',\' frontiers

in Pharmacology

MINI REVIEW
published: 27 February 2019
doi: 10.3389/fphar.2019.00145

OPEN ACCESS

Edited by:
Lina Ghibelli,
University of Rome Tor Vergata, Italy

Reviewed by:

Mauro Krampera,

University of Vlerona, Italy

Erina Vlashi,

University of California, Los Angeles,
United States

*Correspondence:
Raffaella Chiaramonte
raffaella.chiaramonte@unimi.it

T These authors have contributed
equally to this work

Specialty section:

This article was submitted to
Experimental Pharmacology
and Drug Discovery,

a section of the journal
Frontiers in Pharmacology

Received: 20 December 2018
Accepted: 06 February 2019
Published: 27 February 2019

Citation:

Colombo M, Platonova N,
Giannandrea D, Palano MT, Basile A
and Chiaramonte R (2019)
Re-establishing Apoptosis
Competence in Bone Associated
Cancers via Communicative
Reprogramming Induced Through
Notch Signaling Inhibition.

Front. Pharmacol. 10:145.

doi: 10.3389/fohar.2019.00145

Check for
updates

Re-establishing Apoptosis
Competence in Bone Associated
Cancers via Communicative
Reprogramming Induced Through
Notch Signaling Inhibition

Michela Colombo't, Natalia Platonova't, Domenica Giannandrea’,
Maria Teresa Palano’, Andrea Basile? and Raffaella Chiaramonte™

" Department of Health Sciences, University of Milan, Milan, Italy, 2 Department of Oncology and Hemato-Oncology,
University of Milan, Milan, Italy

Notch and its ligands on adjacent cells are key mediators of cellular communication
during developmental choice in embryonic and adult tissues. This communication is
frequently altered in the pathological interaction between cancer cells and healthy
cells of the microenvironment due to the aberrant expression of tumor derived Notch
receptors or ligands, that results in homotypic or heterotypic Notch signaling activation
in tumor cells or surrounding stromal cells. A deadly consequence of this pathological
communication is pharmacological resistance that results in patient’s relapse. We
will provide a survey of the role of Notch signaling in the bone marrow (BM), a
microenvironment with a very high capacity to support several types of cancer, including
primary cancers such as osteosarcoma or multiple myeloma and bone metastases from
carcinomas. Moreover, in the BM niche several hematological malignancies maintain a
reservoir of cancer stem cells, characterized by higher intrinsic drug resistance. Cell—cell
communication in BM-tumor interaction triggers signaling pathways by direct contact
and paracrine communication through soluble growth factors or extracellular vesicles,
which can deliver specific molecules such as mRNAs, miRNAs, proteins, metabolites,
etc. enabling tumor cells to reprogram the healthy cells of the microenvironment inducing
them to support tumor growth. In this review we will explore how the dysregulated
Notch activity contributes to tumor-mediated reprogramming of the BM niche and
drug resistance, strengthening the rationale of a Notch-directed therapy to re-establish
apoptosis competence in cancer.

Keywords: Notch, Jagged, DIl, apoptosis, drug resistance, metabolism, stem cell, anakoinosis

Abbreviations: ALDH, aldehyde dehydrogenase; ALDOA, aldolase A; AML, acute myeloid leukemia; B-ALL, B-cell acute
lymphoblastic leukemia; BM, bone marrow; BMSCs, bone marrow stromal cells; CLL, chronic lymphocytic leukemia; CML,
chronic myeloid leukemia; CSCs, cancer stem cells; EMT, epithelial-mesenchymal transition; ENO1,2, enolasel,2; GSI-XII,
gamma-secretase inhibitor XII; HK2, hexokinase 2; ICN, intracellular portion of Notch; LDHA, lactate dehydrogenase A;
LSCs, leukemic stem cells; MGUS, monoclonal gammopathy of uncertain significance; MM, multiple myeloma; NSCLs,
non-small cell lung cancer; OBL, osteoblast; OS, osteosarcoma; OXPHOS, oxidative phosphorylation; PDK2, pyruvate
dehydrogenase kinase 2; PFKM, phosphofructokinase muscle type; ROS, reactive oxygen species; T-ALL, T-cell acute
lymphoblastic leukemia; TCA, tricarboxylic acid.
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INTRODUCTION

Bone marrow (BM) is a supportive milieu for primary cancers
including osteosarcoma (OS) or multiple myeloma (MM),
derived from BM osteoblasts (OBLs) or resident plasma cells,
but also hematological cancers that maintain a reservoir of
cancer stem cells (CSCs) in the BM niche (Crews and Jamieson,
2012; Behrmann et al, 2018) and bone metastases from
carcinomas (Mundy, 2002; Coleman, 2006). Bone localization
is critical. Indeed, up to 85% of patients that die from breast,
prostate, or lung cancer display bone involvement at autopsy
(Mundy, 2002; Coleman, 2006).

Bone associated cancers share the propensity to colonize
the BM and take advantage of this specialized niche
that favors tumor growth and induces pharmacological
resistance. Here, cancer cells establish a pathological
communication with nearby cells, such as stromal and bone
cells, inducing the release of pro-tumor factors and cytokines
(Kan et al., 2016; Colombo et al., 2018).

Notch pathway mediates cell-cell communication during cell
fate decisions involved in embryonic development or adult tissues
renewal (Siebel and Lendahl, 2017). Notch pathway is composed
of a family of Notch receptors, Notch1l-4, and two families of
ligands, Jaggedl, 2 and DII1,3,4 (Figure 1A) (Platonova et al.,
2017a). As illustrated by Figure 1B, Notch ligands bind to
their receptors on adjacent cells inducing the release of the
activated intracellular portion of Notch (ICN). ICN translocates
into the nucleus and binds the RBJK/CSL complex triggering the
transcription of target genes involved in proliferation, survival,
differentiation and stemness (Platonova et al., 2017a). These
include the HES (Kageyama et al., 2007) and HEY (Weber et al,,
2014) families of transcriptional repressor genes, c-Myc (Sato
et al., 2016), cyclin-D1 (Ronchini and Capobianco, 2001), p21
(Rangarajan et al., 2001), genes of NF-kB pathway such as RELB
and NFKB2 (Vilimas et al., 2007), and other genes which regulate
the biological functions altered in cancer.

Additionally, non-canonical ~Notch  signaling can
occur independently from RBJK/CSL and dependently
or not from ligand interaction. This exerts its biological
functions interacting with other key signaling pathways,
including PI3K, AKT, mTORC2, Wnt, NF«kB, YY1, and
HIF-1a, at cytoplasmic and/or nuclear levels (MacKenzie
et al, 2004; Sade et al, 2004; Perumalsamy et al, 2009;
Ayaz and Osborne, 2014; Platonova et al., 2015).

Due to the key role of Notch signaling in cellular
communication, it is not surprising that its deregulation
favors the pathological communication between cancer
cells and BM cells.

This review represents a survey on Notch signaling activity in
tumor-mediated reprogramming of the BM niche with the final
purpose to provide evidence that dysregulated Notch pathway
members may be rational therapeutic targets to re-establish
apoptosis competence in cancer cells.

Here, we will focus on the ability of the reprogrammed
BM niche to increase tumor cell resilience to chemotherapeutic
agents, exploring the three main ways of BM cells involvement:
(1) increasing the anti-apoptotic background of cancer cells;

(2) inducing the glycolytic switch of tumor cells; (3) increasing
the amount of CSCs.

NOTCH PROMOTES BM-MEDIATED
INCREASE OF ANTI-APOPTOTIC
BACKGROUND IN CANCER CELLS

Canonical and non-canonical notch pathway plays an
acknowledged role in the regulation of apoptosis (MacKenzie
et al., 2004; Sade et al., 2004; Perumalsamy et al., 2009; Platonova
et al., 2015). Aberrant Notch signaling triggers anti-apoptotic
program and drug resistance in different types of tumors, such
as T-ALL (Sade et al., 2004), B-ALL (Nwabo Kamdje et al.,
2011), CLL (Nwabo Kamdje et al.,, 2012), AML (Takam Kamga
et al,, 2016), Hodgkin and anaplastic large cell lymphoma (Jundt
et al., 2002), cervical cancer cells (Perumalsamy et al., 2009),
breast cancer (Meurette et al., 2009), MM (Nefedova et al., 2008;
Mirandola et al.,, 2013; Ding and Shen, 2015; Garavelli et al.,
2017), colon cancer (Meng et al., 2009), OS (Ma et al., 2013;
Pu et al., 2017).

Figure 1C illustrates that Notch may be activated in tumor
cells, but also in BM stromal cells (BMSCs) stimulating them to
promote drug resistance. Indeed, BMSCs express Notch ligands,
i.e., Jaggedl, Jagged2 and DII1, DII3, and receptors, i.e., Notchl
and Notch2 (Bertrand et al., 2000; Nefedova et al., 2004; Xu
et al., 2012a,b; Jitschin et al., 2015; Colombo et al., 2016;
Sato et al, 2016), and many lines of evidence indicate that
BMSC-derived Notch ligands may trigger Notch signaling in
tumor cells inducing drug resistance. Krampera’s group widely
demonstrated that Notch signaling activated by BMSCs promotes
cell survival and chemoresistance in lymphoid neoplasms
such as CLL [resistance to fludarabine, cyclophosphamide,
bendamustine, prednisone, and hydrocortisone (Nwabo Kamdje
et al,, 2012)], B-ALL [resistance to hydrocortisone (Nwabo
Kamdje et al, 2011)] and AML [resistance to cytarabine,
idarubicin, and etoposide (Takam Kamga et al., 2016)] by
increasing anti-apoptotic proteins including c-IAP2, Bcl-2, and
NF-kB and reducing PARP and the active form of Caspase-
3 (Nwabo Kamdje et al., 2011, 2012; Takam Kamga et al,
2016). Consistently, Notch depletion, induced by specific
antibodies or y-secretase inhibitor XII (GSI XII), reverted the
protective effect of BMSCs (Nwabo Kamdje et al., 2011, 2012;
Takam Kamga et al., 2016).

Notch  signaling mediates also the pathological
communications between BMSCs and MM cells promoting
tumor cell survival and development of drug resistance
(Colombo et al., 2013). MM cells accumulate in the BM, where
they establish complex interactions with the surrounding healthy
cells stimulating the release of anti-apoptotic factors relevant in
drug resistance (Colombo et al., 2015a).

In the myelomatous BM, Notch signaling may be activated
by a bilateral communication both in MM cells and in
BM cells. Indeed, as reported for other hematological
malignancies, BMSC-derived Notch ligands may activate
Notch signaling by triggering Notchl and Notch2 in
myeloma cell (Colombo et al., 2013; Muguruma et al., 2017).
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BMSC-mediated Notch signaling activation has different
outcomes, including the upregulation of p21CPIV/WAFL ang
the downregulation of the pro-apoptotic protein NOXA
in a p53-independent way (Nefedova et al., 2004, 2008).

These, in turn, result in cell cycle slowdown and apoptosis
resistance that protects tumor cells from apoptosis induced by
chemotherapeutic drugs, such as doxorubicin, melphalan and
mitoxantrone (Nefedova et al., 2004; Muguruma et al., 2017).
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FIGURE 1 | Notch pathway promotes drug resistance by regulating cancer cell survival, glycolytic switch and cancer stem cells. (A) Notch pathway can be triggered
by the interaction of 4 receptors (Notch1-4) and 2 different classes of ligands, named Jagged (Jagged1-2) and Delta-like family (DII1-3-4) (Platonova et al., 2015,
2017a,b). The following domains can be distinguished in Notch receptors: signal peptide (SP); epidermal growth factor(EGF)-like repeats; Negative Regulatory
Region (NRR), composed by Lin-Notch repeats (LNR) and heterodimerization domain (HD); transmembrane domain (TM); RBJK associated module (RAM); ankyrin
repeats (ANK); transactivation domain (TAD); proline(P),glutamic acid(E),serine(S) and threonine (T) domain (PEST). Jagged and DIl ligands are composed by: signal
peptide (SP); Notch ligand N-terminal domain (MNNL); Delta/Serrate/LAG-2 domain (DSL); epidermal growth factor(EGF)-like repeats; cysteine rich region (CR);
transmembrane domain (TM); Lysin residues; (PSD-95/Dlg/ZO-1)-ligand motif (PDZL) (Platonova et al., 2017a,b). (B) Canonical Notch signaling: Notch activation is
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FIGURE 1 | Continued

triggered by ligand engagement which enables two consecutive proteolytic cleavages performed by the ADAM metalloproteinase and the y-secretase complex, that
allow ICN to translocate into the nucleus where it binds the RBJK/CSL complex and activates the transcription of Notch target genes such as the HES (Kageyama
et al., 2007), and HEY (Weber et al., 2014) family of genes, c-Myc (Sato et al., 2016) and other genes involved in proliferation, survival, differentiation and stemness.
(C) Notch role in cancer cell drug resistance. Notch activation in cancer cell can occur through: (1) homotypic interaction with nearby cancer cells or (2) heterotypic
interaction with BM cells (i.e., BMSC). (3) Notch ligands localized on the surface of BMSCs activate Notch signaling in tumor cells resulting in increased expression of
anti-apoptotic proteins including ¢c-IAP2, Bcl-2, NF-kB and decreased expression of PARP and active Caspase3 (Nwabo Kamdije et al., 2011, 2012; Takam Kamga
et al., 2016) with the subsequent development of chemoresistance mechanisms in different tumors as CLL (Nwabo Kamdije et al., 2012), B-ALL (Nwabo Kamdje

et al., 2011) and AML (Takam Kamga et al., 2016). Moreover, BMSC-derived Notch ligands may stimulate the expression of p21¢P1/WAF and CYP1A1 and
downregulate pro-apoptotic NOXA in cancer cells via Notch signaling regulating the development of drug resistance in MM cells (Nefedova et al., 2004, 2008; Xu

et al.,, 2012a,b). (4) On the other hand, also cancer cells may activate Notch signaling in BM cells such as BMSCs, that in turn secrete the following pro-tumoral
soluble factors: (5) SDF1a promotes and upregulates Bcl-2, Survivin and MRP1/ABCC1 in MM (Garavelli et al., 2017); (6) IL6 (Colombo et al., 2016) is reported to
upregulate anti-apoptotic and pro-survival proteins in tumor cells including Bcl-2, Mcl-1, Bcl-X,_, and Survivin (Catlett-Falcone et al., 1999; Shain et al., 2009; Ara and
Declerck, 2010); (7) IGF1 and VEGF can contribute to induce drug resistance in hematological and solid tumors (Dias et al., 2002; Belcheva et al., 2004; Zhang et al.,
2006; Kuhn et al., 2012; Hua et al., 2014; Nusrat et al., 2016; Bendardaf et al., 2017). Notch pathway may influence tumor cell drug sensitivity also promoting the
glycolytic switch by enhancing the expression of glucose transporters and glycolytic enzymes in cancer cells. (8) In D. melanogaster Notch signaling was found to
regulate GLUT1, HexA and IMPL3 and (9) suppress TCA cycle via the upregulation of Hairy gene (Slaninova et al., 2016). (10) In breast cancer Notch signaling
induces PISK/AKT activation that leads to the upregulation of glycolytic enzymes such as ALDOA, PDK2, HK2, and GLUT1 (Landor et al., 2011). Notably, BM
adipocytes enhance the expression of two acknowledged Notch downstream effectors, i.e., HK2 and GLUT1, in prostate cancer cells (Diedrich et al., 2016). (11) In
CLL, Notch pathway activation induces c-Myc upregulation and the subsequent increased expression of LDHA, GLUT1, HK2, PFKM, and ENO1 (Dang et al., 2009).
Finally, wherever possible, for each Notch downstream effector involved in cancer cell glycolytic switch, it is reported the recognized outcome in drug and radiation
resistance (Zhao et al., 2011; Huang et al., 2014; Lin et al., 2015; Sun et al., 2017; Zhang et al., 2018). (D) Notch in cancer stem cells: (1) Notch signaling promotes
cancer cell EMT, which is closely associated to stemness. For instance, Notch1 and Notch4 expression in prostate cancer cells promotes EMT via NF-kB activation.
EMT also enables cancer cell dissemination throughout the body including BM (Shibue and Weinberg, 2017; Zhang L. et al., 2017; Lin et al., 2018). (2) At BM level,
Notch pathway activation in CSCs can be mediated by homotypic or heterotypic interactions and positively regulates tumor cell self-renewal, resulting in the
amplification of the CSC population characterized by intrinsic high pharmacological resistance. (3) In OS cell, Notch activation boosts the expression of ALDH (Mu

et al., 2013), a CSC marker also associated with drug resistance due to its detoxifying activity (Honoki et al., 2010). (4) miR-26a inhibits self-renewal by
down-regulating Jagged1/Notch signaling (Lu J. et al., 2017). (5) In CLL, Notch activation results in resistance to Imatinib mediated by PISBK/AKT/mTOR signaling
(Aljiedai et al., 2015). (6) In BM microenvironment, tumor-derived IL-6 promotes an autocrine upregulation of Notch3, that in turn supports CSC survival and
self-renewal (Sansone et al., 2016). (7) Moreover, IL-6 triggers STAT3 signaling in BMSCs improving the secretion of extracellular vesicles carrying the onco-miR221;
this, in turn, increases Notch3 expression in CSCs and hormonal therapy resistance in bone metastasis of luminal breast cancer (Sansone et al., 2017). (8) In
NSCLGC, activating mutations of Notch1 correlate with CSCs and poor prognosis in patients (Westhoff et al., 2009). (9) In NSCLC, hypoxia-induced Notch1 activation

promotes CSC self-renewal via pSTAT3 and HES1 and cis-platinum resistance through the positive regulation of pAKT and Survivin (Zhang VY. et al., 2017).

Consistently, GSI-mediated inhibition of Notch signaling
in MM cells significantly improved the response of MM
cells to standard chemotherapy. In accordance, Xu et al
(2012a) demonstrated that BMSC-derived DII1 activates
Notch pathway in MM cells determining bortezomib
resistance by upregulating CYP1Al, a member of the
cytochrome P450 family involved in drug metabolism.
In line with these data, the combined treatment of the
syngeneic 5T33MM murine model with bortezomib and
GSI resulted in increased bortezomib sensitivity and overall
survival (Xu et al., 2012a).

In MM, the direction of the pathological communication
may also be from tumor cells to BMSCs. Indeed, MM cells
are reported to express Jagged ligands since the earlier stages.
Jagged2 expression is already detectable in the benign form
of MGUS and increases with disease progression (Houde
et al., 2004), while Jaggedl increases during the progression
from MGUS to MM (Skrtic et al., 2010). We used human
MM cell lines, primary MM patients cells and a zebrafish
MM model to show that MM cell-derived Jaggedl and
2 are pivotal to promote tumor cell ability to reprogram
the nearby BM niche, and specifically to trigger BMSCs to
protect MM cells from apoptosis induced by bortezomib,
lenalidomide, and melphalan (Garavelli et al, 2017). The
outcome of Notch signaling activation in BMSCs is the increased
secretion of key cytokines, among which IL-6, IGF1, SDFla,
and VEGF (Houde et al., 2004; Colombo et al., 2014, 2016;

Garavelli et al, 2017). These soluble molecules contribute
to create a microenvironment favorable to tumor growth
by regulating key biological processes such as cell survival
and resistance to cytotoxic chemotherapy. Indeed, we showed
that SDFla, released by BMSCs upon MM-derived Jagged
stimulation, determines MM cell resistance to the above reported
drugs by promoting the expression of Bcl2, survivin and
the multidrug resistance-associated protein 1 (MRP1/ABCCI)
(Garavelli et al, 2017). IL-6 is widely involved in drug
resistance induced by microenvironment. In MM cells IL-
6 activates STAT3 signaling and increases the expression of
antiapoptotic genes, such as Bcl2, Bcl-Xy, Mcl-1, and survivin,
commonly associated with chemoresistance (Catlett-Falcone
et al, 1999; Shain et al, 2009; Ara and Declerck, 2010).
IGF1 has been reported to promote MM cell resistance to
bortezomib (Kuhn et al., 2012).

Although there is still no evidence concerning a role of VEGF
signaling in MM drug resistance, it confers chemoresistance in
several types of solid and hematological tumors (Dias et al.,
2002; Belcheva et al., 2004; Zhang et al., 2006; Hua et al., 2014;
Nusrat et al., 2016; Bendardaf et al., 2017) and involves anti-
apoptotic effectors that play a role also in MM-associated drug
resistance such a as Bcl2 and survivin (Gerber et al.,, 1998;
Tran et al., 2002).

Similarly to MM cells, also bone metastatic breast cancer
cells expressing high levels of Jaggedl activate Notch
signaling in OBLs, thus stimulating the secretion of IL-6
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that, in turn, favors tumor growth and chemoresistance
(Sethietal,2011). On the other side, although the
recognized role played by Notch signaling in OS
pathogenesis (McManus et al., 2014; Tao et al,, 2014) and
multidrug resistance (Ma et al, 2013; Pu et al, 2017),
it has not been established yet whether the underlying
mechanism involves exclusively a tumor cell autonomous
activation of Notch mediated by the high DIl level or
if it may include also an increased Notch activity in
the surrounding cells. Indeed, Pu et al. (2017) found
that miR-34a-5p promotes OS multi-chemoresistance via
repression of DIII, indicating that targeting miR-34a-5p
and DII1 may provide a valuable strategy to overcome
OS chemoresistance.

BONE MARROW MAY PROMOTE DRUG
RESISTANCE BY ACTIVATING THE
GLYCOLYTIC SWITCH IN TUMOR CELLS
VIA NOTCH SIGNALING

Cancer cells may promote survival and proliferation by
changing their metabolism, most frequently by increasing
the glucose intake and consumption. In mammals, glucose
is used for ATP production through glycolysis, TCA cycle
and the OXPHOS in mitochondria. An aberrant feature
of cancer cells is a significant increase of glucose uptake
mainly exploited through glycolysis even in the presence
of oxygen and intact mitochondria (Lu et al., 2015). This
phenomenon is known as Warburg effect and recent studies
indicate that it influences tumor cell drug sensitivity by
enhancing drug efflux, DNA damage repair, survival and
autophagy (Koppenol et al, 2011). Thereby, the onset of
drug resistance is frequently associated with the upregulation
of glycolytic key players including the glucose transporters
and glycolytic enzymes (Butler et al, 2013). For instance,
the upregulation of the glucose transporter 1 (GLUTI1) is
correlated with radiation resistance and poor prognosis in
cervical squamous cell carcinoma patients (Huang et al,
2014; Lin et al., 2015). The increased expression of pyruvate
kinase muscle isozyme 2 (PKM2) has been linked with
resistance to Epirubicin and 5-fluorouracil in breast cancer
patients (Lin et al, 2015), while its silencing potentiates
the effects of oxaliplatin in colorectal cancer cells (Lu
W.Q. et al, 2017). LDHA is associated with breast cancer
resistance to paclitaxel/trastuzumab and myeloma relapse
(Zhao et al., 2011); overexpression of hexokinase 2 (HK2)
is involved in cisplatin resistance in ovarian cancer cells, by
enhancing autophagy (Zhang et al., 2018) and the increased
expression of PDK2 is linked to paclitaxel resistance in
NSCLC (Sun et al., 2017).

The glycolytic switch in cancer cells is due to the activation
of molecular pathways involved in the transcriptional
regulation of several metabolic genes, among which the
Notch signaling pathway (Figure 1C). Notch involvement
was initially reported in Drosophila melanogaster, where it

positively regulates genes encoding for Glutl, glycolytic enzyme
hexokinase A (Hex-A), LDHA (Ecdysone-inducible gene L3,
Impl3) and inhibits TCA cycle by upregulating the gene
Hairy, which binds to the regulatory regions of TCA genes
[Sdhb, 1(1)G0255 and Kdn] suppressing their transcription
(Slaninova et al., 2016).

Therefore, it is not surprising that Notch signaling
dysregulation in cancer cells may also alter their metabolism.
This effect has been mainly explored in breast cancer
cells. Here, Notch activation may be induced by PEST
mutations in Notchl-3 (Wang et al, 2015), high expression
levels of Notchl, 3, 4, Jaggedl, and Dl4 (Lamy et al,
2017; Kontomanolis et al., 2018), and BM-derived Notch
ligands such as Jaggedl (Sethi et al, 2011; Zheng et al,
2017). In vitro and in vivo studies indicate that, in breast
cancer, Notch signaling activation leads to increased
glycolysis through the activation of the PI3K/AKT pathway,
resulting in the upregulation of GLUTI expression and
genes for rate-limiting glycolytic enzymes such as HK2,
ALDOA and PDK2. Notch activation also induces GLUT1
translocation from cytoplasmic to membrane localization
consistently with an increased glucose uptake due to glycolytic
switch (Landor et al., 2011).

Recent evidence indicates that Notch pathway can participate
also in the BMSC-induced metabolic switch. Indeed BMSC-
derived Jagged1 plays an important role by favoring breast cancer
bone metastasis formation and drug resistance (Sethi et al., 2011)
and Landor et al. (2011) recently reported that Jagged1-mediated
Notch activation in MCF7 cells promotes glucose consumption.

The role of BM stromal microenvironment in promoting
the switch of malignant cells from mitochondrial respiration
to glycolysis along with the acquisition of chemoresistance is
recognized in different other tumor types. For instance, BMSCs
induce the glycolytic switch in ALL (Frolova et al., 2012) and
CLL cells (Vangapandu et al., 2017), promoting resistance to
standard of care drugs including vincristine, methotrexate, and
etoposide. Similarly, primary marrow fat cells and adipocyte
cell lines trigger metabolic reprogramming of bone metastatic
prostate cancer cells by enhancing the expression of PDKI,
enolase 2 (ENO2), LDHA as well as HK2 and GLUT1 (Diedrich
etal., 2016), already mentioned as Notch downstream effectors in
breast cancer cells (Landor et al., 2011).

The role of Notch in energy metabolism has been explored
also in CLL. Here, gain-of-function mutations of Notch1 [~80%
patients (Rosati et al., 2018)] stimulate a significant increase
of glycolytic parameters (Jitschin et al., 2015). On the other
hand, the activation of the four Notch isoforms expressed in
CLL cells (Rosati et al., 2018) may be triggered also by BMSC-
derived Notch ligands, i.e., Jaggedl and 2 and DII3 (Jitschin
et al, 2015). Consistently, BMSCs significantly increase the
expression of glycolytic enzymes and glycolytic capacity. This
effect is, at least in part, due to the promotion of Notch
transcriptional activity on one of its most important targets,
c-Myc that plays a recognized role in cancer cell energy
metabolism by promoting the expression of LDHA, GLUTI,
HK2, PFKM and ENOI (Dang et al, 2009). In accordance,
GSI-mediated inhibition of Notch significantly increases CLL
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TABLE 1 | Summary of the mechanisms involved in Notch pathway ability to promote BM reprogramming and drug resistance.

Cancer type Drug Notch pathway Inhibitor tested Cellular Molecular Reference
members mechanism mediators
B-CLL Fludarabine Notch1,2,4 GSI-XII Resistance to c-IAP2 Bcl-2 NF-kB Nwabo Kamdje
Cyclophosphamide Combination of apoptosis; PARP c-myc cyclin etal., 2012;
Bendamustine anti-Notch1,2,4 BMSC-induced b1 Jitschin et al.,
Prednisone antibodies glycolytic switch 2015; Secchiero
Hydrocortisone etal., 2017
Ibrutinib
B-ALL Hydrocortisone Notch3,4 GSI-XII Resistance to Bcl-2 Nwabo Kamdje
anti-Notch3,4 apoptosis etal, 2011
Jagged1,2 and Dll4
antibodies
AML Cytarabine Unknown GSI-IX GSI-XII Resistance to STATS, AKT NF-kB Takam Kamga
Idarubicin apoptosis etal, 2016
Etoposide
CML Imatinib Notch1 Notch2 GSI-953 ALSC PI3BK-Akt/mTOR Aljedai et al., 2015
HESH
MM Doxorubicin Jagged1 Jagged?2 GSI-XIl Jagged1/2 Resistance to p21 NOXA Bcl2 Nefedova et al.,
Mitoxantrone siRNAs apoptosis; | BM Survivin ABCC1 2004, 2008; Chiron
Bortezomib support 1CSC CXCR4 CYP1A1 etal.,, 2012; Xu
Melphalan et al., 2012a;
Lenalidomide Garavelli et al.,
2017; Muguruma
etal, 2017
Osteo-sarcoma Dox Etoposide DIt Jagged1 - Resistance to miR34a-5p Honoki et al., 2010;
Methotrexate apoptosis; ATF2/3/4 miR26a Mu et al., 2013;
CDDP tdetoxifying ALDH Macedo et al.,
activity; 1CSC 2017; Pu et al,,
2017
Prostate cancer - Notch1 Notch4 Notch1 or Notch4 +CSC 1+EMT NFkB Zhang L. et al.,
siRNA 2017; Linet al.,
2018
Breast cancer Lapatinib HT Notch1 Notch3 GSI-IX DBZ Notch1 4+CSC tbone IL6/STAT3/ Harrison et al.,
Notch4 Jagged1 or Notch4 siRNA resorption oncomiR221 2010b; Sansone
et al., 2016; Zheng
et al., 2017; Shah
etal., 2018
NSCLC Cisplatinum Notch1 R0O4929097 +CSC hypoxia STAT3 AKT Survivin Zhang L. et al.,
2017

cell sensibility to used drugs, including Fludarabine and
Ibrutinib (Jitschin et al., 2015; Secchiero et al., 2017).

The ability of Notch signaling to potentiate tumor
chemosensitivity by interfering with another cellular metabolic
pathway has been reported through in vitro and in vivo studies by
Takam Kamga et al. (2018) who showed that Notch4 inhibition
increases B-ALL sensitivity to the chemotherapeutic agent ara-C
by upregulating the intracellular levels of ROS, which in turn,
regulate mTOR, NF-kB, and ERK expression (Takam Kamga
et al., 2018). Also, the same group showed the involvement of
Notch3 and Notch4 in the pathological communication between
B-ALL cells and the stromal microenvironment resulting in
reduced drug sensitivity (Nwabo Kamdje et al., 2011).

The evident importance of the glycolytic switch in
drug resistance development suggests that targeting cancer
metabolism can be effective in restoring apoptosis competence
in tumor cells. Growing evidence suggests that the metabolic
reprogramming of cancer cells also depends on the interaction
with the surrounding microenvironment and might be disrupted

by inhibiting the pathological communication mediated by
Notch signaling.

NOTCH ACTIVITY IS INVOLVED IN THE
MAINTENANCE AND EXPANSION OF
CANCER STEM CELLS

Cancer stem cells play a key role in the development of drug
resistance, that crucially contributes to determine patient’s relapse
and death (Phi et al., 2018). The characteristic resilience of CSCs
to chemotherapeutic agents is due to different features. Indeed,
(1) CSCs represent a reservoir of quiescent cells that undergo
rare cellular division to maintain the bulk cell population,
thereby resulting insensitive to anti-blastic treatment. (2) CSCs
may efficiently extrude drugs through efflux pumps, including
ABCBI1, ABCG2, and ABCC1 (Moitra, 2015), (3) CSCs express
high levels of detoxifying enzymes, such as ALDH (Nakahata
et al.,, 2015), and (4) are characterized by a high anti-apoptotic
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background that hampers cell death upon treatment with pro-
apoptotic drugs (Prieto-Vila et al., 2017; Phi et al., 2018).

These mechanisms of drug resistance can be promoted by the
ability of different BM cellular players (i.e., BMSCs and OBLs)
to activate pathways which allow CSCs to endure chemotherapy,
survive as minimal residual disease and eventually prevail at
relapse (Shiozawa and Taichman, 2012).

Here, we will explore Notch pathway ability to promote
CSC self-renewal in several malignancies (Figure 1D), including
T-ALL (Armstrong et al., 2009), CML (Aljedai et al., 2015), MM
(Gao et al., 2016), OS (Mu et al., 2013), breast (Harrison et al.,
2010a), prostate (Lin et al., 2018), and lung cancer (Hassan et al.,
2013; Sosa Iglesias et al., 2018), and will report recent lines of
evidence indicating that Notch signaling stimulates CSC crosstalk
with the surrounding milieu resulting in a supportive feedback
(Colombo et al., 2015b; Meurette and Mehlen, 2018).

In OS, Notch activation is associated with the expression
of a CSCs marker, ALDH (Mu et al., 2013), whose detoxifying
activity promotes cancer cell drug resistance (Honoki et al,
2010); while miR-26a inhibits CSC self-renewal ability and
promotes chemosensitivity by suppressing Jaggedl/Notch
signaling (Lu J. et al., 2017).

Notch has been hypothesized to play a key role also in
myeloma CSC maintenance (Colombo et al., 2015a). Indeed,
Jagged2 expression in MM cell lines correlates with clonogenic
ability and Notch-Fc chimeric molecules, uncoupling Jagged-
Notch interaction, reducing colony formation in vitro and tumor
formation in immunocompromised mice (Chiron et al., 2012).
Concerning the microenvironment involvement, Notch signaling
may be triggered also by BMSC-derived DIl1, resulting in
increased MM cell clonogenic growth in vitro and tumor burden
in 5T33MM syngeneic murine model (Xu et al., 2012b).

Also, leukemia stem cells (LSCs) rely on BM
microenvironment to survive and propagate the bulk cell
population (Povinelli et al., 2018). Aljedai et al. (2015) found a
significant upregulation of Notchl, Notch2 and the Notch-target
gene HESI in the most primitive CD34TThy™ subset of CML
stem cells, suggesting that Notch pathway activation is critical for
LSC population expansion. Interestingly, Notch activation results
in imatinib resistance due to the activation of the compensatory
PI3K-Akt/mTOR pathway, finally resulting in BCR/ABL-positive
cells persistence that could be prevented by the combined
inhibition of Notch and BCR-ABL (Aljedai et al., 2015).

In T-ALL, Notchl activation promotes the growth and
survival of the bulk cancer cell population along with LSCs self-
renewal, as demonstrated by GSI inhibitory effect on cancer
cell survival and the engraftment efficiency of primary human
T-ALL cells in serial transplantation using immunocompromised
mice (Belmonte et al., 2016). Moreover, T-ALL primary samples
carrying mutated Notchl showed a higher LSCs frequency and
consequently an increased serial transplantation capacity in vivo
respect to samples expressing the wild type form (Ma et al., 2012).

In solid tumors, Notch promotes CSCs self-renewal as well
as EMT. This is of crucial importance, since EMT is closely
associated to stemness and the activation of this program in
malignant cells enables their conversion into CSCs, allowing
them to form metastases and acquire drug resistance (Shibue

and Weinberg, 2017). This connection is particularly evident in
prostate cancer. Here, Notch4 activates NF-kB, boosting cancer
cells growth and EMT (Lin et al., 2018); Notchl promotes EMT,
invasion and cell migration and EMT-like prostate cancer cells
display a CSC phenotype (Zhang L. et al., 2017).

Notch receptors, including Notch1, 3, and 4, and the Jagged1
ligand support the expansion of CSCs and the development
of drug resistance also in breast cancer. In HER2T breast
cancer, Notch signaling is associated to CSC resistance to the
small molecule inhibitor of HER2, Lapatinib. This promotes
Jagged1 expression in HER2" CSCs, which, in turn, is associated
with increased levels of Notch receptor expression and activity
and CSCs enrichment in vitro and in vivo. Jaggedl predicts
a poor overall survival (Shah et al., 2018) and is associated
with bone metastasis (Zheng et al, 2017). Interestingly, in
bone metastatic breast cancer, OBL-derived Jagged1l may induce
drug resistance in tumor cells (Zheng et al., 2017). Other lines
of evidence indicate that ESA*/CD44%/CD24!°" breast CSCs
showed high levels of Notchl and Notch4, although Notch4
blockade was more effective in inhibiting tumor initiation
in vivo (Harrison et al., 2010a,b).

In bone metastasis of luminal breast cancer, resistance
to hormonal therapy is driven by a pool of self-renewing
CD133Migh/ERIOW/TL6M8"  CSCs. High 1L-6 levels stimulate
Notch3 expression, that can replace the estrogen receptor
signaling and promote CSCs survival and self-renewal (Sansone
et al, 2016). In therapy-resistant stromal-tumor niches,
IL-6/STAT3 signaling drives the expansion of BMSCs, that, in
turn, secrete extracellular vesicles containing onco-miR221, able
to induce hormonal therapy resistance through the generation
of Notch3high/ERIOW/CD133high CSCs (Sansone et al., 2017).
Finally, Notch signaling positively regulates also NSCLC CSCs.
Indeed, Notchl mutations present in 10% of lung cancers,
are associated with poor prognosis (Westhoff et al., 2009) and
promote tumor initiation (Baumgart et al., 2015). Additionally,
high levels of Notch1 may be induced in NSCLC CSCs by specific
environmental conditions, such as tumor associated hypoxia
(Zhang Y. et al.,, 2017). The hypoxic condition of BM and the
availability of Notch ligands expressed by BM cells (Bertrand
et al,, 2000; Nefedova et al., 2004; Xu et al., 2012a; Jitschin
et al., 2015; Colombo et al.,, 2016; Sato et al., 2016) suggest that
Notchl activation is not a limiting step in BM, and interestingly
Notchl activation promotes NSCLC CSC self-renewal via
p-STAT3 and HESI and induces resistance to cis-platinum
treatment through the survival regulators p-AKT and survivin in
a HES1-independent manner (Zhang Y. et al., 2017).

CONCLUSION

We believe that the lines of evidence here reported and
summarized in Table 1 clearly show that Notch signaling is
instrumental in the pathological communication between tumor
cells and BM leading to the reprogramming of surrounding
microenvironment and the development of pharmacological
resistance. Thus, targeting Notch pathway to prevent BM-
mediated support promises to be effective in re-establishing
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apoptosis competence and overcoming drug resistance to
eradicate the disease. Notably, although the important side
effects of the currently used pan-Notch signaling inhibitors
on small intestine, our survey points out that several tumors
establish an aberrant communication with the surrounding
microenvironment exploiting only one or few components of the
pathway, thereby suggesting that a safer use is possible using
the inhibitors specific for a single receptor or ligand recently
developed (Wu et al., 2010; Platonova et al., 2017b).
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