µg/ml geneticin (G418, Gibco, Italy) in
T25 flasks and incubated at 37◦C with 5% CO2. At confluence
(3–5 days after plating), cells were detached by using trypsin-
EDTA and the sedimented cells were either re-plated or used for
electrophysiological measurements. Prior to electrophysiological
recordings, HEK293 cells were incubated in Tyrode’s solution
(see Solutions) in the presence of 300µM CaCl2 for 2–3 h at
room temperature.

Animals
Behavioral tests were performed on male CD-1 albino mice
(Envigo, Italy) weighing ∼22–25 g at the beginning of the
experimental procedure, were used. In vitro measurements were
performed on dorsal root ganglia (DRG) of C57black mice, 3–8
months (Envigo, Italy). Animals were housed in CeSAL (Centro
Stabulazione Animali da Laboratorio, University of Florence)
and used at least 1 week after their arrival. Ten mice were
housed per cage (size 26 × 41 cm); animals were fed a standard
laboratory diet and tap water ad libitum, and kept at 23 ± 1◦C
with a 12 h light/dark cycle, light at 7 a.m. The experimental
protocol was carried out after approval by the Animal Care
and Research Ethics Committee of the University of Florence,
Italy, under license from the Italian Department of Health and
in compliance with the Directive 2010/63/EU of the European
parliament and of the European Union council (22 September
2010) on the protection of animals used for scientific purposes.
The ethical policy of the University of Florence complies with
the Guide for the Care and Use of Laboratory Animals of the US
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National Institutes of Health (NIH Publication No. 85-23, revised
1996; University of Florence assurance number: A5278-01).
Experiments involving animals have been reported according
to ARRIVE guidelines [McGrath, 2015 #485]. All efforts were
made to minimize animal suffering and to reduce the number of
animals used.

Mouse Dorsal Root Ganglion Neurons
Preparation
Experiments were performed on dorsal root ganglia (DRG) of
adult mice (C57black, 6–8 weeks). A total number of 12 mice
have been used for this study. Twenty-thirty ganglia were isolated
from the full length of the spinal column following removal of the
spinal cord and used for primary cultures or Western blots.

For primary cultures of DRG neurons, after incubation
in collagenase (2.5 mg/ml) for 1 h at 37◦C, ganglia were
mechanically triturated with a 45µm sterile needle. The cell
suspension was filtered in 40µm Nylon filter (BD Falcon)
then centrifuged and re-suspended in Dulbecco’s modified
Eagle’s medium (DMEM, Gibco, Italy) supplemented with 50
U/ml penicillin and 0.05 mg/ml streptomycin (Invitrogen),
1% L-glutamine (Invitrogen), 10% fetal bovine serum (FBS,
Gibco, Italy), 50 ng/ml nerve growth factor (NGF, Promega)
and 1.25µg/ml cytosine β-D-arabinofuranoside (Ara-C, Sigma,
Italy). DRG neurons were plated onto 13mm borosilicate
cover glass previously coated with polyL-lysine (100µg/ml,
Sigma, Italy) and laminin (10µg/ml, Sigma, Italy). The
medium was changed after 24 h. Immunocytochemistry
staining and electrophysiological recordings were made
within 60–72 h of culture; during this time, cells develop
in most cases neurites as previously reported (Fukuda,
1985).

Oxaliplatin-Induced Neuropathy
Mice treated with oxaliplatin (2.4 mg/kg) were administered
i.p. on days 1–2, 5–9, 12–14 (10 i.p. injections) (Cavaletti
et al., 2001; Di Cesare Mannelli et al., 2017). Oxaliplatin was
dissolved in 5% glucose solution. Control animals received an
equivalent volume of vehicle. Behavioral tests were performed on
day 15.

Cold Plate Test
The animals were placed in a stainless-steel box (12 × 20 ×

10 cm) with a cold plate as floor. The temperature of the cold
plate was kept constant at 4± 1◦C. Pain-related behavior (licking
of the hind paw) was observed and the time (seconds) of the first
sign was recorded. The cut-off time of the latency of paw lifting
or licking was set at 60 s (Di Cesare Mannelli et al., 2013).

Immunocytochemistry
DRG neurons were fixed in 4% paraformaldehyde in PBS
for 15min and permeabilized in 0.3% Triton X-100-PBS for
10min. Cells were then blocked in 1% BSA for 10min
and incubated with rabbit anti-HCN1 [1:300], rabbit anti-
HCN2 [1:100], rabbit anti-HCN3 [1:25], rabbit anti-HCN4
[1:200] (Alomone Labs, Israel) antibodies overnight at 4◦C and
Alexa Fluor 546 anti-rabbit (Invitrogen) secondary antibodies

for 2 h. To spot nuclei, the sample was incubated with,
4′, 6-diamidino-2-phenylindole [1:1000] (DAPI, Vectashield
Labs, UK) in 0.1% Tween 20 in PBS for 10min. Images
were obtained using a fluorescence microscope (Olympus
BX63, Italy) with a 20X objective and a CellSens Dimension
Imaging Software (Olympus, Italy). HCN immunofluorescence
in cultured DRG neurons was semi-quantitatively measured
on a computer using ImageJ 1.33 image analysis software
(http://rsb.info.nih.gov/ij), as described in Bigagli et al. (2018).
Briefly, eight photomicrographs were randomly taken of each
sample and for each cell total, membrane, or cytoplasmic
HCN fluorescence was measured and expressed as pixels.
These values were used to calculate the membrane/cytoplasmic
relative fluorescence (% total cell fluorescence) of HCN
channels.

Patch-Clamp Experiments
Single cell patch-clamp experiments were performed in the
whole-cell configuration using a PC-505B amplifier (Warner,
Handen, CT, USA) and digitalized with Digidata 1440A and
Clampex 10 (Axon, Sunnyvale, CA,USA). Pipettes, resistance
3–5 MΩ , were pulled from borosilicate capillaries (Harvard
Apparatus Ltd, Kent, U.K.) using a two-stage horizontal puller
(model P-87; Sutter Instrument, Novato, CA). Signals were
sampled at 10 kHz and low-pass filtered at 1 kHz. All recordings
were made at room temperature. Cells were continuously
perfused with extracellular solution using a gravity-fed perfusion
system. We patched cells with a diameter <30µm thus
including the large majority of nociceptive neuron. Membrane
capacitance (Cm) was measured by applying a ±10mV pulse
from a holding potential of −40mV. Only cells showing
stable Cm and series resistance (Rs) were included in the
analysis.

Action potential (AP) recordings were performed in DRG
neurons using a protocol constituted by a hyperpolarizing
current step (−100 pA, duration: 1 s) followed by a series of
depolarizing steps of increasing intensity (from 20 to 100 pA,
duration: 1 s), to evoke the voltage-sag and the AP, respectively.

Ih was elicited by a voltage protocol consisting of a family of
hyperpolarizing steps to increasing negative potentials, from−40
to −150mV from a holding potential of −20mV, as previously
described (Del Lungo et al., 2012).

Solutions for Electrophysiological
Recording
Extracellular Solutions

Tyrode’s solution (mM): D-(+)-glucose 10, NaCl 140, KCl 5.4,
MgCl2 1.2, CaCl2 1.8, HEPES-NaOH 5.0, (pH 7.3); modified
Tyrode’s solution to measure Ih in HEK cells: Tyrode’s solution
with 25mM KCl; modified Tyrode’s solution to measure Ih in
DRG neurons: Tyrode’s solution with (mM): BaCl2 2, MnCl2 2,
4-aminopyridine 0.5, and KCl 25. Intracellular solution (mM): K-
aspartate 130; Na2-ATP 5, MgCl2 2, CaCl2 5, EGTA 11, HEPES-
KOH 10 (pH 7.2; pCa 7.0).

MEL55A (3-[(2Z)-4-{[(2R)-2-(3,4-dimethoxyphenyl)propyl]
(methyl)amino}but-2-en-1-yl]-7,8-dimethoxy-2,3-dihydro-
1H-3-benzazepin-2-one hydrochloride, see the formula in
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Supplemental Figure 1) was synthesized as reported previously
(R5; Melchiorre et al., 2010). MEL55A and ivabradine solutions
were obtained from stock solutions (10−2 M) in water and
diluted in the different experimental solution to reach the desired
final concentration.

Data Analysis and Statistics
Current amplitude was obtained by fitting the time-dependent
component of Ih current tracings from the peak initial current to
the steady-state current with a mono- (in HEK) or bi-exponential
function (in DGR neurons), which gave the best fitting results. In

FIGURE 1 | Expression and localization of HCN1 (A), HCN2 (B), and HCN4 (C) isoforms, and co-expression of HCN1/HCN4 (D) and HCN2/HCN4 (E) isoforms in

DRG neurons. Immunofluorescence images of mouse DRG neurons show typical staining of HCN1 and HCN2 (red signal), HCN4 (green signal) and nuclei (blue

signal). The white bar on each panel corresponds to 50µM.
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case of bi-exponential function, the time constant tau reported
in Figures refers to the largest current component measured
by the fitting. Current density was calculated as the difference
between the peak current at the beginning of the hyperpolarizing
step and the steady-state current, normalized to membrane
capacitance. From the current-voltage relationship, specific
current conductance was determined for each cell according to
the equation:

GHCN = I × (Vm − Vrev)
−1

where GHCN is the conductance (pS/pF) calculated at membrane
potential Vm, I the current density (pA/pF), and Vrev (reversal
potential) is calculated from the analysis of tail currents (Cerbai
et al., 1994). The effect of forskolin on Ih activation, in the
absence and presence of Ih blockade, was evaluated by tail
current analysis, using a two-step protocol consisting of a first
step varying from −50 to −130mV, eliciting fractional Ih, and
a second step to −130mV to activate the residual current.
Activation curves of Ih were fitted with Boltzmann function

GHCN = gmax×
{

1 + exp
[(

V1/2 − Vm/k
)]}−1

where V½ (mV) is the half-activation potential and k (mV) is the
slope factor.

Concentration-effect curves were obtained at three different
concentrations (1, 10, and 30µM) and fitted to a Hill distribution

y = Emax ×
[

xn ×
(

kn + xn
)

−1
]

where Emax is the maximum effect, k corresponds to the
concentration for half-maximal blocking effect (IC50), x is the
drug concentration and n is the Hill coefficient.

Analysis of electrophysiological data and curve fitting was
performed by using OriginPro 2015 (OriginLab Corporation,
USA). Statistical comparison was performed with one-way
ANOVA; the effect of compounds on Ih activation curve was
evaluated by Multiple t-test (GraphPad PRISM v.5, USA).
Behavioral measurements were performed on 12 mice for each
treatment carried out in 2 different experimental sets. The
analysis of variance of behavioral data was performed by one way
ANOVA, a Bonferroni’s significant difference procedure was used
as post-hoc comparison. Data were analyzed using the “Origin 9”
software (OriginLab, Northampton, USA).

All data are expressed as mean±SEM unless indicated. A
probability value <0.05 was considered significant.

RESULTS

Expression and Localization of HCN
Isoforms in Mouse DRG Neurons
The population of DRG neurons in culture typically consists of
cells with different dimensions for which, according to data in
literature (Acosta et al., 2012; Schnorr et al., 2014), the proportion
of HCN isoforms may vary depending on size. We observed
that immunoreactivity for all three isoforms was present in
DRG neurons (Figures 1A–C); however, their sublocalization
was apparently different. The semiquantitative analysis reported

FIGURE 2 | Semi-quantitative analysis of HCN isoforms expression in DRG

neurons (n = 8) based on fluorescence. Each box represents the mean and

range (25–75%) values measured by automated pixel analysis in the

membrane (white boxes) or cytoplasmic area (gray boxes), normalized with

respect to total cell fluorescence. ***p < 0.001 HCN4 vs. HCN1 and HCN2

(One-way ANOVA).

in Figure 2 shows that HCN1 and HCN2 have a prevalent
membrane localization; as for HCN4, immunoreactivity was
detected at membrane as well as intracellularly, the proportion
between the two compartments being significantly different from
the other two isoforms. Co-localization experiments revealed
a simultaneous expression of HCN1-HCN4 or HCN2-HCN4
in neurons, HCN1 and HCN2 isoforms showing prevalent
membrane localization (Figures 1D,E).

Isoform-Selective Effect of MEL55A in
HEK293 Expressing HCN
Based on expression profile and localization of HCN isoforms in
DRG neurons and previously reported effect on maximal current
in heterologously expressed channels (Melchiorre et al., 2010),
we further assessed the properties of MEL55A (R-enantiomer,
Supplemental Figure 1) in HEK293 cells at physiologically
relevant potentials. Figure 3A shows the effect of 10µM
MEL55A on current evoked by hyperpolarizing step at −80mV
for the three isoforms, whose properties (V½ and time constant
of activation, tau) are reported in Figure 3C. The percentage
blockade of HCN current measured at −70, −80, and −90mV
with increasing concentrations of MEL55A (1, 10, and 30µM)
was significantly higher for HCN1 and HCN2 with respect to
HCN4 at any concentration, with the exception of one point
(HCN2 at−90mV).

Ih Blockade by MEL55A in DRG Neurons
Figure 4 shows typical current tracings evoked by
hyperpolarizing steps in the absence and presence of 10 or
30µM MEL55A. Average activation curve (Figure 4C) shows
that MEL55A reduced Ih amplitude significantly (p < 0.0001,
CTR vs all tested concentration) at any voltage step and in a
concentration-dependent fashion. The effect was even more
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FIGURE 3 | Effect of MEL55A on HCN isoforms heterologously expressed in HEK293 cells. (A) Representative tracings elicited by voltage steps to −80mV, in the

absence (black line) and presence (gray line) of 10µM MEL55A. (B) concentration dependent blockade of HCN isoforms by 1, 10, and 30µM measured at −70mV

(squares), −80mV (circles), and −90mV (triangles). Each point represents the mean ± S.E.M of 5–6 cells. *p < 0.05 HCN1 or HCN2 vs. HCN4 by using One-way

ANOVA Multiple comparison test. (C) Basic properties of activation curve for the three HCN isoforms heterologously expressed in HEK293 cells.

evident at less negative step potentials; at −80mV (dashed
line), MEL55A blocked about 80% of the available current, thus
reducing Ih density from 0.28 ± 0.04 pS/pF in control (n = 11)
to 0.06 ± 0.01 pS/pF (n = 7) at 10µM and 0.06 ± 0.04 pS/pF
(n = 7) at 30µM. With 100µM MEL55A (n = 7), no residual
current was evoked by steps positive to −100mV. At −120mV,
the percentage reduction of available current was 26% for 10µM
MEL55A, 46% for 30µM, and 85% for 100µM (p < 0.0001)
(CTR: 0.85 ± 0.02 pS/pF, n = 11; 0.63 ± 0.03 pS/pF, n = 7; 0.46
± 0.07 pS/pF, n = 7; 0.13 ± 0.05 pS/pF, n = 7, in the presence of
10, 30, and 100µMMEL55A, respectively).

Due to a more pronounced effect at less negative potentials,
the activation curve was apparently shifted to the left. The voltage
of half-maximal activation (V½) was−92.7± 0.9mV (n= 11) in
control, −101.4±1.2mV (n = 7, p < 0.0001), −108 ± 1.8mV (n
= 7, p < 0.0001), and −122 ± 2.7mV (n = 7, p < 0.0001) in the
presence of 10, 30, and 100µMMEL 55A, respectively.

HCN isoforms have different kinetics and voltage-dependent
properties, according to data obtained from homotetramer
channels expressed in heterologous cells (Altomare et al., 2003;
Stieber et al., 2004; Baruscotti et al., 2005). The time constant of
activation of Ih in the absence and presence of MEL55A is shown
in Figure 4D. The apparent shift of activation curve caused by
MEL55A might be consistent with a more pronounced effect on
HCN1 isoform, which activates at less negative potentials and
exhibits a faster kinetics (see Figures 3A,C). In agreement with
this hypothesis, current kinetics of activation was also slowed

down by MEL55A (Figure 4D); of note, HCN1 and HCN2 also
have a faster kinetics with respect to HCN4. At −120mV, time
constant of activation (τ ) was 162± 22ms in CTR, 173± 14ms,
344 ± 50ms (p < 0.01) and 473 ± 107ms (p < 0.01) in the
presence of 10, 30, and 100µMMEL55A, respectively.

Figure 5 shows current tracings and activation curves
obtained in the absence and presence of 10 and 30µM
ivabradine, a non-isoform-selective blocker of HCN. At the
lowest concentration (10µM, Figure 5C), ivabradine showed a
similar qualitative effect but less marked current blockade (45%
reduction at−80mV) andV½ was unchanged (−95.5± 1.19mV
in CTR, n = 12 vs. −95 ± 1.3mV with IVA, n = 9). The kinetics
of current activation was not significantly affected (Figure 5D).
Average membrane capacitance of tested neurons was 55 ± 9 pF,
in line with data from cells cultured in similar conditions (Li and
Baccei, 2014).

Effect of Ih Blockade on DRG Membrane
(Voltage Sag)
In DRG neurons, Ih likely plays a role in controlling membrane
excitability (Tsantoulas et al., 2016; Sartiani et al., 2017); a
characteristic of Ih activation is the occurrence of a “voltage
sag” upon hyperpolarization, due to Na+ entry through HCN
channels (Resta et al., 2016).

Figure 6 shows examples of voltage sag generated by Ih in
response to 1000ms hyperpolarizing current steps (to −100 pA)
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FIGURE 4 | Effect of MEL 55A on Ih recorded from mouse DRG neurons. (A,B) Family of currents evoked by hyperpolarizing steps (voltage protocol in the inset), in

the absence and presence of 10 (A) or 30µM (B) MEL 55A. (C,D). Average activation curves obtained w/wo MEL55A (10–100µM) and corresponding time constant

for current activation at different hyperpolarizing voltage steps. Each point represents the mean±S.E.M of 7–11 cells. *p < 0.05 vs. CTR; **p < 0.01 vs. CTR;

§ p < 0.001 vs. CTR;
†
p < 0.0001 vs. CTR by using Multiple t test.

in the absence and presence of MEL55A (10 and 30µM) or
ivabradine (30µM). Consistent with Ih blockade at voltage
steps around the “sag” membrane potential, current-clamp
recordings showed a marked reduction of the amplitude of the
voltage sag in the presence of MEL55A tested at 30µM. We
quantified contribution of HCN channel activity by measuring
the percentage sag ratio, i.e., the difference between the peak
voltage (Vpeak) and steady-state voltage (Vss), normalized to
Vpeak. The voltage sag ratio decreased from 22.7 ± 3.6 to
14.0 ± 2.6% in the presence of 30µM MEL55A (n = 12,
p < 0.05). Similar effects were observed with ivabradine at the
same concentration (26.4 ± 5.2% in CTR vs. 12.0 ± 2.1% with
30µM IVA, n= 12).

MEL55A Counteracts the Effect of cAMP
on Ih Activation
According to the literature (see Sartiani et al., 2017 for a review)
and previously published data from some of us (Resta et al.,
2018), the contribution of Ih to DRG neuron excitability is
amplified by pathological conditions able to modify channel

expression or properties, e.g., by increasing intracellular cyclic
AMP levels. When challenged with 30µM forskolin (FSK), a
direct activator of adenylate cyclase, the activation curve of Ih
was shifted rightward, V½ being −85.4 ± 1.9mV in CTR vs.
−78.2± 1.8mV with FSK (n= 11, p < 0.05), with no significant
changes in maximum current (CTR 649 ± 143 pA; FSK 600 ±

139 pA) (Figures 7A,B). Likewise, this result suggests a relevant
contribution of HCN2 isoform to Ih current recorded in our
DGR neurons (Resta et al., 2016). In these conditions, as a
proof of concept, we tested the effect of 30µM MEL55A, i.e.,
a concentration able to block Ih almost completely at relevant
potentials (Figure 5) and showing a moderate yet statistically
significant selectivity toward HCN1/HCN2 isoforms compared
to HCN4 (Figure 3B). At this concentration, MEL55A was able
not only to reduce maximum Ih amplitude (407 ± 104 pA,
p<0.05 vs. CTR and FSK), but also to revert the positive shift
of V½ (−85.7 ± 2.1mV, p < 0.01 vs. FSK). Figure 7C reports
typical current tracings measured during a double step protocol,
evoked by hyperpolarization to −90mV followed by a brief
step to −130mV. Similar results were observed with ivabradine
(Figure 8).
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FIGURE 5 | Effect of ivabradine on Ih recorded from mouse DRG neurons. (A) Typical current recordings in the absence or presence of 10 and 30µM IVA;

(B,C) Average activation curves and corresponding time constant for activation obtained w/wo ivabradine at different concentrations. Each point represents the

mean±S.E.M of 9–12 cells. *p < 0.05 vs. CTR; **p < 0.01 vs. CTR; §p < 0.001 vs. CTR;
†
p < 0.0001 vs. CTR by using Multiple t test.

Effect of MEL55A on Neuron Discharge
In current-clamp configuration, application of depolarizing
steps evoked spontaneous action potential (AP), followed by
quiescence (Figure 9A, top); superfusing with FSK—at the same
concentration able to cause a rightward shift of Ih activation—
led to the appearance of a series of spontaneous APs upon
application of an identical depolarizing step (medium panel);
30µM MEL55A on top of FSK reduced the number of APs
(lower panel). The effect was consistently observed in 14 cells
(Figure 9B).

Effect of MEL55A on Oxaliplatin-Induced
Neuropathy
The ability of MEL55A to reduce hypersensitivity was tested
in a mouse model of oxaliplatin-induced neuropathy. Two-
weeks treatment with oxaliplatin progressively decreased the
mice pain threshold as evaluated by the cold plate test. The licking
latency decreased to 13.8± 1.1 s in comparison to vehicle-treated
animals (23.2± 1.0 s,Table 1). The acute effect elicited by a single
i.p. administration of MEL55A (30mg kg−1) was evaluated on
day 15.MEL55A induced a pain relief, lasting 45min and peaking
at 30min, time at which the licking latency was restored close
to control value. Under the same conditions, the effect of the
same dose of ivabradine (30mg kg i.p.) was shorter, disappearing
after 30min. In contrast, the compound EC18 (Del Lungo et al.,
2012), previously characterized as HCN4-preferring compound,
was inactive in this test (Table 1). All compounds did not modify
the normal pain threshold of vehicle-treated animals (Table 1).

DISCUSSION

Our results demonstrate that MEL55A, exhibiting preferential
blockade of heterologously expressed HCN2 and HCN1
isoforms, could diminish the amplitude of Ih, either in basic
conditions and after stimulation by intracellular cAMP, and
reduce cell excitability in mouse DRG neurons in culture. To
our knowledge, this is the first demonstration that preferential
blockade of HCN2 and HCN1 channels, over HCN4 isoform,
was able to modulate the electrophysiological properties of
DRG neurons similarly to that reported for classical Ih blockers,
ZD7288 and ivabradine (Chaplan et al., 2003; Descoeur et al.,
2011).

MEL55A is an analog of zatebradine characterized by
reduced-flexibility and a stereogenic center (R configuration)
close to the dimethoxyphenyl ring whose synthesis and
preliminary screening in HEK cells has been previously
described (R5 in Melchiorre et al., 2010). A preferential
HCN1/HCN2 blockade was observed on heterologously
re-expressed, fully activated current (-120mV) and further
suggested by stereoselectivity: in fact, the blocking potency of
the S-enantiomer on maximally activated Ih (i.e., at −120mV)
was quantitatively smaller and similar for the three HCN
isoforms. Thus, we extended previous results and showed
that MEL55A preferentially blocked HCN1/HCN2 isoforms
over HCN4 also when tested on heterologously re-expressed
current evoked by steps at physiologically relevant potentials
(−70 to −90mV). This observation prompted us to naïve
cells where these isoforms may play a relevant physiological
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FIGURE 6 | Effect of IVA and MEL55A on membrane potential and voltage sag in DRG neurons. Voltage sag and action potential evoked by a hyperpolarizing current

(-100pA) followed by a depolarizing pulse (60 pA) in control conditions and in the presence of 30µM ivabradine (A) 10µM MEL55A (B) and 30µM MEL55A (C).

Current protocols are shown in inset on the right of corresponding traces.

role in controlling excitability, i.e., DRG neurons (Tibbs et al.,
2016).

According to our hypothesis, MEL55A reduced Ih amplitude
in DRG neurons; concurrently, when tested at 30µM, it
halved the amplitude of voltage sag upon hyperpolarization and
inhibited neuron excitability following depolarizing steps. In line
with published data (Young et al., 2014), the effect on Ih was
similar to that observed with ivabradine.

Translating results on HCN isoforms expressed in
recombinant systems to naïve cells is always difficult for
several reasons. First, h-channels in DRG neurons are likely
heterotetramers, although the exact stoichiometry is uncertain,
while only homotetramers are expressed in our HEK cells.
Second, the functional and pharmacological properties of naïve
Ih also depends on post-translational channel modification
including membrane translocation, presence of beta subunits
(e.g., MiRP1) and co-localization with caveolin-3, which modify
channel properties, in particular voltage-dependence and current
amplitude (see Sartiani et al., 2017 for a comprehensive review).

In our cultured DGR neurons, also in agreement with data
in literature (Acosta et al., 2012), we observed a well-defined
expression and membrane localization for HCN1 and HCN2
isoforms by immunostaining and semi-quantitative analysis,
while HCN4 staining was mainly detected at cytoplasmic level.
As for electrophysiological properties, time constant (tau) for Ih

activation measured in DRG neurons at −100mV was around
250ms, similar to values reported in previous studies in the
same cells (Gao et al., 2012). Interestingly, tau value lays midway
those measured for heterologously expressed HCN1 and HCN2
isoforms in our experimental conditions (at −100 mV: 182 ±

29 and 312 ± 59ms, respectively; tau for HCN4: 690 ± 39ms).
Overall, the electrophysiological properties of Ih measured in
our experimental conditions are consistent with HCN1/HCN2
characteristics in recombinant systems. Although the functional
presence of HCN4 in naïve h-channels cannot be ruled out
completely and a detailed characterization of HCN isoform
contribution to Ih was beyond the scope of this study, it is
worth to recall that the selective HCN4 blocker, EC18, was
completely ineffective on Ih measured in DRG neurons in the
same conditions up to a concentration of 100µM (Del Lungo
et al., 2012).

The “apparent” negative shift of activation curve caused by
MEL55A observed for Ih in DRG neurons is not completely
surprising, if one recalls the so-called “current dependence”
of HCN blockade originally reported for ivabradine (Bucchi
et al., 2002). Briefly, blockade by ivabradine is removed
when current flows inwardly through the open f-channels,
while develops rapidly when channels deactivate at depolarized
voltages. Channel unblock during persistent opening (i.e.,
hyperpolarization) has also been observed (Bucchi et al., 2006).
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FIGURE 7 | Effect of MEL 55A on Ih amplified by FSK in DRG neurons. Average activation curves (A) obtained in control (solid circles), with FSK (gray squares) and

with FSK + MEL55A 30µM (open triangles) and corresponding V½ (B,C): typical current tracings measured during a double step protocol, evoked by

hyperpolarization to −90mV followed by a brief step to −130mV. N = 11, **p < 0.01 vs. CTR; #p < 0.01 vs. FSK.

FIGURE 8 | Effect of ivabradine (IVA) on Ih amplified by FSK in mouse DRG neurons. Average I–V curves (A) obtained in control (solid circles), with FSK (gray squares)

and with FSK+ 30µM ivabradine (open triangles) and corresponding V½ (B). N = 10, **p < 0.01 vs. CTR; #p < 0.01 vs. FSK.

Finally, HCN1 blockade by ivabradine occurs also, at least in
part, when the channel is closed. If MEL55A behaves similarly,
percentage blockade of HCN1 and HCN2 might be favored at
less negative potentials, due to the combination of (i) preferential
selectivity for these isoforms, (ii) blockade (also) of closed
channels, and (iii) weak washout of the drug by current flowing

through the pore. Instead, the blockade could be partially
removed at more negative potentials, when large inward flow
of Na+ ions (and K+, depending on voltage) favors unblock of
the channel. Due to its possible (patho)physiological implications
for MEL55A or other compounds, this hypothesis deserves to be
proved by appropriate testing in future experiments.
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FIGURE 9 | Effect of MEL55A on neuron discharge. An example is reported in panel A: a depolarizing step evokes a single AP in control condition (A), followed by a

series of APs after application of FSK (medium panel); 30µM MEL55A on top of FSK reduces the number of APs (lower panel). (B) shows number of beats for

individual cells challenged with such an experimental protocol (points) and corresponding mean ± S.E.M (in red) in N = 8 cells; *p < 0.05 vs. CTR and FSK + MEL by

using Multiple t test.

TABLE 1 | Anti-allodynic effect of MEL55A and EC18 in comparison with ivabradine on oxaliplatin-induced neuropathy (Cold plate test).

Licking latency (s)

Treatment pretest 15 min 30 min 45 min 60 min 75 min

vehicle + vehicle 23.2 ± 1.0 22.5 ± 0.6 22.8 ± 0.9 23.2 ± 0.4 21.9 ± 1.1 22.8 ± 1.5

vehicle + MEL55A 30 mg/kg 22.8 ± 1.9 24.7 ± 0.8 23.5 ± 1.3 22.8 ± 0.8 24.1 ± 0.8

vehicle + EC18 30 mg/kg 21.6 ± 1.2 23.7 ± 1.3 24.5 ± 0.8 22.1 ± 0.6 20.1 ± 0.9

vehicle + IVABRADINE 10 mg/kg 22.65±1.3 20.4 ± 1.5 22.6 ± 1.1 23.7 ± 1.3 22.4 ± 0.9

oxaliplatin + vehicle 13.8 ± 1.1 12.6 ± 0.7 14.3 ± 0.5 13.9 ± 0.8 13.7 ± 0-7 12.5 ± 0.8

oxaliplatin + MEL55A 30 mg/kg 14.5 ± 0.6 19.4 ± 0.8* 21.9 ± 0.9* 18.5 ± 0.8* 15.5 ± 0.9 12.6 ± 0.6

oxaliplatin + EC18 30 mg/kg 13.6 ± 1.0 12.2 ± 0.9 13.0 ± 0.7 14.2 ± 0.5 13.2 ± 1.2

oxaliplatin + IVABRADINE 30 mg/kg 13.8 ± 1.4 20.7 ± 1.5* 19.2 ± 1.1* 17.4 ± 0.9 15.6 ± 1.3

Oxaliplatin (2.4 mg/kg) was dissolved in 5% glucose solution and administered i.p. on days 1–2, 5–9, 12–14. On day 15, compounds (30 mg/kg, dissolved in saline containing 5%

DMSO) were i.p. administered. Pain-related behavior (i.e., lifting and licking of the hind paw) was observed by the cold plate test and the time (s) of the first sign was recorded. *P < 0.05

in respect to the oxaliplatin treated mice. Each value represents the mean of 12 mice performed in 2 different experimental sets.

The possibility to modulate DRG excitability by Ih blockade
is not new and it has been proved in previous studies in-
vivo and in-vitro. Administration of ZD7288 reduced Ih by
80%; such an effect was accompanied by the suppression of the
voltage sag, i.e., a time dependent depolarization consequent to
injection of hyperpolarizing current due to Na+ entry through
HCN channels (Gao et al., 2012). A similar effect was achieved
with ivabradine (Noh et al., 2014; Young et al., 2014), the only
Ih blocker, specific bradycardic agent commercially available
in angina and heart failure (Camici et al., 2016; Ponikowski
et al., 2016; Psotka and Teerlink, 2016). Unfortunately, the
exploitation of ivabradine as analgesic drug is precluded justly
by its side (i.e., bradycardic) effect, a consequence of the lack
of drug’s selectivity toward HCN isoforms (or slight HCN4
selectivity, Bucchi et al., 2006) In this context, the possibility
to exploit differences in HCN isoform expression among
tissues seems attractive: indeed, HCN4, the most contributor
for sinoatrial pacemaking (Moosmang et al., 2001; Stieber

et al., 2004; Baruscotti et al., 2011), largely overexpressed in
diseased ventricular tissue (Stillitano et al., 2008; Suffredini
et al., 2012) seems to play a negligible role in neuronal
excitability.

Several studies support the expression and role of HCN1 and
HCN2 isoforms in DRG neurons in physiological conditions;
nevertheless, the differential role of HCN subtypes in modulating
pain is still a matter of debate (Acosta et al., 2012; Schnorr et al.,
2014; DiFrancesco and DiFrancesco, 2015). The contribution of
the HCN2 isoform in inflammatory pain is suggested by the
involvement of cAMP-mediated pathways (e.g., by prostaglandin
E2 receptor stimulation) and the efficacy of HCN2 silencing
in relieving neuropathic pain (Emery et al., 2011, 2012; Resta
et al., 2016). In our DRG neurons, forskolin, an adenylate
cyclase activator, shifted current activation toward less negative
potentials by 8–10mV. Hence, the capability of MEL55A to
reduce Ih amplitude and counteract the effect of forskolin
on current activation is particularly relevant, suggesting that
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homomeric or heteromeric channels containing HCN2 subunits
may represent targets of MEL55A blockade in hyperalgesia.

At the same time, several conditions such as nerve injury,
antineoplastic agents and diabetes appear to increase HCN1
expression and function (Jiang et al., 2008; Tu et al., 2010;
Descoeur et al., 2011). Different results have been also obtained
depending on stress condition (acute vs. chronic pain) or
stimulus (heat vs. mechanic hypersensitivity) (Schnorr et al.,
2014). As a matter of fact, the relative expression of HCN1
and HCN2 isoforms is likely variable among neuron subsets,
depending on size, location, and soundly reflecting different
functions (Tibbs et al., 2016). Thus, a pharmacological tool aimed
to target both HCN1 and HCN2 isoforms, but less potent on
HCN4, might represent a suitable strategy in different settings.

To see if the Ih-blocking properties of MEL55A observed
in vitro could translate into a pharmacological effect in vivo,
we tested the antihyperalgesic properties of this compound
in a mouse model of oxaliplatin-induced neuropathy. Indeed,
a rigorous pharmacological approach requires a previous
pharmacokinetic assessment, which is not available at present
and will be object of further studies. However, 30 mg/Kg
MEL55A clearly showed a pain-relieving effect, which was
longer-lasting when compared to the same dose of ivabradine.
The significant antineuropathic effect of MEL55A could be
explained, similarly to what observed with MEL57A, by Ih gain-
of-function caused by oxaliplatin treatment (Resta et al., 2018),
possibly related to overexpression of the ancillary subunit MiRP-
1. When co-expressed in heterologous systems, this subunit
is known to modulate both HCN1 and HCN2 isoforms by
accelerating their kinetics (Yu et al., 2001; Qu et al., 2005).
It is worth noting that, in the same conditions, the HCN4-
preferring agent EC18 (Del Lungo et al., 2012) lacked anti-
allodynic effect (Table 1), further suggesting that HCN4 plays a
minor role in neuropathic pain (Emery et al., 2011; Resta et al.,
2018).

LIMITATIONS AND CONCLUSIONS

At present, our results do not allow inferring that MEL55A
represents a drug candidate; this aim was beyond the scope of
this study. We must acknowledge several limitations, requiring
further test: the lack of extensive pharmacodynamic (e.g., effect
on channels different from HCN) and pharmacokinetics data
and high concentrations used for our preliminary in-vivo proof

of concept. However, present results are promising in view of
drug design aimed to develop novel antinociceptive strategies
and original tools able to discriminate the contribution of
HCN isoforms in different pathophysiological conditions, which
remains a challenging issue. The shortage of pharmacological
agents able to treat neuropathic pain, a quite prevalent form
of chronic pain, represents an increasingly medical burden
(Finnerup et al., 2015). The availability of small molecules with
selectivity toward HCN2 channels might represent a safe and
effective strategy (Tsantoulas et al., 2016). In line with our recent
findings (Resta et al., 2018), present data further support that,
from a pharmacological point of view, this approach is affordable
and deserves to be further exploited in more integrated models.
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