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Background: The purpose of this study is to elucidate mechanism(s) by which the
orally active PGI2 analog, Beraprost (BPS), ameliorates pulmonary hypertension (PH).
Prostaglandins are an important treatment for PH. Mechanisms of their action are
not fully elucidated in relation to receptor subtype and effects on O, sensitive Kv
channels.

Methods: Distal (3rd order and beyond) pulmonary arteries from chronically hypoxic rats
and from humans with established PH were studied. Measurements included pulmonary
haemodynamics and histology, vascular reactivity, prostanoid receptor expression and
activity of the O, sensitive Kv channels.

Results: Prostacyclin receptor (IP), prostaglandin receptor E3 (EP3) and prostaglandin
receptor E4 (EP4) are the main pulmonary artery receptor subtypes in both rat and
human pulmonary arteries. Circulating levels of PGI2 and PGE2 were reduced in PH.
PH was also associated with reduced receptor expression of IP but not of EP4. The
effects on IP expression were overcome with BPS. Dilatory responses in PH to BPS
were reduced in the presence of EP4 blockade. Expression and activity of oxygen
sensitive Kv channels were reduced in pulmonary artery smooth muscle cell from rats
with PH and humans with PAH and were also overcome by administration of BPS.
Effects of BPS on oxygen sensitive Kv channels were reduced in the presence of EP4
blockade implicating the EP4 receptor, as well as the IP receptor, in mediating BPS
effects.
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Conclusion: Reduced expression of pulmonary IP receptors and reduced activity of
O» sensitive Kv channels are found in PH in both humans and rats. The orally active
prostacyclin analogue, BPS, is able to reverse these changes, partly through binding to

the EP4 receptor.

Keywords: pulmonary arterial hypertension, prostanoids, Beraprost, IP receptor, EP4 receptor, Kv channel,

0,- sensitive Kv channel

BACKGROUND

Pulmonary hypertension is a chronic, progressive disease
characterized by elevation of PAP, ultimately resulting in right
ventricular failure and death. One cause of PH, PAH may
be idiopathic or familial but can also arise from underlying
disorders such as connective tissue diseases and congenital heart
disease (CHD) (Archer et al,, 2010). Prognosis has substantially
improved recently from treatments targeting three signaling
pathways (prostacyclin, endothelin-1 or nitric oxide), and leading
to current 1-year survival rates of 85-97% (Thenappan et al,
2007; Lau etal., 2017). Prostacyclin based therapies are a mainstay
of contemporary treatment and have been shown in a short term
trial to improve survival (Barst et al., 1996). Although a number
of GPCR are prostanoid receptors (Breyer et al., 2001), the main
biological target for PGI2 and analogues is thought to be the
IP receptor with Gs coupling leading to activation of AC and
formation of cyclic AMP resulting in vasodilation (Mubarak,
2010). BPS, as with other prostacyclin analogs, acts primarily on
vascular rather than circulating cells (Humbert and Ghofrani,
2016). At lower affinity there is also binding to the EP4 receptor
also resulting in AC activity (Sugimoto and Narumiya, 2007).
PGI2 also binds to the EP1 receptor resulting in activation of
Gq/Gi with subsequent reduction in cyclic AMP or elevation in
Ca?*+ (Gomberg-Maitland and Olschewski, 2008). Interestingly
differences between prostacyclin analogues in terms of binding
affinities have been observed (Whittle et al., 2012). Previous
studies have shown that Iloprost binds to IP, EP1, EP3, and
EP4 whereas treprostinil binds to EP2 as well as EP3 (Whittle
etal.,, 2012; Humbert and Ghofrani, 2016). BPS is the only orally
administered prostacyclin analogue that has been approved for
the treatment of PAH (in Japan and South Korea). However, little
is known about the binding affinities of BPS with prostaglandin
receptors in PAH, in particular in relation to cross binding with
non-IP receptors.

Some voltage-gated K channels (Kv) in peripheral
pulmonary arteries are known to be O;-sensitive (Hulme et al.,
1999). Thus the heterologously expressed Kv1.2, 1.5, 2.1, and 3.1
open in response to an increase in O tension. Expressions of
Kvl.5, 2.1, and 1.2 are decreased in hypoxia induced PH in rats
and expression of Kv1.5 is also decreased in human PASMCs of
PAH patients (Wang et al., 1997). Thus it has been hypothesized

Abbreviations: 4-AP, 4-aminopyridine; AC, adenyl cyclase; BPS, Beraprost; PGE2,
E type prostaglandin; EP, E type prostaglandin receptor; GPCR, G protein
coupled receptors; IK: S, interventricular septum: K current; IP, PGI2 receptor;
Kv, voltage-gated K* channels; LV, left ventricle; PAH, pulmonary arterial
hypertension; PAP, pulmonary artery pressure; PASMC, pulmonary artery smooth
muscle cell; PGI2, prostacyclin2; PH, pulmonary hypertension; RVHI, right
ventricle hypertrophy index.

that PAH may result from deficiency in the O,-sensitive Kv
channels of PASMC (Hulme et al., 1999). Such O, sensitive
channels are known to be particularly expressed in resistance
vessels (Archer et al., 2004). This also raises the possibility that
the effects of PGI2 and analogues may be mediated, at least in
part, by effect on Kv channels. A more complete understanding
of the effect of prostaglandin, including on Kv channel, in PAH is
important for the development of improved therapies. Therefore,
in this study, the relationship between prostaglandin pathways
and O,-and 4-AP-sensitive, voltage-gated Kt channels (Kv)
including Kv1.5, Kv1.2, and Kv2.1, and the effect of BPS on these
Kv channels were determined.

We present data from humans with PH as well as animals
exposed to chronic hypoxia. Whilst not reproducing all the
features of human PH, chronic hypoxia is one of the most widely
used experimental paradigms in this field (Long et al., 2009;
Stenmark et al., 2009; Cahill et al., 2012).

MATERIALS AND METHODS

Study Groups and Tissue Collection

The use of the animals was approved by the Animal
Experimentation Committee of Medical College, Xi’an Jiaotong
University. Adult male Sprague-Dawley (SD) rats (350-400 g
body wt) were housed under controlled temperature (22°C)
and lighting (12/12-h light/dark cycle) conditions, with free
access to food and water. Animals were randomly divided into
three groups; Control (n = 12), Experimental PH (n = 24) and
Experimental PH treated with BPS (n = 12). Experimental PH
rats were placed in an automated normal pressure low oxygen
chamber with oxygen concentration of 10 £ 1% for 8 h a day for
4 weeks as previously described (Xue, 1989).

Age and gender matched control rats were placed in
normal air chamber (Control). A subgroup of the hypoxia
rats were medicated with BPS (Experimental PH+BPS). BPS
was administered intragastrically at a dose of 300 pg/kg
a day for 27 days starting on the second day of hypoxic
exposure. Control rats and experimental PH rats not receiving
BPS were intragastrically administered 5 pg/kg/day of 0.9%
saline.

Pulmonary artery pressure, right ventricular weight (RV),
left ventricular (LV) weight and ventricular septum weight (S)
were measured to estimate the RVHI. After animals had been
sacrificed, RV was separated from the LV and S, and each of
them was weighed. RV hypertrophy index was calculated as
follows: [RV/(LV + S)] (Liu et al, 2013). Pulmonary artery
(PA) tissues from the third and subsequent bifurcations of
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TABLE 1 | Patient characteristics.

Parameters PAH Non-PAH
N iR 12

Age 49 £10 52 +£10
Female (n) 6 6
WHO Functional Class II/II/IV (n) 3/5/4 5/4/2

6 Min Walk Distance (m) 302 + 80** 520 + 120
Hb, g/L 128 + 64 104 + 42
PaCO2 (A, mm Hg) 28 +11.3 36 +12.8
Pa0O2 (A, mm Hg) 819+ 113 82.4+12.4
Sa02 (A), (%) 94.2 £14.7 96.8 £ 15.2
Right Atrial Pressure, mmHg 6.7 £ 4.0%* 1.7+05
Mean Pulmonary Artery Pressure, mmHg 47 £12.5%* 16+£8.2
Pulmonary Vascular Resistance, dyn-s/cm5 368.7 £+ 102.4** 146.4 +62.2
Pulmonary Artery Wedge Pressure, mmHg 10.6 £ 3.2 11.4 £ 3.0
Cardiac Output, L/min 3.2+ 1.6* 46+1.8
FEV1, s 2.0+ 0.6 1.9+06
FVC, % predicted 76.3 £19.1 82.6 £19.8
FEV1/FVC 0.8 +£0.1 0.8 +0.1
Total lung capacity, L 41 £1.2 42 +141

The table shows patient demographics, functional measures, pulmonary artery
blood gas and haemodynamic measures (from right heart catheterization) and lung
function. Results are mean + SD or n. *p < 0.05, **p < 0.07 PAH vs. Non-PAH.

the pulmonary arterial tree of each experimental animal were
immediately frozen in liquid nitrogen and then stored at —70°C
for further experiments, or immediately placed in relevant
reagents according to experimental demands. Single separate
tissue samples were used for each experiment as described.

Human Tissue Specimens
Specimens were obtained from 11 PAH patients (five male, six
female, age 49 £ 10 years old) undergoing open chest CHD repair
and 12 patients (six male, six female, age 52 &+ 10 years old)
with lung cancer. Patient characteristics are shown in Table 1.
All patients were receiving PAH therapy prior to repair: four
were receiving monotherapy (two were receiving Sildenafil, and
one each Bosentan or Beraprost), four were receiving initial
combination therapy (Sildenafil and Bosentan or Sildenafil,
Bosentan and Treprostinil). The remaining three patients had
received sequential therapy from monotherapy to combination
therapy (one from Sildenafil to Sildenafil and Bosentan and two
from Beraprost to Beraprost and Bosentan). A small piece of
lung tissue from the right lobe was collected from each patient.
PA branches from those lung tissue segments were dissected free
as soon as possible, frozen in liquid nitrogen and then stored at
—70°C for further experiments.

Written informed consent was obtained from all patients. The
study was approved by the ethics committee of the First Affiliated
Hospital of Xi’an Jiaotong University.

Tension Measurements

Measurements of vessel tension of isolated distal PA rings from
the third and sub-sequent branches was performed in all animals
(Thebaud et al., 2002). The isolated PAs from control rats
were immediately placed in an organ bath with oxygenated

Krebs solution, while PA rings from Experimental PH rats were
placed in hypoxic Krebs solution (PO, = 10 & 1 mmHg).
Dilatation dose-response curves to BPS (Toray, Tokyo, Japan)
were determined in rings from PH and control animals pre-
contracted with 5 HT at 107> M in the absence or presence
of the Kv channel antagonist 4-AP (10 mmol/L) (Sigma,
United States, Cat. no. 072K3640), or the EP4 selective antagonist
GW627368X (Cayman Chemical Company; Cat. no. 10009162)
(10~7M). 5HT was selected for precontraction based on previous
studies (Guibert et al., 2005; Lee et al., 2010; Liu et al., 2013)
and at a concentration adapted from Takeo (1992) modified
after preliminary experiments. Dose response curves were also
determined for contractile responses to 4-AP.

RNA Extraction and Purification

RNAs from Human and rats PAs were isolated by using
Trizol-Reagent (Applygen, China). The tissue samples were
homogenized in 10 ml Trizol reagent. Phase separation of RNA
was performed by adding one-tenth volume of chloroform,
vortex mixing for 15 s, and centrifuged at 12,000 x g for 10 min.
Isopropyl alcohol (0.5 ml/1 ml Trizol) was added to the aqueous
phase to precipitate total RNA. Precipitate was washed twice
with 75% ethanol. For Affymetrix analysis, the RNA sample was
dried and then re-dissolved. RNA quality was determined by the
ratio of absorbance at 260-280 nm (A260/A280). All extracted
RNA was further purified using RNeasy Clean Up kit (Qiagen) to
increase A260/A280 readings.

Quantitative Real-Time PCR

Total isolated RNA was reversely transcribed into single-stranded
cDNA according to manufacturer instructions (Zhongshang
Golden Bridge Company, Beijing, China). cDNA samples were
used as templates for quantitative real-time PCR. Primers with
specific product size were designed by Omega software based
on the rat nucleotide sequences of Kv genes as the previously
reported. B-actin also was used as an internal positive control
(Supplementary Table S1). Quantitative real-time PCR products
were separated by 1% agarose gel to verify the products size.

PA Protein Preparation and Western Blot
Analysis

Both human and rats PA tissues were thawed and homogenized
in ice-cold buffer (20 mM Tris, 140 mMNaCl, 3 mM EDTA,
10 mM NaF, 10 mM sodium pyrophosphate, 2 mM NaVO4,
10% glycerol, pH7.4 and 1% TritonX-100) supplemented with
protease inhibitors (content: 1.5 WM aprotinin, 20 M leupeptin,
50 M phenylmethylsulfonylfluoride, and 1.5 M benzamidine).
The insoluble material was removed by centrifugation at
20,000 x g for 30 min at 4°C. Supernatant containing equal
amounts of protein was separated by SDS-PAGE and was
transferred to nitrocellulose membranes. After incubation with
human polyclonal antibodies against Kv1.2, Kv1.5, and Kv2.1
receptors (1:300 dilution; Alomone Labs, Jerusalem, Israel), the
blots were washed and incubated with peroxidase-conjugated
secondary antibody, and protein bands were analyzed using a
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chemiluminescence kit (Santa Cruz Biotechnology). GAPDH was
used as the loading control.

Cell Dissociation and Hypoxic Exposure
Pulmonary artery smooth muscle cells were dissociated from
fresh PA segments (further than third bifurcations in the
pulmonary arterial tree) as previously described (Morrell
et al,, 1999). Briefly, PASMCs were isolated from precapillary
pulmonary arterial vessels of adult male SD rats (200-250 g
body weight). SMCs were identified by immunohistochemical
staining with a-SMC (data not shown). Rat PASMC were exposed
to hypoxia (1% O3, 5% CO,, rest N3) in 1% (v/v) FCS and
1% (m/v) penicillin and streptomycin M199 medium for the
indicated period of time. All other measurements were performed
under normoxic conditions, starting 30 min after termination of
hypoxia.

Whole-Cell Patch-Clamp

Kv channel currents were recorded according to the Whole-
Cell Patch-Clamp technique (Ye et al., 2005). Following initial
PA equilibration in hypoxic iced-low Ca?™ Krebs solution
small pieces of muscle layers were stood for 20 min at room
temperature prior to digestion with 4 mg/ml papain, 1.25 mg/ml
BSA and 2 mg/ml DTT in 2 ml hypoxic low-Ca** dissolution
solution. Following threefold washing in low-Ca** solution
separated PASMC were stored in hypoxic low-Ca? ™ solution with
0.5% BSA at 4°C for use within 3-4 h. Voltage clamp experiments
were performed under hypoxic or normoxic conditions, as
indicated. PASMC isolation for normoxic experiments were
identically processed except under normoxia. Drug interventions
were as indicated in Section “Results.”

All recordings were performed using an Axopatch 200B patch
clamp amplifier and 3- to 5-MQmicropipettes. PASMCs were
voltage-clamped at —70 mV, and currents were evoked by steps
of 200-ms duration from —70 to +70 mV. Membrane currents
were filtered at 5 kHz, digitized using a Digidata 1320A interface
(Axon Instruments, Foster City, CA, United States), and analyzed
using pCLAMP software.

Statistical Analysis

Values are given as mean &+ SEM (standard error of the mean) or
SD (standard deviation) or n. Statistical tests were two sided and
data was tested for normality. For the comparison of two groups,
a t-test was used. For more than two groups one-way ANOVA
followed by Dunnett’s post hoc test was applied. A P-value of less
than 0.05 was considered significant.

RESULTS

Effects of Beraprost in Experimental PH

Animals and groups were as described under Methods.
Experimental PH was confirmed in the hypoxic rats by HE
staining and trans-catheter pulmonary pressure measurement.
Abnormalities in structural proliferation [inner and outer
circumference of PA, thickness of SMC layer in PA, RVHI]

and PAP were all significantly rescued by BPS treatment
(Figure 1).

PGI2 and PGE2 Level in Plasma in
Experimental PH and Control Rats

Before and After Beraprost Treatment

Levels of both PGI2 and PGE2 in plasma were dramatically
depressed in experimental PH rats compared with controls
(P < 0.01). However, these depressed levels were elevated by BPS
treatment (P < 0.05) (Figure 2).

Gene Expression of Prostanoid

Receptors in Normal Pulmonary Artery

Gene expression of prostanoid receptors in non-PH rats was
measured both by real time PCR and Western Blot. The
expression of IP, EP3 and EP4 are much higher than that of EP1
and EP2 receptors in pulmonary arteries from normal pulmonary
arteries (Figure 3). Thus of prostanoid receptors with a known
vasodilator function, IP and EP4 are the most highly expressed.

Expressions of EP4 and IP in
Experimental PH and Control Rats and in

PAH in Humans

In rats the mRNA and protein expressions of the IP receptor
are significantly reduced in the PH group compared with the
control group, whilst EP4 expression is unchanged (Figure 4).
Similar changes were found between PAH and non-PAH groups
in human PAs (Figure 5 and Table 2). However, the reduced
gene expression of IP receptor recovers after BPS treated in
experimental PH rats (Figure 4) without change in expression
of EP4 which remains at similar levels to the control animals
(Figure 4).

Expressions of Kv Channels in
Experimental PH and Control Rats

Before and After Beraprost Treatment

Gene expressions of Kv channels, including Kv 1.5, Kv1.2, Kv2.1,
are significantly lower in experimental PH than control rats
and in human PAs from patients with PAH (Figures 5, 6 and
Table 2). Furthermore, the decreased expression recovers with
BPS treatment in experimental PH rats (Figure 6).

Response of Pulmonary Artery Ring to
EP4 Selective Antagonist GW 627368X
and Beraprost in Experimental PH and
Control Rats

Both the contraction in response to 4-AP and the dilatation
in response to BPS were much less in pulmonary artery rings
from experimental PH than in those control rats (all p < 0.05)
(Figure 7). Furthermore, the dilating responses to BPS were
significantly reduced when pulmonary artery rings were pre-
contracted by the EP4 selective antagonist GW 627368X or
Kv channel antagonist 4-AP in both PH and control groups
(all p < 0.05) (Figure 8).
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FIGURE 1 | The figure shows representative traces (A) and mean pulmonary pressures (B), representative histology (C, HE staining at 400x magnification) of
pulmonary arteries and morphometric measures (D-G) in control rats (control, n = 12) and experimental PH rats before (n = 24) and after(n = 12) 21 days oral
Beraprost treatment. RVHI was calculated as [RV weight/LV + S weight]. Results are mean + SEM. *p < 0.05; ***p < 0.001 Exp PH vs. control. Ap < 0.05 Exp PH

Control ExpPH Exp PH+
Beraprost

Control ExpPH Exp PH+
Beraprost

Kv Channel Current of PASMC in Rats
Tested by Whole Cell Patch Clamp

Patch clamp experiments demonstrated reduced slope of the
Kv current-voltage curve in PMSCs from experimental PH rats
(examined under hypoxic conditions) which could be reversed in
the presence of BPS. However, this effect of BPS was no longer
present in the presence of the EP4 selective antagonist, GW
627368X (Figure 9A).

In order to confirm that the effects of hypoxia, BPS and
GW627368X were mediated by Kv currents, patch clamp
experiments were conducted in the presence or absence of the Kv

2007 =3 Control
& Exp PH

Exp PH
+Beraprost

PGE2

PGI2

FIGURE 2 | PGI2 and PGE2 levels in Plasma in control (n = 12) and
experimental PH rats untreated (n = 24) and after 21 days Beraprost
treatment (n = 12). PGI2 and PGE2 were measured by ELISA. Results are
mean + SEM. **p < 0.01 Exp PH vs. control group. Ap < 0.05 Exp PH vs.
Exp PH + Beraprost group.

channel blocker 4-AP. Effects of hypoxia, BPS and GW 627368X
were all abolished in the presence of Kv channel blockade
(Figure 9B).

DISCUSSION

In the current series of studies, we have used both an animal
experimental model with PH as well as human pulmonary
arteries from patients with known PAH to investigate the
mechanisms of action of the oral PGI2 analogue BPS. Animals
with experimental PH had lower circulating levels of PGI2
and PGE2 whilst animals with PH and humans with PAH
both showed reduced vascular expression of the IP receptor.
In animals this reduced expression is partially reversed by
BPS treatment which also rescues the physiological phenotype.
Expression of O, sensitive Kv channels was reduced in animals
and humans with PH and was restored by BPS treatment in
animals. However, both the dilatation response of vascular rings
and the magnitude of the Kv channel response to the PGI2 analog,
BPS were shown to be attenuated with blockade of the EP4
receptor suggesting involvement of the EP4 receptor in mediating
the effects of PGI2 on O, sensitive Kv channels and vasomotion,
although a contribution from off target effects could not be
excluded.

The prostanoids play important roles in the regulation of
vascular tone by binding to prostanoid receptors, members
of the GPCRs (Smyth et al., 2009; Strassheim et al., 2018).
In addition the prostanoids also act through effects on other
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FIGURE 3 | Gene and protein expression of prostanoid receptors in non-pulmonary hypertension rats. Pulmonary artery tissues were obtained from the third and
subsequent bifurcations. The (upper panel) shows relative mRNA expression using primers shown in Supplementary Table S1. The (lower panel) shows

Western blots of protein expression. A different gel was used for each receptor and the respective GAPDH band is shown for each. Gels were analyzed with a Biorad
Universal Hood Il Molecular Imager Gel System.
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FIGURE 4 | The figure shows the expression of EP4 and IP receptors in control (n = 12) and experimental PH rats without (1 = 24) and following (n = 12) Beraprost
treatment. mMRNA levels were obtained by real time PCR as in Figure 3. Results are mean + SEM. *p < 0.05 Exp PH + Beraprost vs. Control. **p < 0.01 Exp PH
vs. Control. #4p < 0.01 Exp PH vs. Exp PH + Beraprost.
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FIGURE 5 | The figure shows representative Western blots of IP, EP4 receptors and Kv channels in human pulmonary arteries and mean data from non PAH (control;
n =11, male = 5) and PAH patients (n = 12, male = 6) undergoing surgery for CHD repair or lung cancer. The panel shows Western blots of protein expression.
A different gel was used for each receptor and the respective GAPDH band is shown for each. Results are mean + SD. *p < 0.05 PAH vs. control.

processes such as inflammation (Clapp and Gurung, 2015).
PGE?2 is the most widely synthesized prostaglandin whilst PGI2
has been identified as a major vascular endothelium derived
active substance responsible for dilatation in pulmonary arteries
following binding with the IP receptor. In keeping with previous
studies we demonstrate high expressions of IP, EP3 and EP4
receptors in pulmonary arteries from normal pulmonary arteries
(Lai et al., 2008; Clapp and Gurung, 2015). EP2 receptors
are predominantly located in pulmonary veins (Sugimoto and
Narumiya, 2007).

Following prostanoid binding the IP receptor predominantly
couples to the Gs type protein leading to an increase in cAMP,
with subsequent vasodilatory and platelet anti-aggregatory
effects. The effects of PGE2 are transduced by one or more of the
four EP receptors (EP1, EP2, EP3, and EP4) with heterogeneity in
the coupling of these receptors to intracellular signal transduction

TABLE 2 | mRNA expression levels from human pulmonary arteries.

Receptor mRNA Non-PAH mRNA PAH
EP4 1.29 + 1.00 1.26 £ 0.62
P 1.58 + 1.42 117 £0.74*
Channel

Kv1.2 1.07 £ 0.40 0.06 + 0.03**
Kv1.5 2.30 + 0.94 1.12 + 0.66™*
Kv2.1 1.15+0.59 0.16 £ 0.08**

mRNA expression of IP, EP receptors and Kv channels in human pulmonary arteries
from patients with (n = 11, male = 5) and without (n = 12, male = 6) PAH. Results
were obtained from real time PCR using same primers as for rats. Results are
mean £ SD. *p < 0.05, **p < 0.0.01 PAH vs. Non-PAH.

pathways (Sugimoto and Narumiya, 2007). Of the four EP
receptors, the EP3 and EP4 receptors bind PGE2 with highest
affinity (Kd < 1 nM), whereas the EP1 and EP2 receptors bind
with lower affinity (Kd > 10 nM). EP1 activates the G protein
Gq, mediating enhanced intracellular Ca?>* levels by influencing
phosphatidylinositol turnover (Breyer et al., 2001). EP3 signaling
is complex and dependent on splice variants. cCAMP generation
is inhibited via a Gi coupled mechanism, additional signaling
mechanisms include Gs and Cat™t release (Breyer et al., 2001).
EP2 and EP4, like IP, activate Gs and increase intracellular
cAMP levels, resulting in the opening of K* channels, cellular
hyperpolarization, and vasodilatation (Clapp and Gurung, 2015).
As confirmed in the current study EP3 and EP4 receptors are
expressed in much higher concentrations than EP1 and EP2
receptors in pulmonary arteries (Sugimoto and Narumiya, 2007).
Furthermore, both EP4 and IP receptors are expressed mainly in
smooth muscle cells in pulmonary arteries, while EP2 receptor
that mediate vasorelaxation are predominantly expressed in
pulmonary veins (Walch et al., 1999). Hence, EP4 and IP are
the most important receptors for pulmonary arteries dilating
response of PGI2 and PGE2 with the IP receptor having a higher
affinity for PGI2 than EP4. The extent to which EP4 might
contribute to the vasodilatory effect of PGI2 analogues in hypoxic
PH is not clear, though previous studies have indicated, a role
under conditions of low IP expression in monocrotaline induced
PH (Lai et al., 2008).

Reduced pulmonary production of PGI2 has been shown to
occur in PH and be due, at least in part, to reduced activity
of prostaglandin synthase (Tuder et al.,, 1999). In the current
study there was a substantial reduction in the circulating level
of PGI2 (and PGE2) in the chronically hypoxic rat model prior
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FIGURE 7 | Contraction responses in pulmonary artery rings to the Kv channel antagonist 4-AP and relaxation responses to Beraprost in pulmonary artery rings from
rats with (n = 10) and without (n = 10) experimental PH. Isolated pulmonary artery rings from control rats were suspended in oxygenated Krebs solution whilst those
from experimental PH rats were suspended in hypoxic Krebs solution. Dilatory responses we obtained in rings pre-contracted with 5-HT (10~°M). Results are

mean + SEM. *p < 0.05 Exp PH vs. control.

to treatment with subsequent restoration. The mechanism for Previous studies have also demonstrated a reduction in IP
this restoration is not apparent but likely involves changes in receptor expression in both animal models and in humans with
vascular cells with chronic treatment given the distribution of PAH which was confirmed in the current study (Mason et al.,
prostaglandin synthase (Gryglewski, 2008). 1999; Hoshikawa et al., 2001; Lai et al., 2008). Interestingly in
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the animal model then treated with BPS there was a substantial
recovery in IP receptor expression. This differs from previous
findings in children with PAH in whom IP receptor expression
in intra acinar arteries, but not in pre acinar, was reduced in
those who had been treated with prostacyclin (Falcetti et al.,
2010) as has been observed elsewhere in relation to the IP

receptor (Adie et al., 1992). The usual pharmacological response
to increased exposure to agonist is a receptor down regulation.
Although examples of agonist induced receptor upregulation
exists (Thomas et al., 1992). However a number of studies with
other GPRCs have shown that the initial down-regulation is then
followed by a recovery in receptor expression which appears to
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require protein synthesis (Bengtsson et al., 1996). The mechanism
for the effect observed in the present study is not known, in
particular whether the recovery in receptor expression could be
related to the restoration in plasma levels of PGI2 and PGE2,
but a recovery in IP receptor expression would contribute to the
beneficial effects of BPS therapy.

Consistent with the down-regulation of the IP receptor in
PH we observed that the dilating effect of BPS was much less
on pulmonary artery rings from PH than on ones from Non-
PH control rats. However, we also found that the effects of
BPS were also significantly reduced when pulmonary artery
rings pre-contracted by EP4 selective antagonist GW 627368X
not only in PH but also control groups. Thus it seems that
the beneficial effects in hypoxic PH of BPS may, at least in
part, be occurring through binding to the EP4 receptor which
may overcome the reduction in expression of the IP receptor
as also seen in monocrotaline induced PH (Lai et al., 2008).
PGI2 cross binding and signal transduction through the EP4
receptor has been previously reported in other tissues (Davis
et al,, 2004; Lin et al., 2006). These studies suggest the possibility
that a specific E4 agonist may be of therapeutic values in
human PAH.

A much less well explored pathway is the possible effect of
PGI2 on oxygen sensitive Kv channels which are themselves
thought to play a role in the development of PAH (Bonnet
et al., 2006). It is known that such channels are preferentially
expressed in resistance rather than conduit pulmonary arteries
(Archer et al., 2004). Their normal physiological function is to
increase pulmonary vascular resistance in the fetal circulation
to divert blood through the patent ductus arteriosus whilst in
adults they likely contribute to ventilation —perfusion matching.
They comprise a number of heterologous receptors which are
inhibited at low oxygen tensions leading to inhibition of the
outward potassium current and consequent depolarization (Patel
and Honore, 2001). Calcium influx in response to depolarization
through voltage gated and other calcium channels then leads
to increase in intracellular Ca?*" and vasoconstriction. In the
current study we confirmed/demonstrated a reduction in mRNA
and protein expression of the O, sensitive Kv1.2, 1.5, and 2.1
channels in both humans with PAH and animal model with PH.
As with the IP receptor, BPS treatment was able to rescue this
phenotype in the experimental model.

Patch clamp experiments demonstrated reduced function of
the hypoxia sensitive Kv channels in PASMCs from PH rats and,
in keeping with the effects on Kv channel expression these were
reversed by BPS. This effect of BPS was prevented in the presence
of Kv blockade with 4 AP. However, the effect of BPS was also
prevented by blockade of the EP-4 receptor. This indicates that
not only is there a link between prostanoid pathways and O,
sensitive Kv channels but also a new mechanism of IP agonist,
such as BPS, modulating O, sensitive Kv channels in PH.

CONCLUSION

In conclusion, this study indicates that the salutatory effects of
the IP2 analog, BPS, on vascular contraction in PAH may in part

be mediated by binding to the EP4 receptor and restoring the
function of O, sensitive Kv channels. Further studies are required
to directly prove the interaction of BPS and the EP4 receptor.
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