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Aims: Pulmonary arterial hypertension (PAH) is a disease characterized by an increase in
pulmonary vascular resistance and right ventricular (RV) failure. We aimed to determine
the effects of human mesenchymal stem cell (hMSC) therapy in a SU5416/hypoxia (SuH)
mice model of PAH.

Methods and Results: C57BL/6 mice (20–25 g) were exposure to 4 weeks of hypoxia
combined vascular endothelial growth factor receptor antagonism (20 mg/kg SU5416;
weekly s.c. injections; PAH mice). Control mice were housed in room air. Following 2
weeks of SuH exposure, we injected 5× 105 hMSCs cells suspended in 50 µL of vehicle
(0.6 U/mL DNaseI in PBS) through intravenous injection in the caudal vein. PAH mice
were treated only with vehicle. Ratio between pulmonary artery acceleration time and
RV ejection time (PAAT/RVET), measure by echocardiography, was significantly reduced
in the PAH mice, compared with controls, and therapy with hMSCs normalized this.
Significant muscularization of the PA was observed in the PAH mice and hMSC reduced
the number of fully muscularized vessels. RV free wall thickness was higher in PAH
animals than in the controls, and a single injection of hMSCs reversed RV hypertrophy.
Levels of markers of exacerbated apoptosis, tissue inflammation and damage, cell
proliferation and oxidative stress were significantly greater in both lungs and RV tissues
from PAH group, compared to controls. hMSC injection in PAH animals normalized
the expression of these molecules which are involved with PAH and RV dysfunction
development and the state of chronicity.

Conclusion: These results indicate that hMSCs therapy represents a novel strategy for
the treatment of PAH in the future.

Keywords: pulmonary arterial hypertension, cell proliferation, inflammation, apoptosis, human mesenchymal
stem cell
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INTRODUCTION

Pulmonary arterial hypertension (PAH) is characterized by
increased precapillary pressure as a consequence of exacerbated
pulmonary artery (PA) wall remodeling and hypertrophy
(Gnecchi et al., 2016). These are the main causes for the
development of right ventricle (RV) dysfunction, subsequent
irreversible RV failure, and sudden cardiac death in patients
with PAH. PAH remains a “killer” because the current available
medications that focus on lung vasodilation to reverse the
increased PA pressure often fail to reverse the disease and
the long-term survival of patients is poor (Lajoie et al., 2016),
highlighting the urgent need for the identification of innovative
therapeutic strategies.

Similar to cancer, PAH initially shows deregulated
angiogenesis, high production and release of growth factors
from vessel cells, strong resistance to apoptosis, alteration of
cellular metabolism, and abnormal formation of an inflammatory
environment within the vessel walls (Voelkel et al., 1998;
Guignabert et al., 2013; Boucherat et al., 2017). In advanced
stages of PAH, the obliteration of the vascular lumen due
to excessive cell proliferation is accompanied by excessive
vasoconstriction, thus chronically increasing the RV overload,
a cardiac chamber that initiates one compensatory adaption.
These pathophysiological events are followed by progressive RV
enlargement, leading to heart failure. Accordingly, favorable
actions in the RV are also required for better outcomes; therefore,
there is a current search for pleiotropic interventional approaches
with beneficial roles throughout the cardiopulmonary system
(pulmonary vessel and cardiac cells).

As PAH progression occurs due to tissue damage of the
lung vessels with a deleterious effect in the RV, we understand
that regeneration of the cardiopulmonary system function and
structure could be a suitable strategy to improve a patient’s
prognosis and quality of life. In this regard, numerous basic
studies have examined the benefit of different stem cell
preparations, providing support for the clinical trials of cell
therapy to regenerate lung tissue due to diseases in clinical
practice (Walter et al., 2014; Ahn et al., 2015; Horie et al., 2016;
Liu et al., 2016; McIntyre et al., 2016; Savukinas et al., 2016).
However, there is a lack of preclinical studies showing the effects
of stem cells in suitable rodent models of PAH.

Of all types of stem cells, mesenchymal stem cells are one of
the few lineages that have been applied for immunomodulation
and tissue repair due to their strong capacity for releasing
paracrine factors that contribute to cell regeneration (Liang et al.,
2014). The human placenta and umbilical cord blood are rich in
mesenchymal stem cells (Erices et al., 2000; Bieback et al., 2004;
Rus Ciuca et al., 2011), and it has been demonstrated that human
mesenchymal stem cells (hMSCs) collected from these areas show
a better efficacy against cell damage compared to mesenchymal
stem cells isolated from other tissues and organs (Zhu et al., 2014,
2015).

The aim of the present study was to provide additional
information regarding the use of stem cells for the treatment
of lung diseases, particularly in the context of PAH and RV
dysfunction, by administrating hMSCs from umbilical cords

to mice with SU5416/hypoxia (SuH)-induced PAH, a current
preclinical model that closely resembles human PAH (Tuder
et al., 1994; Ciuclan et al., 2011; Vitali et al., 2014). SU5416
is a potent antagonist of the vascular endothelial growth
factor receptor 2 (VEGFR2) (Sun et al., 1998) and stimulates
endothelial cell apoptosis and hyperplastic phenotype selection
after diverse stimuli, such as chronic hypoxia, ovalbumin
challenge or elevated shear stress (Sakao and Tatsumi, 2011;
Nicolls et al., 2012). In mice, administration of SU5416 associated
to chronic normobaric hypoxia produces angioobliterative
lesions characterized by smooth muscle proliferation, vascular
rarefaction and perivascular fibrosis, which contribute to
increase precapillary vascular resistance and RV afterload and
hypertrophy (Ciuclan et al., 2011; Vitali et al., 2014).

MATERIALS AND METHODS

Drugs and Reagents
SU5416 was purchased from Sigma-Aldrich (St. Louis, MO,
United States). Antibodies directed against tumor necrosis
factor-alpha (TNF-α), active caspase-3, and the receptor for
advanced glycation end products (RAGE) were purchased from
Abcam (Cambridge, MA, United States); p-38 mitogen-activated
protein kinase (p-38 MAPK), phosphorylated p-38 mitogen-
activated protein kinase (p-p-38 MAPK), extracellular-signal-
regulated kinase 5 (ERK5), phosphorylated extracellular-signal-
regulated kinase 5 (p-ERK5), and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) were purchased from Cell Signaling
Technology (Danvers, MA, United States). The fluorescent
secondary antibodies were purchased from LI-COR (Lincoln, NE,
United States). Mouse anti-alpha smooth muscle actin (α-SMA)
was purchased from Sigma (St. Louis, MO, United States),
and the secondary antibody goat anti-mouse IgG-Alexa546 was
purchased from Molecular Probes (Eugene, OR, United States).

Isolation of hSMCs
The use of umbilical tissue was approved by the Institutional
Review Board. The umbilical tissue was obtained after the
informed consent form was signed by the donor. The cord
was cut into small pieces, and the blood vessels were removed
and digested in collagenase solution. After washing, the cells
were cultured in Dulbecco’s modified Eagle Medium:Nutrient
Mixture F-12 (DMEM/F12) containing 10% fetal bovine serum
and penicillin/streptomycin (10 U/mL; 100 µg/mL). Cells were
used after at least three passages. On the day of the experiment,
the vials containing cells were defrosted and washed three times
in a solution of DNase I (0.6 U/mL, Ambion) in phosphate-
buffered saline (PBS). Cells were resuspended in 50 µL of the
same solution immediately before injection into the caudal vein.

Immunophenotyping of Umbilical Cord
Mesenchymal Stem Cells (UC-MSC)
UC-MSC at passage 3 were immunophenotyped by flow
cytometry. Briefly, UC-MSC were harvested and incubated with
the antibodies listed below (1:50 dilution) in PBS supplemented
with 0.5% BSA for 20 min at 4◦C in the dark. Afterward, the
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cells were washed with PBS 0.5% BSA and centrifuged at 300× g
for 5 min. The pellet cells were resuspended at 300 µL PBS
and data acquisition was performed. The UC-MSC were stained
with the following antibodies: lineage 2 FITC – CD3, CD14,
CD19, CD56, CD20 (cat. 64397); CD34 FITC (cat. 348053); CD45
FITC (cat. 555482); CD73 APC (cat. 560847); CD90 PE-Cy5 (cat.
555597); CD105 PE (cat. 560839) and HLA-DR (cat. 551375). The
respective isotypes were used as negative control. All antibodies
were purchased from BD Pharmingen. Data acquisition was
performed on a BD FACSAria II and the analyses were performed
using FlowJo software version X (Supplementary Figure 1).

Experimental Design
All experiments were conducted in accordance with the Animal
Care and Use Committee at the Universidade Federal do Rio
de Janeiro. PAH was induced in mice by the SuH model.
This model was chosen because it has been shown to be
particularly useful when a stem cell- or progenitor cell-based
therapy or pharmacotherapy is going to be evaluated (Vitali
et al., 2014). Ten-week-old male C57BL/6J mice (20–25 g)
were injected subcutaneously with SU5416 that was suspended
according to validated procedures (Ciuclan et al., 2011; Vitali
et al., 2014). The SuH mice were injected once weekly with
SU5416 at 20 mg/kg body weight per dose and exposed to
chronic normobaric hypoxia (10% O2; n = 12) in a ventilated
acrylic chamber for 29 days in which nitrogen was injected (90%)
under the control of an Oxycycler controller (BioSpherix, Lacona,
NY, United States). Control mice were exposed to normoxia
(room air at 21% O2; n = 7) and weekly vehicle injections
(the same used to suspend SU5416). A baseline echocardiogram
was performed before protocol initiation for all animal groups.
Fourteen days after the start of SU5416 injections and chronic
hypoxia, the mice underwent an echocardiographic evaluation
for PAH confirmation. Doppler echocardiography was used to
image the PA outflow waveform profile, and PAH establishment
was confirmed by a change in the shape of the PA waveform, as
described previously (Thibault et al., 2010; Gomez-Arroyo et al.,
2012; Alencar et al., 2017). Figure 1 shows the experimental
timeline used to characterize the evolution of PAH. Once disease
onset had been confirmed, the SuH mice were divided into two
groups: SuH + vehicle (0.6 U/mL DNaseI in PBS; SuH + Veh;
n = 7) and SuH + hSMCs (n = 5). Vehicle (50 µL) or hMSCs
(5 × 105 cells suspended in 50 µL of vehicle) were injected
into the caudal vein, and the animals were rapidly returned to
the hypoxia chamber. The normoxia group similarly underwent
echocardiography on the same day and was treated with a single
injection of 50 µL of the same vehicle. Echocardiography was
once again performed on day 28; and the protocol ended on
day 29, when PAH was further assessed while the mice were
under deep anesthesia [ketamine (80 mg/kg, i.p.) and xylazine
(15 mg/kg, i.p.)] by hemodynamic measurements. Anesthesia
depth was verified by pinching the animal’s paw with forceps. The
thoracic cavity was opened, and a heparinized 21-G scalp weplast
(Embramac) was inserted into the RV. The RV systolic pressure
(RVSP) was measured with PowerLab monitoring equipment
(AD Instruments, Sydney, NSW, Australia). Immediately after
the hemodynamic measurements, the animals were sacrificed via

exsanguination by cardiac puncture, and tissues were collected in
order to perform hypertrophy, histology, and molecular pathway
evaluations.

Biodistribution of Cells
Fourteen days after SuH-induced PAH protocol, three mice
received an intravenous injection of 99mtechnetium (99mTc)-
labeled hMSC (5 × 105 cells) to detect the biodistribution of
cells. Two hours after cell transplantation whole-body nuclear
imaging was performed in a gamma camera (General Electric
Medical Systems, Milwaukee, WI, United States) equipped with
a high-resolution collimator. A 15% energy window centered on
the 140 keV photo peak of 99mTc was used. Additionally, after
24 h of 99mTc-hMSC injection, mice were euthanized and the
brain, heart, lungs, and liver were removed, weighed and the
radioactivity was measured using a gamma counter (multi-crystal
LB 2111 gamma counter, Berthold Technologies). The percentage
of radioactivity analyzed per gram of organ (% radioactivity/g)
was determined for each sample. After 2 h, whole-body nuclear
imaging demonstrated radiotracer distribution mainly to the
thorax and abdomen of the animals (lung and liver regions)
(Supplementary Figure 2A) and minor retention at the site of
injection. After 24 h of 99mTc-labeled hMSC injection, radiotracer
uptake was observed in the liver and in the cardiopulmonary
system (Supplementary Figure 2B).

Echocardiography
Experimental groups were anesthetized by a 2%
isoflurane/oxygen mixture through a nose cone during
spontaneous ventilation. Anesthetized spontaneously breathing
animals were placed in a shallow left lateral decubitus position.
The left hemithorax was shaved and prepared with acoustic
coupling gel to increase probe contact. Room temperature
was maintained at approximately 25◦C to avoid hypothermia.
Cardiac function was assessed by a high-resolution ultrasound
imaging system equipped with a RMV-710B transducer with a
frequency of 25 MHz and a fixed focal length of 15 mm mounted
on an integrated rail system (Vevo 770, Visualsonics, Toronto,
ON, Canada) as the procedure already published (Urboniene
et al., 2010).

Tissue Harvesting
The lungs were briefly washed in saline (before weighing), and
the right lobes were immediately excised and frozen in liquid
nitrogen for protein expression analysis. The left lobes were
immersed in zinc formalin and processed for paraffin embedding,
as published elsewhere (Alencar et al., 2017). The hearts were
weighed, and the RV wall was separated from the left ventricle
(LV) and septum (S). The ratio of the RV to the LV plus S
weight (RV/LV + S) was calculated to determine the extent of
RV hypertrophy.

Membrane Preparations and Western
Blot Analysis
Protein expression was measured as published elsewhere
(Alencar et al., 2014). The whole western blot experiments are
shown in the Supplementary Figure 3.
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FIGURE 1 | Schematic of the experimental design for the protocol of SuH-induced PAH. Echo Doppler images of the PA flow are showed for a normoxia and a
SuH-induced PAH mice, with a mid-systolic notch being developed (red dashed line) in the PAH group at day 14 of protocol, as a sign of disease onset. SuH,
SU5416/hypoxia; PA, pulmonary artery; PAH, pulmonary arterial hypertension.

Pulmonary Arteriole Muscularization
Five-µm paraffin sections of lungs were stained with orcein
(1% in acid alcohol) for 30 min, washed in acid alcohol, and
counterstained with picro-methyl blue (0.2% methyl blue in
saturated picric acid solution) for 5 min before dehydrating
and mounting with Entellan (Merck, Germany). In each lung,
15 arterioles of 30–100 µm in diameter were photographed
with a digital camera (Canon A620, Canon, United States)
coupled to an Axiostar optical microscope (Zeiss, Germany)
under 1,000× magnification. Their mean wall thickness was
expressed as the percentage of the vessel total cross-sectional
area corresponding to the muscular wall (Alencar et al., 2017).
Fully muscularized vessels were also counted under 400×
magnification and normalized by the total section area.

Additional sections were immunostained for SMA expression
by a modified mouse-on-mouse method (Goodpaster and
Randolph-Habecker, 2014). Briefly, sections were rehydrated
and blocked for 60 min in 5% bovine serum albumin in tris-
buffered saline (TBS) and incubated for 2 h with antibody
solution (1:500 anti-SMA, 1:1000 anti-mouse IgG-Alexa 546,
and 1% bovine serum albumin in TBS previously mixed for

2 h). After extensive washing in TBS, the nuclei were stained
with DAPI, and the slides were mounted with VectaShield
(Vector Laboratories, Burlingame, CA, United States)
and photographed under 200× magnification on a Zeiss
Axiovert 200M fluorescence microscope (Zeiss, Oberkochen,
Germany).

Perivascular and Myocardial Fibrosis
Seven-µm paraffin sections of lungs were stained with picro-
Sirius red, as described elsewhere (Alencar et al., 2017).
For each lung, 10 arterioles of 30–100 µm in diameter
were photographed with a digital camera (Canon A620,
Canon, United States) coupled to an optical microscope
(Axiostar, Zeiss, Germany) under 400× magnification. The
perivascular collagen content was determined as the ratio of
the perivascular collagen area to the vessel cross sectional
area. Ten-µm frozen sections of hearts were immediately
fixed in neutral buffered formalin and stained, similarly to
the lung sections. RV interstitial fibrosis was assessed as the
mean area of collagen in myocardial tissue under 1,000×
magnification.
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FIGURE 2 | Effects of the hMSC therapy in the pulmonary vascular changes observed in SuH-PAH mice. (A–C) Representative images of PA outflow profile (upper)
are presented for all groups 28 days after protocol initiation. Lower images are representative tracings of RVSP at day 29 of protocol. (D) Ratio between PAAT and
RVET; (E) RVSP, and (F) linear regression between PAAT-to-RVET ratio and RVSP. (G) Representative orcein and immunostaining for α-SMA of the distal PAs
exposed to normoxia or SuH protocol for 4 weeks. (H) Vessel wall thickness expressed as a percent of the total area of the vessel ranging between 30 and 100 µm
in external diameter, (I) total of fully muscularized vessels, and (J) lung weigh-to-body weight ratio. Data represent the mean ± SEM (n = 5–7 mice per group).
∗P < 0.05 compared with normoxia group; †P < 0.05 compared with SuH group treated with vehicle. Ordinary one-way ANOVA with multiple comparisons. hMSC,
human mesenchymal stem-cell; SuH, SU5416/hypoxia; PAH, pulmonary arterial hypertension; PA, pulmonary artery; RVSP, right ventricular systolic pressure; PAAT,
pulmonary artery acceleration time; RVET, right ventricle ejection time; α-SMA, alpha smooth muscle actin.
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ELISA Analysis
Murine cytokine levels were measured in heart samples by means
of ELISA technique as previously described (Ferreira et al.,
2013). Reagents from a commercial DuoSet kits R&D Systems
(Minneapolis, MN, United States) were used according to the
instructions of the manufacturer.

Data Analysis
Data analysis was performed for all endpoints, and one-way
analysis of variance was used to determine the significance of
differences among groups. Significance of interactions between
groups was determined by Tukey’s post hoc test. Pearson’s
correlation was used to test for a relationship between the
ratio of PA acceleration time to right ventricle ejection time
(PAAT/RVET) and the RVSP. In addition, Western blot linear
regressions analysis were performed. Differences for all tests were
considered significant at P < 0.05. Analyses were performed
using GraphPad Prism, version 6 (GraphPad, San Diego, CA,
United States).

RESULTS

Treatment With hMSCs Reduces the
Functional and Histological
Characteristics of SuH-Induced PAH
At the end of the experimental protocol, Doppler
echocardiography was used to image the PA outflow waveform
profile (Figures 2A–C, upper images). PAH establishment
was confirmed by severe formation of a mid-systolic notch
after chronic exposure to hypoxia and weekly injections of
SU5416 (Figure 2B). Figures 2A–C (lower images) shows
representative tracings of the right intracardiac pressures.
Doppler echocardiography of the SuH group under light
anesthesia demonstrated a reduction in the PAAT/RVET ratio
(Figure 2D), compared to the normoxia group, indicating
that the SuH mice developed PAH (P < 0.05). Under deep
anesthesia, we further confirmed that the SuH mice developed
RV overload as depicted by the greater RVSPs, compared to
the normoxia group (Figure 2E; P < 0.05). Additionally, a
close correlation was noted between the PAAT/RVET ratio and
the RVSP (Figure 2F; P < 0.05). Importantly, hMSC therapy
in the SuH mice normalized the PA flow profile (Figure 2C),
significantly increased the PAAT/RVET ratio (Figure 2D),
reduced the RV post-load, and decreased the RVSP (Figure 2E),
compared to vehicle treatment by the end of the protocol
(P < 0.05). The morphology of the distal PAs in the SuH mice
was clearly different compared to that of the normoxia group
(Figure 2G; P < 0.05). The SuH mice at 4 weeks after model
induction exhibited a significant difference in the medial wall
thickness of the PAs (Figure 2H; P < 0.05). Compared with
the normoxia group, the SuH mice exhibited significant and
severe muscularization of the distal PAs (Figure 2I) and a greater
lung-to-body weight ratio (Figure 2J; P < 0.05). hMSC injection
did not restrain medial vessel hypertrophy, but it significantly

reduced the density of fully muscularized vessels and the lung
weight (Figures 2H–J; P < 0.05).

Therapy With hMSCs Reduced Distal PA
Fibrosis and Normalized the Expression
of RAGE in Lungs From SuH-Induced
PAH Mice
Representative images of distal PAs showing the collagen
content around the vessels as well as RAGE expression are
presented in Figures 3A,B. Perivascular collagen deposition was
significantly increased in the PAs from SuH mice, compared
with the normoxia control group (Figure 3C; P < 0.05).
Additionally, the RAGE protein levels were significantly greater
in the lungs from the SuH-induced PAH mice, compared
with the normoxia animals (Figure 3D; P < 0.05). After
confirmation of PAH, treatment of the SuH group with hMSCs
beneficially reversed perivascular fibrosis in the distal PAs,
compared to the vehicle-treated SuH mice (Figure 3C; P < 0.05).
Interestingly, the expression of RAGE, a receptor involved in
the pathophysiological mechanisms of PAH, and extracellular
matrix deposition in the PAs from SuH-induced PAH mice (Jia
et al., 2017) were significantly increased in the lungs from PAH
mice (P < 0.05). Moreover, RAGE expression was significantly
normalized in the SuH mice that received hMSC therapy,
compared to the vehicle-treated PAH mice (Figure 3D; P < 0.05).

Therapy With hMSCs Normalized the
Expression of Apoptosis, Inflammation,
and Cellular Proliferation Markers in
Lungs From Mice With SuH-Induced PAH
Western blot analysis of lung tissues from all experimental groups
showed alterations of protein levels that are closely involved in
the pathogenesis of PAH in the SuH mice, compared to the
normoxia control group (Figure 4A; P < 0.05). Active caspase-3
and TNF-α levels were significantly increased in the vehicle-
treated SuH mice, compared to their normoxia counterparts
(Figures 4B,C; P < 0.05). The p-p-38 MAPK/p-38 MAPK and
p-ERK5/ERK-5 ratios were also increased in the PAH group
(Figures 4D,E; P < 0.05). Importantly, the TNF-α levels were
significantly correlated with the intracellular kinases p-38 MAPK
and ERK 5 (Figures 4F,G; P < 0.05). Fourteen days after the
injection of hMSCs in the SuH mice with established PAH,
we observed complete normalization of these PAH markers,
compared to the vehicle-treated SuH group (Figures 4A–E;
P < 0.05).

Treatment With hMSCs Reduced
Compensated RV Dysfunction and Right
Chamber Concentric Hypertrophy in SuH
Mice
Figure 5A shows representative parasternal short-axis views
obtained by B-mode echocardiography (all end-diastolic) for
each group. The SuH model induced progressive RV remodeling
and hypertrophy, as depicted by the increased RV area compared
to that of the normoxia group (Figure 5B; P < 0.05), with a
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FIGURE 3 | Effects of the hMSC therapy in the pulmonary vascular extracellular matrix deposition. (A) Picrosirius red staining. (B) Shows the Western blot analyses
of RAGE in lungs from all animal groups. GAPDH was used for normalization. (C) Perivascular collagen area, and (D) quantification of RAGE expression. Each
column and bar represent the mean ± SEM (n = 5–7 mice per group). ∗P < 0.05 compared with normoxia group; †P < 0.05 compared with SuH group treated with
vehicle. Ordinary one-way ANOVA with multiple comparisons. hMSC, human mesenchymal stem-cell; SuH, SU5416/hypoxia; RAGE, receptor for advanced
glycation end products; CSA, cross section area.

concomitant decrease in the LV area (Figure 5C; P < 0.05).
As noted in Figures 5D,E, the mice did not develop severe
heart failure, as the RV cardiac output and LV ejection fraction
were not altered among animal groups by the end of the
experimental protocol. However, an increased RV area resulted
due to the long-term RV overload found in PAH, and, at day
28 of exposure to the SuH model, our mice had developed
compensated (RV adaption) heart dysfunction. The heart rates
of the animals were not changed at the end of the protocol
(Figure 5F). Figure 6A shows the M-mode echocardiographic
images and picrosirius red staining of RVs from all mouse groups.
The higher degree of RV overload in the SuH-challenged mice
led to marked RV concentric hypertrophy, as demonstrated
by the significant increase in the RV free wall thickness in
the SuH mice compared to the normoxia group (Figure 6B;
P < 0.05). The ratio between the RV and LV + S weights also
increased in the PAH group, compared to the normoxia group
(Figure 6C; P < 0.05). Importantly, hMSC therapy reversed the
deleterious effect of PAH-induced RV concentric hypertrophy
in mice, as depicted by the lower RV free wall thickness and

RV/LV + S ratio, compared to the vehicle-treated SuH mice
(Figures 6B,C; P < 0.05). Interestingly, the RV collagen content
was not altered among animal groups at this time point of the
protocol (Figure 6D). Furthermore, Western blotting for RAGE
expression in RV tissues from all groups showed no changes in
this protein by the end of the protocol (Figures 6E,F).

Therapy With hMSCs Normalized the
Expression Levels of Apoptosis, Cellular
Proliferation, and Inflammation Markers
in Hearts From Mice With SuH-Induced
RV Hypertrophy
Despite the fact that the SuH mice did not develop severe
heart failure, we decided to evaluate the expression of markers
for RV cell apoptosis (active caspase-3), exacerbated RV tissue
injury and/or inflammation (TNF-α), and RV abnormal cell
proliferation (p-38 MAPK and ERK5) (Figure 7A). The SuH-
challenged mice showed an increase of active caspase-3 and TNF-
α expression levels (Figures 7B,C; P < 0.05), with a concomitant
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FIGURE 4 | Effects of SuH model on the lung protein expression over 29 days of protocol and intravenous treatment with vehicle or hMSC at day 14 of protocol.
(A) Shows the Western blot analyses of active caspase 3, TNF-α, p-p38 MAPK, p-38 MAPK, p-ERK5 and ERK 5 in lungs from normoxia or SuH mice, respectively.
GAPDH was used for normalization. (B) Quantification of active caspase 3 expression. (C) Quantification of TNF-α. (D) Relative expression ratio of p-p-38 MAPK to
p-38 MAPK and (E) relative expression of p-ERK5 to ERK5, respectively. (F) Linear regression between p-p-38 MAPK to p-38 MAPK ratio and TNF-α expression and
(G) linear regression between p-ERK5 to ERK5 ratio and TNF-α expression. Each column and bar represent the mean ± SEM (n = 3–7 mice per group). P < 0.05
compared with normoxia group; †P < 0.05 compared with SuH group treated with vehicle. Ordinary one-way ANOVA with multiple comparisons. hMSC, human
mesenchymal stem-cell; SuH, SU5416/hypoxia; Active casp 3, active caspase-3; TNF-α, tumor necrosis factor alpha; p-p-38 MAPK, phosphorylated P-38 MAPK;
p-38 MAPK, p-38 mitogen-activated protein kinase; p-ERK5, phosphorylated extracellular-signal-regulated kinase 5; ERK5, extracellular-signal-regulated kinase 5.

increase in the p-p-38 MAPK/p-38 MAPK and p-ERK5/ERK-
5 ratios (Figures 7D,E; P < 0.05), compared to their normoxia
counterparts (P < 0.05). Similarly, to the lung tissue findings, in
the RV myocardium, the TNF-α expression was also significantly

correlated with the intracellular kinase levels of p-38 MAPK and
ERK 5 (Figures 7F,G; P < 0.05). In addition to the reversion
of RV wall hypertrophy showed in this work, the treatment of
SuH mice with hMSCs normalized the expression patterns of
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FIGURE 5 | Effects of the treatment with vehicle or hMSC on heart structure and function of SuH-PAH mice. (A) Representative images of parasternal short-axis
views obtained by B-mode echocardiography (all end-diastolic), (B) right ventricle area, (C) left ventricle area, and (D) right ventricular cardiac output 28 days after
protocol initiation. (E) Left ventricle ejection fraction and (F) heart rate. Each column and bar represent the mean ± SEM (n = 5–7 mice per group). ∗P < 0.05
compared with normoxia group; †P < 0.05 compared with SuH group treated with vehicle. Ordinary one-way ANOVA with multiple comparisons. hMSC, human
mesenchymal stem-cell; SuH, SU5416/hypoxia; RV, right ventricle; LV, left ventricle.

all the molecules involved in the evolution of decompensated
heart failure, compared to the vehicle-treated PAH animals
(Figures 7A–F; P < 0.05).

Additionally, we have found significant differences in the
levels of pro-inflammatory cytokines measured by ELISA
assessment of RV homogenates obtained from all the animal
groups. TNF-α, interleukin-1 beta (IL-1β), and interleukin-6
(IL-6) were all higher in RVs from PAH mice compared to
control (P < 0.05), and hMSC injection importantly normalized

the levels of these markers of cardiac inflammation (Figure 8;
P < 0.05).

DISCUSSION

The main finding of this work was that hMSC therapy effectively
ameliorated most of the alterations in the cardiopulmonary
system of SuH-induced PAH mice. The evolution of PAH
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FIGURE 6 | Effects of the therapy with vehicle or hMSC on RV free wall thickness, collagen volume fraction and RAGE expression in RV tissue from SuH-induced
PAH or normoxia mice. (A, upper) Shows representative images of RV free wall obtained by M-mode echocardiography and (lower) picrosirius red staining under
light microscopy (magnification 40×), showing collagen fibers in red in RVs from all animal groups. (B) RV free wall thickness, (C) RV-to-LV + septum ratio, (D)
collagen volume fraction of RVs in relation to the tissue area. (E) Western blot analyses of RAGE in RV tissue from experimental groups. GAPDH was used for
normalization. (F) Quantification of RAGE expression. Each column and bar represent the mean ± SEM (n = 3–7 mice per group). ∗P < 0.05 compared with
normoxia group; †P < 0.05 compared with SuH group treated with vehicle. Ordinary one-way ANOVA with multiple comparisons. hMSC, human mesenchymal
stem-cell; SuH, SU5416/hypoxia; RAGE, receptor for advanced glycation end products; RV, right ventricle; LV, left ventricle; S, interventricular septum.

involves (1) microenvironmental changes in the distal
PAs as the initial cause of the disease (pulmonary vessel
remodeling and hypertrophy) with subsequent augmentation

of pulmonary vascular resistance and (2) an insult to the RV
myocardium that leads to RV failure (Boucherat et al., 2017).
Therefore, we developed a schematic preclinical study in
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FIGURE 7 | Effects of SuH model on the RV protein expression over 29 days of protocol and intravenous treatment with vehicle or hMSC at day 14 of protocol.
(A) Shows the Western blot analyses of active caspase 3, TNF-α, p-p38 MAPK, p-38 MAPK, p-ERK5 and ERK 5 in RVs from normoxia or SuH mice, respectively.
GAPDH was used for normalization. (B) Quantification of active caspase 3 expression. (C) Quantification of TNF-α. (D) Relative expression ratio of p-p-38 MAPK to
p-38 MAPK and (E) relative expression of p-ERK5 to ERK5, respectively. (F) Linear regression between p-p-38 MAPK to p-38 MAPK ratio and TNF-α expression and
(G) linear regression between p-ERK5 to ERK5 ratio and TNF-α expression. Each column and bar represent the mean ± SEM (n = 3–7 mice per group). ∗P < 0.05
compared with normoxia group; †P < 0.05 compared with SuH group treated with vehicle. Ordinary one-way ANOVA with multiple comparisons. hMSC, human
mesenchymal stem-cell; SuH, SU5416/hypoxia; Active casp 3, active caspase-3; TNF-α, tumor necrosis factor alpha; p-p-38 MAPK, phosphorylated P-38 MAPK;
p-38 MAPK, p-38 mitogen-activated protein kinase; p-ERK5, phosphorylated extracellular-signal-regulated kinase 5; ERK5, extracellular-signal-regulated kinase 5.

which we demonstrated the benefits of hMSC treatment on the
echocardiographic, hemodynamic, histological, and molecular
changes in the lungs and hearts from mice with PAH.

Our experimental protocol investigated the therapeutic
activity of a stem cell lineage. First, we confirmed that mice in
fact developed echocardiographic signs of PAH at 2 weeks after
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FIGURE 8 | Effects of SuH model on the cytokine levels measured by ELISA assessment in RVs from experimental groups. (A) Levels of TNF-α, (B) levels of IL-1β,
and (C) levels of IL-6. Each column and bar represent the mean ± SEM (n = 3–7 mice per group). ∗P < 0.05 compared with normoxia group; †P < 0.05 compared
with SuH group treated with vehicle. Ordinary one-way ANOVA with multiple comparisons. hMSC, human mesenchymal stem-cell; SuH, SU5416/hypoxia; TNF-α,
tumor necrosis factor alpha; IL-1β, interleukin-1 beta, IL-6, interleukin-6.

initiation of the SuH protocol. Subsequently, we injected hMSCs,
which are now considered to be an important approach in the
context of tissue regeneration (Liang et al., 2014; Gnecchi et al.,
2016).

The multifactorial pathogenesis of PAH (Gnecchi et al., 2016)
requires treatments with beneficial activity throughout the small
circulation of patients diagnosed with this deleterious disease.
Thus, acting on single targets might not be the best choice.

In this work, we did not investigate the mechanisms by which
hMSCs promote tissue repair, a topic that has already been well
explored in the research field (Erices et al., 2000; Liang et al.,
2014; Ahn et al., 2015; Gnecchi et al., 2016; Horie et al., 2016;
Liu et al., 2016; McIntyre et al., 2016; Savukinas et al., 2016),
but we specifically probed whether these cells could ameliorate
the main changes that occur during PAH onset, including PA
cell apoptosis, exacerbated vessel cell proliferation, remodeling,
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and inflammation. Additionally, we aimed to determine if this
therapy could be considered as a pleiotropic approach—that is,
if it might produce simultaneously more than one benefit in the
cardiopulmonary system—through further repair of RV injury.

First, we confirmed that our SuH mice had developed PAH
based on the echocardiographic and hemodynamic alterations
observed during the evolution of the protocol. We combined the
non-invasive technique of echocardiography, which can be used
to estimate acute and chronic increases in the RVSP with a high
sensitivity and specificity (Thibault et al., 2010), with the invasive
measurement of the right chamber pressures. Anesthesia in mice
might change the hemodynamic state of cardiac function (Roth
et al., 2002), and it has been demonstrated that it is important
to use light anesthesia rather than deep anesthesia for cardiac
evaluation in mice (Thibault et al., 2010). As the PAAT/RVET
ratio measured using light anesthesia correlated closely with the
RVSP measured under deep anesthesia in our experiments, we
assumed that PAH onset was suitably confirmed in both of our
in vivo experiments.

The in vivo pulmonary circulation hemodynamic data changes
could be explained by our histological findings showing that
the distal PA walls had undergone remodeling and hypertrophy
by the end of the experiments. Importantly, our Western
blot data explained that the wall hypertrophy occurred as
a consequence of the increased PA cell apoptosis induced
by the SuH model, as depicted by the higher expression of
active caspase-3 in lungs from SuH mice treated with vehicle.
It has been shown that the endothelial apoptosis in PAH
is mainly executed through activation of the caspase-3 axis,
with subsequent cell death (White et al., 2014). Therefore,
apoptosis could be an initiating mechanism for PAH by leading
to vessel obliteration due to degeneration of endothelial cell
structures (Zhao et al., 2005). Excessive loss of endothelial
cells promotes the development of an apoptosis-resistant and
hyperproliferative cell phenotype, which are features of later
stages of PAH (Voelkel et al., 2002). As we measured active
caspase-3 expression at 29 days after protocol initiation, we
propose that its higher expression in the lungs from our PAH
mice demonstrates that the PA cells were already resistant to
apoptosis as the vessel wall thickness was increased, indicating
deregulated vessel cell proliferation. Concomitantly, we observed
higher phosphorylation of the intracellular mitogen-activated
protein kinases p-38 MAPK and ERK5 in the lungs from the
SuH animals, molecules that are involved in the cell proliferation
process after an external stimulus (Nithianandarajah-Jones et al.,
2012).

Endothelial cell-induced pulmonary vascular smooth muscle
cell growth was greater in tissues from PAH patients than
from controls (Eddahibi et al., 2006). Dysregulation of this
process and excessive release of growth factors by endothelial
cells are intrinsic abnormalities linked to PAH pathogenesis
(Eddahibi et al., 2006). Indeed, abnormal communication
between endothelial cells and other vascular cells in PAH
may occur due to loss-of-function of the endothelium. PAH
is among many pathophysiological conditions that are linked
to inflammation (Schermuly et al., 2011), and the higher
expression of TNF-α in the lungs from our PAH mice

corroborates with this statement. TNF-α may also induce
cell proliferation by activation of its tyrosine kinase receptor
(Schermuly et al., 2011); thus, it is a molecule that is involved in
the stimulation of intracellular kinases during the progression of
PAH. Interestingly, the TNF-α levels were significantly correlated
with p-38 MAPK and ERK5 protein expression in the lungs
from our mice, indicating a role for TNF-α activation of
PA cell proliferation during the lung vessel wall remodeling
process.

Fibroblasts are cells that play important roles in PAH
pathogenesis by responding to injury and chemoattraction
via endothelium-derived growth factors. Rapid migration of
fibroblasts to the injured vessel leads to formation of the
neointimal layer by the release of collagen, and, most importantly,
fibroblast transdifferentiation into other cell types, including
myofibroblasts, an abnormal type of pulmonary vascular smooth
muscle cells that contributes to muscularization of the distal
vessels (Sartore et al., 2001; Sisbarro et al., 2005; Sakao
et al., 2009). In our work, we showed that the SuH mice
developed severe muscularization of the distal arterioles, with
a concomitant increase in perivascular collagen deposition.
A higher RAGE expression was also observed in our SuH
mice. Of note, it has been described recently that this receptor
is involved in the development of hypoxia-induced PH by
increasing extracellular matrix deposition in pulmonary arteries
from mice with PH (Jia et al., 2017). Our study showed,
for the first time, that hMSC injection effectively reduced the
muscularization of distal PAs, perivascular collagen content, and
inflammation, with subsequent normalization of the intracellular
phosphorylation of p-38 MAPK and ERK5 proteins. However,
at this time of the protocol, the activity of hMSCs in the
pulmonary tissue was not enough to normalize the distal PA wall
thickness.

In our model of SuH-induced PAH, we observed that
obliteration of the pulmonary vascular lumen resulted in RV
adaption and hypertrophy, as depicted by the greater RV indices
of hypertrophy measured by echocardiography and the tissue
weight ratio. Despite the fact that we did not observe RV
and global heart failure in our mice, based on our molecular
findings at this time of the protocol, we assume that the RV cells
were in a state of initial compensation that could be followed
by progressive and irreversible RV enlargement. In a more
prolonged experimental SuH exposure, RV failure would likely
occur.

The myocardial collagen content and RAGE expression did
not differ among our animal groups, but the RV hypertrophy and
injury might be explained by the increased levels of TNF-α and
the higher phosphorylation of the intracellular p-38 MAPK and
ERK-5 proteins.

TNF-α is an important mediator of RV hypertrophy (Kubota
et al., 1997; Smith et al., 2001; Jobe et al., 2009). Recently, the
importance of TNF-α in the transition from compensated RV
hypertrophy to decompensated RV failure has been described
(Tang et al., 2015). Furthermore, MAPK pathways couple
intrinsic and extrinsic signals to hypertrophic growth of
cardiomyocytes (Nicol et al., 2001). The significant correlation
between TNF-α and both p-38 MAPK and ERK5 in the RV tissue
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from our experimental groups corroborates with these findings,
as the higher levels of p-38 MAPK and ERK5 phosphorylation
may contribute to exacerbated cell proliferation, as commented
earlier.

As the RV function is the main determinant of life expectancy
in patients with PAH, we decided to further measure TNF-α
and other cytokine levels, as IL-1β and IL-6, in hearts from our
animal groups, all of these involved with cardiac inflammation
and damage. Corroborating with the Western blot data for
TNF-α, its levels were also greater in the SuH-induced PAH
mice’s RVs than in normoxia group when measure by ELISA
assay. Increased levels of IL-1β and IL-6 in RVs from SuH mice
indicate the installation of a pro-inflammatory environment in
the myocardium, and it has been described that these cytokines
are involved with development of heart failure (Bujak and
Frangogiannis, 2009; Heresi et al., 2014).

The greater expression of active caspase-3 in the RV tissue
from SuH mice treated with vehicle additionally indicates that
the apoptosis process had started at this time of the protocol, a
finding that contributes to our statement that the RV from our
PAH mice was transitioning to a failing phenotype.

It is also important to address that hMSCs can persist long-
term in the RV by intracoronary injection and are a potential
cell source for tissue repair in RV dysfunction induced in a large
animal model of pulmonary hypertension (Badr Eslam et al.,
2017). Herein, we expanded these beneficial findings on hMSCs
for the whole cardiopulmonary system, now in a suitable rodent
model of PAH. A strong paracrine capacity has been proposed
as the principal mechanism that contributes to tissue repair
promoted by mesenchymal stem cells (Gnecchi et al., 2016), and
our innovative data show that mice with PAH indeed have their
lungs and RV repaired by this cytotherapy.

The intravenous delivery of MSC has been proven to be
safe in adult patients with different clinical conditions (Lalu
et al., 2012) and, up to now, there is no report of tumor
formation from infused MSC in preclinical in vivo studies
and clinical trials (Barkholt et al., 2013). A few studies,
however, have shown that human MSC can undergo spontaneous
malignant transformation after long-term cultures and that the
transformed cells can give rise to tumors in immunodeficient
mice (Rosland et al., 2009; Pan et al., 2014), indicating that new

approaches are needed for the assessment of the tumorigenic
potential of MSC-based products (Yong et al., 2018). In our
studies, we have used MSC cultured for no longer than five
passages and we never detected any tumors in different animal
models.

CONCLUSION

In conclusion, our findings suggest that hMSCs normalize cell
proliferation as well as attenuate tissue inflammation and injury
in lungs and hearts from PAH mice, with a subsequent beneficial
effect on the cardiopulmonary system structure and function.
Our data show that hMSCs may be a promising therapeutic
strategy for the treatment of PAH in the future.
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