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Ligand-based models can be used in drug discovery to obtain an early indication

of potential off-target interactions that could be linked to adverse effects. Another

application is to combine such models into a panel, allowing to compare and search

for compounds with similar profiles. Most contemporary methods and implementations

however lack valid measures of confidence in their predictions, and only provide

point predictions. We here describe a methodology that uses Conformal Prediction for

predicting off-target interactions, with models trained on data from 31 targets in the

ExCAPE-DB dataset selected for their utility in broad early hazard assessment. Chemicals

were represented by the signature molecular descriptor and support vector machines

were used as the underlying machine learning method. By using conformal prediction,

the results from predictions come in the form of confidence p-values for each class. The

full pre-processing and model training process is openly available as scientific workflows

on GitHub, rendering it fully reproducible. We illustrate the usefulness of the developed

methodology on a set of compounds extracted from DrugBank. The resulting models are

published online and are available via a graphical web interface and an OpenAPI interface

for programmatic access.

Keywords: target profiles, predictive modeling, conformal prediction, machine learning, off-target, adverse

effects, workflow

1. INTRODUCTION

Drug-target interactions are central to the drug discovery process (Yildirim et al., 2007), and is
the subject of study for the field of chemogenomics (Bredel and Jacoby, 2004), which has emerged
and grown over the last few decades. Drugs commonly interact with multiple targets (Hopkins,
2008), and off-target pharmacology as well as polypharmacology have important implications
for drug efficacy and safety (Peters, 2013; Ravikumar and Aittokallio, 2018). Organizations
involved in drug discovery, such as pharmaceutical companies and academic institutions, use many
types of experimental techniques and assays to determine target interactions, including in vitro
pharmacological profiling (Bowes et al., 2012). However, an attractive complementary method is to
use computational (in silico) profiling of binding profiles for ligands (Cereto-Massagué et al., 2015),
which also opens the possibility to predict hypothetical compounds. A common approach to the
target prediction problem is to use a panel of structure-activity relationship (QSAR) models, with
one model per target (Hansch, 1969), where chemicals in a knowledge base with known interaction
values (numerical or categorical) are described numerically by descriptors, and a statistical learning
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model is trained to predict numerical values (regression) or
categorical values (classification) for new compounds. The
recent increase in the number of available SAR data points
in interaction databases such as ChEMBL (Gaulton et al.,
2017) and PubChem (Wang et al., 2017) makes it feasible to
use ligand-based models to predict not only targets but also
panels of targets. Several methods and tools are available for
target prediction and for constructing and using target profiles.
Bender et al. use a Bayesian approach to train models for 70
selected targets and use these for target profiling to classify
adverse drug reactions (Bender et al., 2007). Chembench is a web-
based portal, which, founded in 2008 is one of the first publicly
available integrated cheminformatics web portals. It integrates a
number of commercial as well as open source tools for dataset
creation, validation, modeling and validation. It also supports
building ensembles of models, for multiple targets (Walker et al.,
2010; Capuzzi et al., 2017). The Online chemical modeling
environment (OCHEM), is a web-based platform that intends to
serve as multi-tool platform where users can select among the
many available alternatives in terms of tools and methods, for all
of the steps of creating a predictive model, such as data search,
selection of descriptors and machine learning model, as well as
assessment of the resulting model. OCHEM also encourages tool
authors to contribute with their own tools to be integrated in
the platform (Sushko et al., 2011). Yu et al. use Random Forest
(RF) and Support Vector Machines (SVM) to predict drug-
target interactions from heterogeneous biological data (Yu et al.,
2012). TargetHunter (Wang et al., 2013) is another online tool
that uses chemical similarity to predict targets for ligands, and
show how training models on ChEMBL data can enable useful
predictions on examples taken from PubChem bioassays. Yao
et al. describe TargetNet (Yao et al., 2016), a web service for multi-
target QSARmodels; an online service that uses Naïve Bayes. The
polypharmacology browser (Awale and Reymond, 2017) is a web-
based target prediction tool that queries ChEMBL bioactivity data
using multiple fingerprints.

We observe three important shortcomings among previous
works. Primarily, available methods for ligand-based target
profiling often do not offer valid measures of confidence in
predictions, leaving the user uncertain about the usefulness of
predictions. Secondly, the majority of the web tools lack an open
and standardized API, meaning that it is not straightforward
(and in most cases not possible at all) to consume the services
programmatically, e.g., from a script or a scientific workflow tool
such as KNIME (Mazanetz et al., 2012). Thirdly, previous works
do not publish the pre-processing and modeling workflows in
reproducible formats, rendering it hard to update the models
as data changes, and limits the portability of methods. In fact,
most implementations are only accessible from a website without
the underlying implementations being openly available for

Abbreviations: A, Active; ACP, Aggregated Conformal Predictor; CAOF, Class-

Averaged Observed Fuzziness; CP, Conformal Prediction; JAR, Java Archive

(A file format); MC, M Criterion (Fraction of multi-label predictions); N,

Non-active; OF, Observed Fuzziness; QSAR, Quantitative Structure-Activity

Relationship; RF, Random Forest; SMILES, Simplified molecular-input line-entry

system (A text-based representation of chemical structures); SVM, Support Vector

Machines.

inspection, which limits both the reproducibility (Stodden et al.,
2016), and verifiability (Hinsen, 2018) of their implementation.

We here present an approach for ligand-based target
profiling using a confidence framework, delivering target
profiles with confidence scores for the predictions of whether a
query compound interacts with each target. The confidence
scores were calculated using the Conformal Prediction
methodology (CP) (Vovk et al., 2005), which has been
successfully demonstrated in several recent studies (Norinder
et al., 2014, 2016; Cortés-Ciriano et al., 2015; Forreryd
et al., 2018). For readers new to the CP methodology, we
recommend (Gammerman and Vovk, 2007) for a good and
gentle general overview, and Norinder et al. (2014) for a good
introduction to CP for cheminformatics. The goal of this study
was to create an automated and reproducible approach for
generating a predicted target profile based on QSAR binding
models, with the models making up the profile published online
as microservices and the profile accessible from a web page.
Although the models give a confidence measure we also set out
to evaluate them on a test set to see how well they performed
on representative data. We exemplified the process by creating
a profile for the targets for broad early hazard assessment as
suggested by Bowes et al. (2012).

2. METHODS

2.1. Training Data
We based this study upon data from the ExCAPE-DB
dataset (Sun et al., 2017b). The reason for this is that ExCAPE-
DB combines data about ligand-target binding from ChEMBL
with similar data from PubChem, where importantly, PubChem
contains many true non-actives, which has been shown earlier to
result in better models than by using random compounds as non-
actives (Mervin et al., 2015). The data in ExCAPE-DB has also
gone through extensive filtering and pre-processing, specifically
to make it more useful as a starting point for QSAR studies. For
more details on the data filtering and processing done in the
ExCAPE-DB dataset, we refer to Sun et al. (2017b).

A scientific workflow was constructed to automate the full
data pre-processing pipeline. The first step comprises extracting
data on binding association between ligands and targets from
the ExCAPE-DB dataset (Sun et al., 2017b), more specifically
the columns Gene symbol, Original entry ID (PubChem CID or
CHEMBL ID), SMILES and Activity flag. This was performed
early in the workflow to make subsequent data transformation
steps less time-consuming, given the relatively large size of
the uncompressed ExCAPE-DB data file (18 GB). From the
extracted dataset, all rows for which there existed rows with a
conflicting activity value for the same target (gene symbol) and
SMILES string, were completely removed. Also, all duplicates in
terms of the extracted information (Original entry ID, SMILES,
and Activity flag) were replaced by a single entry, and thus
deduplicated. Note that deduplication on InChI level was already
done in for the ExCAPE-DB dataset in Sun et al. (2017b), but
since the signatures descriptor is based on SMILES, which is a
less specific chemical format than InChI (certain compounds that
are unique in InChI might not be unique in SMILES) this turns
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out to have resulted in some duplicate and conflicting rows in
terms of SMILES still appearing in the dataset. Since this is a
potential problem in particular if the exact same SMILES end
up in both the training and calibration or test set, we performed
this additional deduplication, on the SMILES level1. For full
information about the pre-processing done by the ExCAPE-DB
authors, see Sun et al. (2017b). As a help to the reader we note
that the activity flag is – in the ExCAPE-DB dataset—set to active
(or “A”) if the dose-response value in the binding assays was lower
than 10 µM and non-active (or “N”) otherwise.

A subset of the panel of 44 binding targets as suggested in
Bowes et al. (2012) was selected for inclusion in the study. The
selection was based on the criteria that targets should have at least
100 active and at least 100 non-active compounds. In addition
some targets were excluded for which data was not found in
ExCAPE-DB. This is described in detail below. Some of the
gene symbols used in Bowes et al. (2012) were not found in
their exact form in the ExCAPE-DB dataset. To resolve this,
PubMed was consulted to find synonymous gene symbols with
the following replacements being done:KCNE1was replaced with
MINK1 which is present in ExCAPE-DB. CHRNA1 (coding for
the α1 sub-unit of the Acetylcholine receptor) was excluded, as
it is not present in the dataset (CHRNA4, coding for the α4
sub-unit of the Acetylcholine receptor, is present in the dataset).
We note though, that both MINK1 and CHRNA4 were removed
in the filtering step mentioned above, since the dataset did not
contain more than 100 active and 100 non-active compounds
for MINK1 nor CHRNA. However, since one aim of the study
is to present and publish an automated and reproducible data
processing workflow, these targets could potentially be included
in subsequent runs on later versions of the database with
additional data available.

The resulting dataset (named Dataset1) consists of 31 targets
(marked as “included” in Table 1). For 21 of these targets, the
dataset contained less than 10,000 non-active compounds, which
makes them stand out from the other datasets, and where some of
them contain a problematically low amount of non-actives. These
21 targets are referred to as Dataset2, and their respective target
datasets were expanded with randomly selected examples from
the ExCAPE-DB dataset which were not reported to be active for
the target, thus being “assumed non-active.” These target datasets
aremarked with aX in the “Assumed non-actives added” column
of Table 1. The number of new examples was chosen such that
the total number of non-actives and assumed non-actives added
up to twice the number of actives, for each target, respectively.
The compounds for the remaining 10 targets, which were not
extended with assumed non-actives, were named Dataset3.

In order to validate the predictive ability of the trainedmodels,
a new dataset was created (Dataset4) by withholding 1,000
compounds from the ExCAPE-DB dataset, to form an external
validation dataset. The compounds chosen to be withheld were
the following: (i) all small molecules in DrugBank (version
5.0.11) with status “withdrawn,” for which we could find either
a PubChem ID or a CHEMBL ID, (ii) a randomly selected subset
of the remaining compounds in DrugBank 5.0.11, with status

1https://github.com/pharmbio/ptp-project/blob/c529cf/exp/20180426-wo-

drugbank/wo_drugbank_wf.go#L239-L246

“approved,” for which we could also find PubChem or CHEMBL
IDs, until a total number of 1,000 compounds was reached. No
regard was paid to other drug statuses in DrugBank such as
“investigational.”

The relation of the mentioned datasets Dataset1-4 are shown
in a graphical overview of how they were created in Figure 1,
and in Table 2, which summarizes in words how each dataset was
created.

The Conformal Prediction methodology, in particular with
the Mondrian approach, can handle differing sizes of the datasets
well (Norinder and Boyer, 2017), and so we see no reason to stick
to the exact same number of compounds as the actives. Instead
we use an active:non-active ratio of 1:2 between the classes. The
justification for this is that the assumed non-actives likely have
chemistry coming from a larger chemical space compared to the
known compounds, thus by adding more of the assumed non-
actives we can hopefully increase the number of examples in the
regions of chemical space that are of interest for separating the
two classes.

All the targets, with details about their respective number of
active and non-active compounds, and whether they are included
or not, are summarized in Table 1.

2.2. Conformal Prediction
Conformal Prediction (CP) (Vovk et al., 2005) provides a layer
on top of existing machine learning methods and produces valid
prediction regions for test objects. This contrasts to standard
machine learning that delivers point estimates. In CP a prediction
region contains the true value with probability equal to 1 − ǫ,
where ǫ is the selected significance level. Such a prediction region
can be obtained under the assumption that the observed data
is exchangeable. An important consequence is that the size of
this region directly relates to the strangeness of the test example,
and is an alternative to the concept of a model’s applicability
domain (Norinder et al., 2014). For the classification case a
prediction is given as set of conformal p-values2, one for each
class, which represent a ranking for the test object. The p-values
together with the user decided ǫ produces the final prediction set.
Conformal Predictors are Mondrian, meaning that they handle
the classes independently, which has previously been shown to
work very well for imbalanced datasets and remove the need for
under/oversampling, boosting or similar techniques (Norinder
and Boyer, 2017; Sun et al., 2017a).

Conformal Prediction as originally invented, was described
for the online transductive setting, meaning that the underlying
learningmodel had to be retrained for every new test object. Later
it was adapted for the off-line inductive setting too, where the
underlying model is trained only once for a batch of training
examples. The Inductive Conformal Predictor (ICP), which is
used in this study, require far less computational resources,
but has the disadvantage that a part of the training set must
be set aside as a calibration set. The remaining data, called
proper training set, is used to train the learning model. As the
partitioning of data into a calibration set and proper training set
can have a large influence on the performance of the predictor,

2The term “p-values” in Conformal Prediction does not have the same definition

as in statistical hypothesis testing.
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TABLE 1 | The panel of targets used in this study, identified by gene symbol.

Non-actives Non-actives

(before adding (after adding

assumed non-actives assumed non-actives Assumed non-

Gene symbol Actives and deduplication) and deduplication) actives added Remarks

IN
C
L
U
D
E
D

ACHE 3,160 1,152 5,824 X

ADORA2A 5,275 593 10,092 X

ADRB1 1,306 149 2,544 X

ADRB2 1,955 342,282 341,925

AR 2,593 4,725 4,866 X

AVPR1A 1,055 321,406 321,098

CCKAR 1,249 132 2,458 X

CHRM1 2,776 417,549 358,330

CHRM2 1,817 152 3,440 X

CHRM3 1,676 144 3,234 X

CNR1 5,336 400 10,220 X

CNR2 4,583 402 8,676 X

DRD1 1,732 356,201 355,909

DRD2 8,323 343,206 342,958

EDNRA 2,129 124 4,050 X

HTR1A 6,555 64,578 64,468

HTR2A 4,160 359,962 359,663

KCNH2 5,330 350,773 350,452

LCK 2,662 283 5,246 X

MAOA 1,260 1,083 2,452 X

NR3C1 2,525 4,382 4,804 X

OPRD1 5,350 826 9,580 X

OPRK1 3,672 303,335 303,111

OPRM1 5,837 2,872 11,252 X

PDE3A 197 110 392 X

PTGS1 849 729 1,634 X

PTGS2 2,862 827 5,162 X

SCN5A 316 119 624 X

SLC6A2 3,879 218 7,498 X

SLC6A3 5,017 106,819 106,594

SLC6A4 7,228 382 13,660 X

N
O
T
IN
C
L
U
D
E
D

ADRA1A 1,782 24

ADRA2A 839 39

CACNA1C 166 20

CHRNA1 – – Not in ExCAPE-DB

CHRNA4 256 17

GABRA1 112 5

GRIN1 555 92

HRH1 1,218 65

HRH2 394 56

HTR1B 1,262 86

HTR2B 1,159 66

HTR3A 584 65

KCNQ1 37 303,466

MINK1 929 8 Synonym to KCNE1

PDE4D 484 98

Actives and non-actives refer to the number of ligand interactions marked as active and non-active in ExCAPE-DB. The labels “included” and “not included” to the left, for the two row

ranges, indicate whether targets did pass the filtering criteria of at least 100 actives and 100 non-actives, to be included.
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FIGURE 1 | Graphical overview over how the raw datasets used in this study were created. The blue funnel symbol and text represent filtering steps, while the barrel

and document symbols represent datasets. The criteria for the filtering steps are shown with blue text. “A” represents “Actives,” and “N” represents “Non-actives.”

TABLE 2 | Summary of datasets discussed.

Name Description

Dataset0 SAR data points for all 44 targets in Bowes et al. (2012)

which are available in ExCAPE-DB.

Dataset1 SAR data points for the 31 targets in Dataset0 for which

there were at least 100 actives and 100 non-actives.

Dataset2 SAR data points for targets with least 10,000

non-actives.

Dataset3 SAR data points for targets which had less than 10,000

non-actives, thus the same as Dataset1 with Dataset2

excluded.

Dataset4 SAR points making up the external test, by extracting

rows from ExCAPE-DB for a selected set of 1,000

compounds in DrugBank (All withdrawn, and randomly

sampled approved, drugs, until reaching 1,000 drugs).

See also Figure 1 for a graphical overview of how each dataset was created.

it is common to redo this split multiple times and train an
ICP for each such split. This results in a so called Aggregated
Conformal Predictor (ACP) that aggregates the predictions for
each individual ICP.

In this study we used the Mondrian ACP implementation
in the software CPSign (Arvidsson, 2016), leveraging the
LIBLINEAR SVM implementation (Fan et al., 2008) together
with the signatures molecular descriptor (Faulon et al., 2003).
This descriptor is based on the neighboring of atoms in
a molecule and has been shown to work well for QSAR
studies (Alvarsson et al., 2016; Lapins et al., 2018) and for ligand-
based target prediction (Alvarsson et al., 2014). Signatures were

generated with height 1-3, which means that molecular sub-
graphs including all atoms of distance 1, 2, or 3 from initial atoms,
are generated. Support vector machines is a machine learning
algorithm which is commonly used in QSAR studies (Norinder,
2003; Zhou et al., 2011) together with molecular signatures and
similar molecular descriptors, e.g., the extended connectivity
fingerprints (Rogers and Hahn, 2010). As nonconformity
measure we used the distance between the classifier’s decision
surface and the test object, as previously described by Eklund
et al. (2015). In order to not use the assumed non-active
compounds in Dataset2 in the calibration set of the ICPs, these
additional compounds were treated separately, by providing
them to the CPSign software with the --proper-train

parameter, see the CPSign documentation (Arvidsson, 2016).
By using this parameter the additional compounds are only
added to the proper training set, thus being used for training
the underlying SVM model, but not for the calibration of the
predictions. This ensures that potentially non-typical chemistry
in the additional assumed non-active compounds does not affect
the calibration of the predictions in a negative way.

2.3. Hyper-Parameter Tuning
For each of the 31 targets in Dataset1, a parameter sweep
was run to find the optimal value of the cost parameter of
LIBLINEAR, optimizing modeling efficiency using 10-fold cross
validation. The training approach used an Aggregated Conformal
Predictor (ACP) with 10 aggregated models. The parameter
sweep evaluated three values for the cost parameter for each
target; 1, 10, and 100. The efficiency measure used for the
evaluation was the observed fuzziness (OF) score described
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in Vovk et al. (2016) as:

OF =
1

m

m∑

i= 1

∑

yi 6=y

p
y
i , (1)

where p
y
i is the p-value of the ith test case for class y, andm is the

number of test examples, or in our case with only two classes:

OF =

∑
i, yi=A

pNi +
∑

i, yi=N

pAi

mA +mN
(2)

where pNi is the ith p-value for class N, pAi is the ith p-value for
class A andmA andmN is the number of test examples in class A
and N, respectively. OF is basically an average of the p-values for
the wrong class, i.e., lower fuzziness means better prediction.

To study the effect of imbalanced datasets on efficiency, we
also implemented a modified version of OF, due to the fact
that OF is influenced more by values in the larger class in case
of imbalanced datasets, referred to as class-averaged observed
fuzziness (CAOF) as:

CAOF =

∑
i, yi=A

pNi

mA
+

∑
i, yi=N

pAi

mN
(3)

with the same variable conventions as above. Where OF is only
an average for the p-values in the test set, CAOF averages the
contribution from each class separately, meaning that for very
imbalanced cases OF is mostly affected by the larger class, while
for CAOF, both classes contribute equally much, regardless of
their respective number of p-values. CAOF was not used for cost
selection, but is provided for information in the results from the
workflow.

A commonly used efficiency measure in CP is the size of
the prediction region or set given by the predictor. In the
classification setting, this is expressed as the fraction of multi-
label predictions. This measure is denoted as the M criterion
(MC) and described in Vovk et al. (2016):

M criterion =
1

m

m∑

i= 1

1{|Ŵi|>1} (4)

where 1E denotes the indicator function of event E, returning the
value 1 if E occurs and 0 otherwise, and Ŵi denotes the prediction
set for test example i. A smaller value is preferable.

2.4. Modeling Workflow
Before the training, the CPSign precompute command was
run, in order to generate a sparse representation of each target’s
dataset. ACPs consisting of 10 models were then trained for
each target using the CPSign train command. The cost value
used was the one obtained from the hyper-parameter tuning.
The observations added as “assumed non-actives” were not
included in the calibration set to avoid biasing the evaluation. The
computational workflows for orchestrating the extraction of data,
model building, and the collection of results for summarizing

and plotting were implemented in the Go programming language
using the SciPipe workflow library that is available as open
source software at scipipe.org (Lampa et al., 2018b). The cost
values for each target are stored in the workflow code, available
on GitHub (PTP, 2018). A graphical overview of the modeling
workflow is shown in Figure 2. More detailed workflow graphs
are available in Supplementary Data Sheet 1, Figures S4, S5.

2.5. Model Validation
Themodels built were validated by predicting the binding activity
against each of the 31 targets for all compounds for which
there existed known binding data for a particular target in
ExCAPE-DB. The validation was done with CPSign’s validate
command, predicting values at confidence levels 0.8 and 0.9.

3. RESULTS

3.1. Published Models
Models for all targets in Dataset1 were produced in the form
of portable Java Archive (JAR) files, which were also built into
similarly portable Docker containers, for easy publication as
microservices. The model JAR files, together with audit log files
produced by SciPipe, containing execution traces of the workflow
(all the shell commands and parameters) used to produce them,
are available for download at Lampa et al. (2018a). The models
can be run if obtaining a copy of the CPSign software and a
license, from Genetta Soft AB.

3.2. Validity of Models
To check that the Conformal Prediction models are valid
(i.e., that they predict with an error rate in accordance
to the selected significance level), calibration plots were
generated in the cross validation step of the workflow. Three
example plots, for three representative targets (the smallest,
the median-sized and the largest, in terms of compounds in
ExCAPE-DB) can be seen in Figure 3, while calibration plots
for all targets can be found in the Supplementary Data Sheet 1

(Figure S1). From these calibration plots we conclude
that all models produce valid results over all significance
levels.

3.3. Efficiency of Models
The efficiency metrics OF, CAOF and MC for Dataset2 (without
adding assumed non-actives) are shown in Figure 4A. In
Figure 4B, the same metrics are shown for when all target
datasets in Dataset2 have been extended with assumed non-
actives, to compensate for these datasets’ relative low number
of non-actives. We observe that by adding assumed non-actives
for datasets with few non-actives, we improve the efficiency of
models trained on these datasets. Thus, this strategy of extending
the “small” target datasets in Dataset2 was chosen for the
subsequent analysis workflows.

3.4. External Validation
In Figure 5 predicted vs. observed labels for Dataset4 is shown,
for confidence levels 0.8 and 0.9, respectively. See the methods
section and in particular Figures 1, 2, for information about
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FIGURE 2 | Schematic directed graph of processes and their data dependencies in the modeling workflow used in the experiments in this study. Boxes represent

processes, while edges represent data dependencies between processes. The direction of the edges show in which direction data is being passed between

processes. The order of execution is here from top to bottom, of the graph. Each experiment contains additions and modifications to the workflow, but the workflow

shown here, exemplifies the basic structure, common among most of the workflows. For more detailed workflow plots, see

Supplementary Data Sheet 1, Figures S4, S5.

how Dataset4 was created. “A” denotes active compounds and
“N” denotes non-active ones. It can be seen how the number
of prediction of “Both” labels increase when the confidence level
increases from 0.8 to 0.9. This is as expected, as this means that
fewer compounds could be predicted to only one label, with
the higher confidence level. The number of “Null” predictions
decreases at the higher confidence, which is also as expected.
The reason is that with a higher confidence, the predictor must
consider less probable (in the Conformal Prediction ranking

sense) predictions to be part of the prediction region. This
behavior might seem backwards, but at a higher confidence the
predictor has to include less likely predictions in order to reach
the specified confidence level, which leads to larger prediction
sets. For predicted vs. observed labels for each target individually,
see Supplementary Data Sheet 1, Figures S2, S3. Because of the
fact that CP produces sets of predicted labels, including Null,
and Both in this case, the common sensitivity and specificity
measures do not have clear definitions in this context. Because
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FIGURE 3 | Three representative calibration plots, for models PDE3A (A), SLC6A2 (B), and HTR2A (C), based on the smallest, the median, and the largest target

data sets in terms of total number of compounds. The plots show accuracy vs. confidence, for the confidence values between 0.05 and 0.95 with a step size of 0.05.

FIGURE 4 | Efficiency metrics (M Criterion, Observed Fuzziness and Class-Averaged Observed Fuzziness) for Dataset1, Dataset2, and Dataset3. (A) Dataset2

without extending with assumed non-actives. Circles show individual results from the three replicate runs that were run, while the lines show the median value from the

individual replicate results. Targets are here sorted by number of active compounds. (B) Dataset2 after extending with assumed non-actives. Circles show individual

results from the three replicate runs that were run, while the lines show the median value from the individual replicate results. Targets are here sorted by number of

active compounds. (C) Dataset3, the 10 largest target datasets, which were not extended with assumed non-actives. Targets are here sorted by total number of

compounds.

of this, we have not included calculated values for them but
have instead included compound counts for the predicted label
sets in Figure 5 summarized for all targets, and as CSV files in
Supplementary Data Sheet 2 (for 0.8 confidence) and 3 (for 0.9
confidence), for each target specifically.

3.5. Target Profile-as-a-Service
All models based on Dataset2 were published as microservices
with REST APIs publicly made available using the OpenAPI
specification (Ope, 2018a) on an OpenShift (Ope, 2018b) cluster.
A web page aggregating all the models was also created. The
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FIGURE 5 | Predicted vs. observed labels, for all targets, for the prediction data, at confidence level 0.8 (A) and 0.9 (B). “A” denotes active compounds, and “N”

denotes non-active compounds. The x-axis show observed labels (as found in ExCAPE-DB), while the y-axis show the set of predicted labels. The areas of the circles

are proportional to the number of SAR data points for each observed label/predicted label combination. For predicted vs. observed labels for each target individually,

see Supplementary Data Sheet 1, Figures S2, S3.

FIGURE 6 | The prediction profile for Terbutaline, a known selective beta-2 adrenergic agonist used as a bronchodilator and tocolytic. (A) The profile as seen on the

web page (on the right hand in the figure). To show the profile, the user draws a molecule and selects a confidence level, whereafter the profile will update underneath.

The profile is shown as a bar plot with two bars for each target: A purple bar, pointing in the upward direction, indicating the size of the p-value of the “Active” label,

and a green bar, pointing downwards, indicating the size of the p-value for the “Non-active” label. (B) Coloring of which parts of the molecule contributed the most to

the prediction for ADBR2. Red color indicates the centers of molecular fragments (of height 1–3) that contributed most to the larger class, while blue color indicates

center of fragments contributing most to the smaller class. In this case the larger class is “Active,” which can be seen in the size of the p-values in the bottom left of

the figure (p[A] = 0.481 >p[N] = 0.001).

OpenAPI specification is a standardization for how REST APIs
are described, meaning that there is a common way for looking
up how to use the REST API of a web service and that greatly
simplifies the process of tying multiple different web services
together. It simplifies calling the services from scripts as well

as from other web pages, such as the web page (Figure 6) that
generates a profile image out of the multiple QSAR models. At
the top of the web page (see Figure 6) is an instance of the JSME
editor (Bienfait and Ertl, 2013) in which the user can draw a
molecule. As the user draws the molecule, the web page extracts
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FIGURE 7 | Profiles for a few of the removed drugs using the validation models, i.e., these molecules are not in the training sets for the models. The profiles are shown

as bar plots with two bars for each target: A purple bar pointing in the upward direction, indicating the size of the p-value of the “Active” label, and a green bar pointing

downwards, indicating the size of the p-value for the “Non-active” label. (A) The profile for Tacrine, a centrally acting anticholinesterase, with a distinct peak for the

ACHE gene. (B) The profile for Pilocarpine, a muscarinic acetylcholine receptor M1 agonist, with only two moderately higher peaks for active prediction, CHRM1 and

LCK. (C) The profile for Pergolide, a DRD1, DRD2, HTR1A, and HTR2A agonist, which is reflected by the four highest p-values for an active prediction.

the SMILES from the editor and sends it to the individual model
services to get predictions based on all available models. The user
can set a threshold for the confidence and get visual feedback on
whether the models predict the drawn molecule as active or non-
active for each of the targets, at the chosen confidence level. In
Figure 6 on the right side is a graphical profile in the form of
a bar plot where confidence of the active label is drawn in the
upward direction and the confidence for non-active is drawn in
the downward direction. Hovering over a bar in the plot will give
information about which model the bar corresponds to. The web
page can be accessed at http://ptp.service.pharmb.io/.

3.6. Example Predictions
Using the models built without the external validation dataset
(Dataset4), target profiles were predicted for three molecules
from the test set (Figure 7), i.e., the profiles were made for drugs
that the models have not seen before. Figure 7A shows the target
profile for Tacrine, a centrally acting anticholinesterase, with a
distinct peak for the ACHE gene, as expected. Further, we note
that most other targets are predicted as non-active with high p-
values (green color) or predicted as active with relatively low
p-values (purple color). Figure 7B shows the target profile for
Pilocarpine, a muscarinic acetylcholine receptorM1 agonist, with
a target profile consisting of mostly non-active predictions, and
only two mildly active targets (CHRM1 and LCK). We note
that LCK has a similar p-value for active and non-active. For

a conformal prediction in the binary classification setting, the
confidence of a prediction is defined as 1 − p2 where p2 is the
lower p-value of the two (Saunders et al., 1999). This means
that even if a prediction has one high p-value, its confidence
and hence usefulness in a decision setting might still be low.
Figure 7C shows the target profile for Pergolide, an agonist for
DRD1, DRD2, HTR1A, and HTR2A which shows up as the four
highest active predictions in the profile.

4. DISCUSSION

We have presented a reproducible workflow for building profiles
of predictive models for target-binding. We have exemplified our
approach on data from ExCAPE-DB about 31 targets associated
with adverse effects and made these models available both
via a graphical web interface via an OpenAPI interface for
programmatic access andmade them available for download. The
Conformal Prediction methodology guarantees validity of the
models under the exchangeability assumption. We have further
showed that our models are indeed valid, with the calibration
plots in Figure 3.

Based on the efficiency metrics shown in Figures 4B,C we
see that the efficiency, after adding assumed non-actives to the
datasets with very few (under 10,000) non-actives, is clearly
improved. Based on the external test set, Dataset4, though,
especially based on the plots in Figure 5, we see that there is a
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somewhat higher fraction of observed non-actives (“N”) correctly
predicted as non-actives, than the fraction of observed actives
(“A”) correctly predicted as active.

The use of workflows to automate pre-processing and
model training and make it completely reproducible has several
implications. Primarily, the entire process can be repeated as
data change, e.g., when new data is made available or data is
curated. In our case, the pre-processing can be re-run when a
new version of ExCAPE-DB is released, and new models trained
on up-to-date data can be deployed and published without delay.
The components of the pre-processing workflow are however
general, and can be re-used in other settings as well. Further,
a user can select the specific targets that will be pre-processed,
and focus the analysis on smaller subsets without having to pre-
process and train models on all targets, which could be resource-
demanding. With a modular workflow it is also easy to replace
specific components, such as evaluating different strategies and
modeling methods.

The packaging of models as JAR-files and Docker containers
makes them portable and easy to transfer and deploy on different
systems, including servers or laptops on public and private
networks without cumbersome dependency management. We
chose to deploy our services inside the RedHat OpenShift
container orchestration system, which has the benefit of
providing a resilient and scalable service, but any readily available
infrastructure provider is sufficient. The use of OpenAPI for
deploying an interoperable service API means that the service
is simple to integrate and consume in many different ways,
including being called from a web page, (such as our reference
page on http://ptp.service.pharmb.io/) but also into third party
applications and workflow systems. With the flexibility to
consume models on individual level comes the power to put
together custom profiles (panels) of targets. In this work we have
selected targets based on usefulness in a drug safety setting, but
it is easy to envision other types of panels for other purposes.
While there has been some previous research on the use of
predicted target profiles (Yao et al., 2016; Awale and Reymond,
2017), further research is needed to maximize their usefulness
and to integrate with other types of in vitro and in silicomeasures.
Ourmethodology and implementation facilitates such large-scale
and integrative studies, and paves the way for target predictions
that can be integrated in different stages of the drug discovery
process.

5. CONCLUSION

We developed a methodology and implementation of target
prediction profiles, with fully automated and reproducible

data pre-processing and model training workflows to build
them. Models are packaged as portable Java Archive (JAR)
files, and as Docker containers that can be deployed on
any system. We trained data on 31 targets related to drug
safety, from the ExCAPE-DB dataset and published these as
a predictive profile, using Conformal Prediction to deliver
prediction intervals for each target. The example profile
is deployed as an online service with an interoperable
API.
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