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Tuberculosis (TB), a disease caused by microorganisms of the Mycobacterium
tuberculosis complex, infects almost one-third of the world’s population. The TB
epidemic has been further exacerbated by the emergence of multi, extensively, and
totally-drug-resistant (MDR, XDR, and TDRTB) strains. An effective immune response
plays a crucial role in determining the establishment of TB infection. Therefore, the
modulation of the immune system has been considered as a vital approach for the
treatment or control of various immune-related diseases such as TB. In this study, the
antimycobacterial, immunomodulatory, and apoptosis-inducing effects of six Rubiaceae
species were evaluated. A twofold serial dilution method was used to determine the
minimum inhibitory concentration values of the plant extracts. The effect of the extracts
on the activity of 15-lipoxygenase was investigated. The levels of six different cytokines,
IL-2, IL-4, IL-5, IL-10, IFN-γ, and TNF-α, were measured in LPS-activated U937 cell
line while the apoptosis-inducing effect of the extracts was evaluated using an annexin
V/PI assay using a flow cytometer. The results obtained revealed that all the six extracts
tested had antimycobacterial activity against M. tuberculosis H37Rv, M. tuberculosis
ATCC 25177, and Mycobacterium bovis ATCC 27299 strains, with MIC values ranging
from 39 to 312 µg/mL. The extracts of Cremaspora triflora and Cephalanthus natalensis
were the most active against M. tuberculosis (MIC = 39 µg/mL), followed by Pavetta
lanceolata and Psychotria zombamontana against M. bovis (MIC = 78 µg/mL). The
extracts of P. zombamontana and Psychotria capensis had remarkable IC50 values of
4.32 and 5.8 µg/mL, respectively, better than that of quercetin. The selected extracts
promoted Th1/Th2 balances in an in vitro model at the tested concentration which may
suggest the therapeutic value of the plant in diseases where inflammation is a significant
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factor such as TB. The addition of the crude extracts of C. triflora, P. capensis, and
P. zombamontana at the tested concentrations to the cell culture medium induced
apoptosis in a time- and dose-dependent manner. This interesting preliminary result
generated from this study encourages further investigations of these extracts owing
to the LOX-inhibitory effect, immunomodulatory, and apoptotic-inducing properties in
addition to their antimycobacterial properties.

Keywords: antimycobacterial, tuberculosis, M. tuberculosis complex, Rubiaceae, immunomodulatory, apoptosis,
lipoxygenase, cytokines

INTRODUCTION

Tuberculosis, a disease caused by organisms belonging to the
Mycobacterium tuberculosis complex, resulted in the death of
1.5 million people and approximately 9.6 million new cases in
2014 (Anderson et al., 2015). TB, an old disease that has plagued
humankind for centuries, is known to be a highly infectious
disease and still remains the leading killer among infectious
diseases in the world, with approximately 2 billion people being
latently infected with this obligate parasite (Nguta et al., 2015;
World Health Organization [WHO], 2017). The TB epidemic has
been further exacerbated by the emergence of MDR-TB, XDR-
TB, and TDR-TB strains (Riccardi and Pasca, 2014; Blanco et al.,
2015; World Health Organization [WHO], 2017).

An effective immune response to M. tuberculosis plays
a crucial role in determining the establishment of disease
(Kleinnijenhuis et al., 2011). This facultative pathogen has
devised various mechanisms such as immune-evasion strategies
to subvert the host immune response (Saini et al., 2016).
Also, the intricate interaction of M. tuberculosis with the
immune system leads to the release of a vast array of
cytokines by diverse cell types in response to infection (Etna
et al., 2014). The mechanisms used by M. tuberculosis to
modify macrophage functions have not been fully elucidated.
The interaction between mycobacteria and cells of both the
innate and adaptive immune system results in the secretion
of chemokines and cytokines, the most important being
tumor necrosis factor-α (TNFα), cytokines of the interleukin-
1 family (IL-1β, IL-18), IL-12, and IFN-γ (Kleinnijenhuis
et al., 2011). The success of pathogenic mycobacteria is
largely attributed to their capacity to avoid destruction within
host immune cells.

Lipid mediators such as eicosanoids and PGEs implicated
in inflammation have emerged as potential therapeutic agents.
Leukotrienes and lipoxins (LXAs) are generated from AA by
5- and 15-LOX while PGEs are generated from AA by COX I
and II. However, after infection with mycobacteria, the balance of
PGEs and LXAs determines the apoptotic and necrotic effect with
PGEs preventing necrosis and inducing apoptosis while LXAs
promote necrosis (Behar et al., 2010; Divangahi et al., 2013).

Abbreviations: AA, arachidonic acid; ATCC, American Type Culture Collection;
cfu, colony forming unit; COX, cyclooxygenase; DMSO, dimethyl sulfoxide;
INT, iodonitrotetrazolium chloride; LOX, lipoxygenase; LPS, lipopolysaccharide;
MDR, multidrug resistance; MTT, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-
tetrazolium bromide; PGE, prostaglandins; PMA, phorbol 12-myristate 13-acetate;
TB, tuberculosis; TDR, totally drug resistance; XDR, extreme drug resistance.

The M. tuberculosis complex species delay the initiation
of adaptive immunity by inhibiting apoptosis and initiating
the necrotic effect of host macrophages (Divangahi et al.,
2010). The apoptotic response represents an innate defense
mechanism against intracellular mycobacteria (Fratazzi et al.,
1997). Ultimately, host macrophage apoptosis but not necrosis
is linked to killing of intracellular mycobacteria (Molloy et al.,
1994). This suggests that programmed cell death of the host
macrophage not only eliminates a preferred growth niche
for M. tuberculosis but also activates a unique microbicidal
mechanism. Therefore, the modulation of the immune system
has been considered a vital approach for the treatment or
control of various immune-related diseases such as TB (Cho,
2008; Ouchi et al., 2011). In addition to the drug development
process of novel anti-TB chemotherapy, it is imperative to
harness advances in systems-level analysis of host–pathogen
interactions; a new approach referred to as adjunct therapy
(Worthington and Melander, 2013). In TB chemotherapy, the
microbicidal activity of anti-TB drugs alone is not sufficient
but should include modulation of the host immune response
pathways in order to combat the causative pathogen of the
disease, thereby synergistically enhancing the activity of the drugs
(Rayasam and Balganesh, 2015).

An increasing number of studies have shown that traditional
phytomedicine confer a variety of immunomodulatory activities
(Hou et al., 2010; Du et al., 2013). Therefore, plant products
that possess immunomodulatory activities have potential
as therapeutic agents for various inflammatory diseases
(Devasagayam and Sainis, 2002; Nowakowska, 2007). There
are 611 genera in the Rubiaceae family but only 48 genera
have been studied and reported to have excellent antibacterial
activity against various pathogenic strains (Choudhury et al.,
2012). Many molecules isolated from some genera belonging
to the Rubiaceae family are pertinent in drug discovery due to
the fact that they serve as templates in the drug development
process (Ngwenya, 2008). There are 61 genera and 228 species
native or naturalized in southern Africa (Ngwenya, 2008).
In this study, six species from the Rubiaceae family, namely,
Cephalanthus natalensis, Cremaspora triflora, Oxyanthus
speciosus, Pavetta lanceolata, Psychotria capensis, and Psychotria
zombamontana, with good antimycobacterial activity (Aro et al.,
2015) were chosen for further study to determine their LOX-
inhibitory effect, immune modulatory, and apoptotic inducing
properties, in an effort to gain insight into their potential
mechanisms of action.
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MATERIALS AND METHODS

Preparation of Plant Extracts and Thin
Layer Chromatography Analysis
The leaves of the six plant species were collected in November
2009 from the University of Pretoria (PRU) Botanical Gardens,
Pretoria, South Africa, and Lowveld National Botanical Gardens
(Nelspruit). The plant materials were labeled and identified
by Magda Nel from the Department of Plant Sciences, PRU.
Voucher specimens were kept in the HGWJ Schweickerdt
Herbarium of the PRU. The leaves were air dried at room
temperature, ground to a fine powder in a Macsalab mill (model
2000 LAB Eriez), and stored in closed glass containers in the dark
until needed. The powdered plant material was extracted with
acetone in a ratio of 1:10 of plant material to acetone (technical
grade, Merck) in a polyester centrifuge tube which was vigorously
shaken on an orbital shaker for 30 min (Eloff, 1998). It was
centrifuged at 4000 × g for 10 min and the supernatant was
filtered through Whatman No. 1 filter paper into a pre-weighed
glass vial. The extraction was repeated twice on the same plant
material and the solvent was removed under a stream of air in
a fume hood at room temperature to produce dried extracts.
Extracts were reconstituted to a concentration of 10 mg/mL in
acetone. The acetone crude extracts were qualitatively screened
to obtain thin layer chromatography (TLC) fingerprints of each
investigated extract; 10 µL from 100 µg of extract stock was
preloaded on aluminum-backed TLC plates (Merck, Silica gel
F254) in lines of about 1 cm wide. Three different mobile solvent
systems which include ethyl acetate/methanol/water (EMW)
10:1.35:1, chloroform/ethyl acetate/formic acid (CEF) 10:8:2, and
benzene/ethanol/ammonia (BEA) 18:2:0.2 were used to develop
the chromatogram on the TLC plates (Kotze et al., 2002).
The developed chromatograms were sprayed with a mixture
of vanillin (0.1 g) dissolved in methanol (28 mL) and sulfuric
acid (1 mL), heated to 110◦C for optimal color development
and were examined under ultraviolet light at wavelengths of
254 and 365 nm.

Antimycobacterial Assay
Antimycobacterial activity was tested against three mycobacterial
species, namely, M. tuberculosis H37Rv, M. tuberculosis
(ATCC 25177), and Mycobacterium bovis (ATCC 27290). The
mycobacterial species were cultured on Löwenstein–Jensen
agar slants, supplemented with glycerol, or pyruvate in the
case of the M. bovis culture. To avoid formation of clumps,
sterile plastic loops were used to scrape cells off the slants
prior to each assay. These suspensions were diluted with sterile
water to adjust the turbidity to a No 1 McFarland standard
(approximately 4 × 107 cfu/mL), and then diluted with freshly
prepared Middlebrook 7H9 medium (Difco, Becton Dickinson,
United States) supplemented with 10% oleic acid-albumin-
dextrose-catalase (OADC, Becton Dickinson, United States)
and 0.5% glycerol (Merck Millipore, Germany) to obtain a final
inoculum density of approximately 5× 105 cfu/mL.

A twofold serial dilution method was used to determine the
minimum inhibitory concentration (MIC) values of the plant

extracts (Eloff, 1998; McGaw et al., 2008). Crude extracts were
dissolved in 10% DMSO to prepare stocks of 10 mg/mL. The
assay was carried out in 96-well plates. Briefly, 100 µL of the
stock solutions of the crude extracts were serially diluted in
100 µL of OADC-supplemented Middlebrook 7H9 broth in
96-well microtiter plates before mycobacterial culture (100 µL)
was added to each well. The anti-TB drugs rifampicin and
streptomycin represented the positive controls, and solvent
controls were included. Doses were tested at least in triplicate
and the entire experiments were repeated three times. Plates were
incubated at 37◦C for 10–14 days. MIC values were observed
using a tetrazolium violet (INT) indicator. This experiment was
carried out in a Biosecurity Level 2+ containment facility with
appropriate personal protective equipment.

Soybean Lipoxygenase Inhibition Assay
The assay was performed according to a previously described
procedure (Pinto et al., 2007) with slight modifications described
by Dzoyem and Eloff (2015). The LOX inhibitory activity was
evaluated by calculating the percentage of the inhibition of
hydroperoxide production from the changes in absorbance values
at 560 nm after 30 min at 25◦C.

% inhibition = [(Acontrol–Ablank) – (Asample–Ablank)/

(Acontrol–Ablank)]× 100

where Acontrol is the absorbance of the control well, Ablank is the
absorbance of the blank well, and Asample is the absorbance of the
sample well.

Cytotoxicity Assay
The cytotoxicity of the crude plant extracts was tested
against human monocytic cell line THP-1 (purchased from
ATCC, TIB-202) and human promonocytic cell line U937
(ATCC 1593.2) using the 3-(4,5-dimethylthiazol)-2,5-diphenyl
tetrazolium bromide (MTT) assay (Mosmann, 1983) with slight
modifications (McGaw et al., 2007).

Immunomodulatory Assay
The concentration used for determining immunomodulatory
activity of the plant extracts was at their IC50 value (the 50%
inhibitory concentration values which were calculated as the
concentration of test compound resulting in a 50% reduction
of absorbance compared to untreated cells). The anti-tubercular
drug, rifampicin, was also included at the LC50 value. Each
sample concentration was freshly prepared on the day of
experiment in RPMI medium with acetone as acetone is not toxic
to the cell line at the percentage tested, while rifampicin was
prepared in DMSO (0.2%).

The human promonocytic cell line U937 (ATCC 1593.2)
available from Highveld Biological (Pty) [(pH 7.2), was
cultured in medium containing 10% heat inactivated fetal calf
serum (FCS), 2 mM l-glutamine, and a 0.1% antimicrobial
solution consisting of penicillin, streptomycin, and fungizone].
Reagents were procured from Highveld Biological (Pty)
(Ltd.) (Sandringham, South Africa). U937 cell suspension
(2 × 105 cells/mL) was seeded into 96-well tissue culture
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microtiter plates supplemented with 0.10 µg/mL PMA (Sigma)
for 48 h at 37◦C in an atmosphere of 5% CO2 to induce
differentiation into macrophage-like cells (Passmore et al.,
2001). After the incubation period, the differentiated U937
cells were washed with phosphate-buffered saline (PBS)
(Lonza, South Africa). The PMA-containing medium was
replaced with PMA-free RPMI-1640 medium after 48 h
incubation. Cytotoxicity of the extracts against U937 cells was
determined as described by Mosmann (1983) and modified by
McGaw et al. (2007).

The differentiated cell suspension was stimulated with LPS
(5 µg/mL) and treated with increasing concentrations of crude
extracts and rifampicin. Puromycin (5.0–0.1 µM) was used as
a positive control because it can prevent growth of bacteria,
protozoa, algae, and mammalian cells and acts quickly, killing
99% of cells within 2 days at 1–10 µM (Sigma). After 48 h
incubation in a CO2 incubator, the supernatant was collected
and stored at −80◦C. To determine the viability of the cells,
the cells were then washed with PBS, fresh medium (200 µL)
was added, and 30 µL of MTT (5 mg/mL in PBS) was added
to each well and the plates were incubated at 37◦C for 4 h. The
medium was removed by aspiration and 100% DMSO (50 µL)
added to dissolve the resulting formazan crystals. The absorbance
was measured on a BioTek Synergy microtiter plate reader at
570 nm. The percentage of cell growth inhibition was calculated
by comparison with untreated cells.

Cytokine Detection via Cytometric Bead
Array (CBA) Analysis
Cell culture supernatants were thawed once and examined for
IL-2, IL-4, IL-5, IL-10, IFN-γ, and TNF-α concentrations by
multiplex cytokine array analysis performed using the cytometric
bead array (CBA) method using the Human Th1/Th2 Kit (BD-
Biosciences). The six capture beads were mixed on a Vortex
mixer and 50 µL was dispensed into each of the assay tubes.
Fifty microliters of the relevant phycoerythrin (PE) detection
reagent was then added to the assay tubes. For each of the
test samples, 50 µL of cell supernatant was added to the
test assay tubes and 50 µL of the cytokine standard dilutions
were added to the control assay tubes and were incubated at
room temperature for 3 h away from sunlight. During the
incubation, the cytometer setup procedure was performed. After
the incubation time, 1 mL of wash buffer was added to each
assay tube and centrifuged at 200 × g for 5 min. To avoid
disturbing the bead pellet, the supernatant from each assay tube
was carefully aspirated and discarded. Thereafter, 300 µL wash
buffer was added to each assay tube to resuspend the bead pellet
and mixed thoroughly on a vortex for 5 s before plating the
samples in a labeled 96-well microtiter plate. Acquisition was
performed with flow cytometry utilizing the BD Accuri C6 and
the data were analyzed with the FCAP Array software. The
sensitivity for each cytokine using the BD CBA Human Th1/Th2
Cytokine Kit is as follows: IL-2: 3.30 pg/mL; IL-4: 1.87 pg/mL;
IL-5: 0.76 pg/mL; IL-10: 0.66 pg/mL; TNF-α: 1.61 pg/mL;
IFN-γ: 7.79 pg/mL. These theoretical limits of detection are
defined as the corresponding concentration at two standard

deviations above the median fluorescence of 20 replicates of the
negative control (0 pg/mL).

Apoptosis Assay Using Flow Cytometry
The human monocytic cell line THP-1 (purchased from ATCC,
TIB-202) was cultured in RPMI-1640 (containing L-glutamine
and nabicarbonate; Sigma, United States) supplemented with
10% FCS (Highveld Biological, South Africa) and 1% antibiotics
comprising streptomycin and penicillin (Highveld Biological,
South Africa). Cells were seeded into 24-well flat bottomed plates
(Nest) at 2 × 105 cells/well. After 24 h of incubation, cells were
exposed to different concentrations (20, 50, and 100 µg/mL) of
plant extracts for 24 and 48 h. The crude extracts of C. natalensis
were not included due to insufficient plant material.

Wells containing cells only were included as control while
cells exposed to DMSO only were included as vehicle control.
Staurosporine (0.2 µM) was included as positive control. Cells
were harvested at different time points and then washed twice
with warm PBS. Apoptosis was measured using the Annexin
V-fluorescein isothiocyanate (FITC)/propidium iodide (PI)
apoptosis detection kit (BD Bioscience) as per manufacturer’s
instruction. Following 24 and 48 h of incubation (5% CO2, 37◦C)
of the cells exposed to plant extracts, the percentage of apoptotic
cells was determined by the annexin V-FITC/PI assay.

Cells were harvested and transferred into plastic flow tubes
(BD Biosciences, South Africa), washed with 1 mL cold PBS,
centrifuged at 250 × g for 5 min and resuspended in 100 µL
of binding buffer. The cells were stained with 2 µL of annexin
V-FITC conjugate and PI, vortexed and incubated on ice in the
dark for 15 min followed by addition of 250 µL of cold binding
buffer to stop the reaction. The annexin positive, the PI positive,
as well as unstained cell controls were used for compensation
and quadrant specification. The controls and samples suspended
in 500 µL of binding buffer were analyzed by flow cytometry
using BD LSRFortessa software (BD Biosciences, South Africa)
within 30 min after staining, with 10,000 events collected
for each sample. The data acquisition was performed using
FACSDiva software while analysis of the results was processed
with FlowJo 10.1.

Statistical Analysis
All experiments were conducted in triplicate and values
expressed as mean ± standard deviation. Statistical analysis
was performed using two-way ANOVA. Significant differences
between treated and control were determined with Dunnett’s
tests using GraphPad Prism 6. (GraphPad Software, Inc., La
Jolla, CA, United States).

RESULTS

Antimycobacterial, Lipoxygenase
Inhibition, and Cytotoxicity Activities
Based on the twofold serial microdilution assay, all the tested
crude extracts had good to moderate MIC values ranging from 39
to 312 µg/mL against the tested pathogenic strains. The acetone
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TABLE 1 | Antimycobacterial (MIC µg /mL), cytotoxicity (IC50 µg /mL), and
anti-lipoxygenase (IC50 µg /mL) activities of the tested extracts.

Samples MIC (µg /mL) IC50

H37Rv M. tb M. bovis U937 THP-1 LOX

Cephalanthus
natalensis Oliv.

78 156 156 100 ± 0.01 100 ± 0.01 32.45 ± 1.05

Cremaspora
triflora Thonn.

156 39 156 100 ± 0.10 378 ± 0.21 29.86 ± 2.39

Oxyanthus
speciosus DC.

78 78 312 190 ± 0.00 600 ± 0.01 11.20 ± 7.30

Pavetta
lanceolata Eckl.

156 156 78 125 ± 0.36 188 ± 0.03 10.85 ± 0.83

Psychotria
capensis Vatke

156 312 156 25 ± 0.00 761 ± 0.10 5.8 ± 1.94

Psychotria
zombamontana
Kuntze

156 312 78 400 ± 0.00 579 ± 0.57 4.32 ± 1.10

Rifampicin 0.05 0.07 0.19 >200 ± 0.02 nd nd

Streptomycin 0.1 0.5 0.1 nd nd nd

Puromycin nd nd nd 4 ± 0.02 3.6 ± 0.01 nd

Quercetin nd nd nd nd nd 25.53 ± 1.18

nd: not determined; LOX: 15-lipoxygenase. Values written in bold are those with
good antimycobacterial activities and low cytotoxicity.

extract of C. triflora had the best activity against M. tuberculosis
with an MIC value of 39 µg/mL (Table 1). The crude extracts
of P. lanceolata and P. zombamontana had a good MIC value of
78 µg/mL against M. bovis while C. natalensis and O. speciosus
also had MIC value of 78 µg/mL against M. tuberculosis H37Rv.

The 15-LOX inhibiting activity was measured using the
96-well microplate-based ferric oxidation of xylenol (FOX)
orange assay. The selected plant extracts had IC50 values
between 4.32 and 32.45 µg/mL indicating moderate to high
LOX inhibitory activity when compared to the positive control
quercetin with an IC50 of 25.45 µg/mL. The crude extracts of
P. zombamontana and P. capensis had the best LOX inhibitory
effect with IC50 of 4.32 and 5.8 µg/mL, respectively, better than
that of quercetin (Table 1).

Based on the phytochemical analysis conducted, compounds
of varying polarities were visualized on the TLC plate when
sprayed with vanillin. More compounds were visible in BEA;
a non-polar solvent followed by CEF; an intermediate polar
solvent. The extracts poorly separated in EMW polar solvent
(Supplementary Data).

Cytotoxicity was determined after supernatant collection
using the MTT colorimetric method. Extracts showing sensitivity
to cell lines with IC50 values > 100 µg/mL are considered not
cytotoxic (Kuete, 2010). Five out of the six tested plant extracts
had relatively low cytotoxicity (LC50 values ranging from 100 to
400 µg/mL) against the tested cell line except for the crude extract
of P. capensis. This extract was cytotoxic against the U937 cell
line with an IC50 value of 25 µg/mL (Table 1), but surprisingly
it was non-cytotoxic to the THP-1 cells. Alkaloids are cytotoxic
to various cell lines and have been isolated from the Psychotria
genus (Martins et al., 2013). The cytotoxicity of the extract of
P. capensis against U937 cells could be due to the presence of
alkaloids. Interestingly, none of the tested crude extracts was

cytotoxic to the THP-1 cell line with an IC50 values ranging from
188 to 761 µg/mL.

Immunomodulatory Activity
The levels of six different cytokines, IL-2, IL-4, IL-5, IL-10, IFN-γ,
and TNF-α were measured using the CBA assay, a particle-based
immunoassay combined with flow cytometry. LPS-stimulated
U937 cells were treated with different concentrations of acetone
crude extracts and rifampicin and the supernatants were collected
after 48 h of exposure (Figure 1). P. capensis extracts were
not included due to the cytotoxic effect observed on the cell
line. Most of the Th1/Th2 cytokine secretion levels in the
absence or presence of LPS was higher than the detection limits
from the manufacturer (IL-2: 3.30 pg/mL; IL-4: 1.87 pg/mL;
IL-5: 0.76 pg/mL; IL-10: 0.66 pg/mL; TNF-α: 1.61 pg/mL;
IFN-γ: 7.79 pg/mL). The crude extracts of P. zombamontana
significantly increased the expression of IFN-γ (12.91 pg/mL;
P < 0.0001) while the expression observed for O. speciosus and
P. lanceolata was not significant (P > 0.05). However, rifampicin
significantly (P < 0.0001) inhibited the expression of this Th1
cytokine; IFN-γ compared to LPS-activated cells (Figure 1).

All the extracts significantly decreased the production of TNF-
α (P < 0.0001) with the exception of C. triflora (54.69 pg/mL;
P < 0.001) having a stimulatory effect relative to LPS-
stimulated control. Also, acetone extracts of C. natalensis,
C. triflora, O. speciosus, and rifampicin significantly suppressed
the expression of pro inflammatory cytokine IL-2 (P < 0.0001).
The inhibitory effect of the extracts of C. triflora and
O. speciosus on Th2 cytokines; IL-4 and IL-5 was of statistical
significance (P < 0.0001) when compared to LPS-stimulated
cells except for P. zombamontana and rifampicin showing non-
significant inhibitory effect of IL-5 (P > 0.05). Surprisingly,
the expression of IL-10 was of significance for the extracts of
O. speciosus (31.84 pg/mL), P. zombamontana (28.80 pg/mL),
and rifampicin (32.50 pg/mL) all having P-values < 0.0001
while a significant decrease was observed for the extracts
of C. natalensis (5.08 pg/mL), C. triflora (1.07 pg/mL), and
P. lanceolata (5.59 pg/mL).

Apoptosis Induction
The THP-1 cells were exposed to varying concentrations of five
of the plant extracts for either 24 or 48 h and apoptosis was
measured using the annexin V-FITC/PI assay. However, the
extracts of C. natalensis could not be assessed for its apoptosis
inducing effects due to insufficient plant material. The treatment
of THP-1 cells with the acetone extracts of five different Rubiaceae
species led to an increase in the percentage of annexin V positive
apoptotic cells at 24 and 48 h in comparison to the percentage of
cells without treatment (control or 0 µg/mL) in a dose- and time-
dependent manner. It was observed that the addition of the crude
extracts of C. triflora and P. capensis at 20, 50, and 100 µg/mL to
the cell culture medium induced apoptosis in a time- and dose-
dependent manner (Figures 2, 3). A necrotic effect (65–85%)
higher than that of the positive control (3%) was observed for the
extracts of O. speciosus and P. lanceolata at 50 and 100 µg/mL
while at a non-cytotoxic concentration (20 µg/mL), a lower
necrotic effect (<1%) was observed as depicted in Figure 4
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FIGURE 1 | Controls: cells not stimulated with LPS (LPS -); cells stimulated with LPS, no treatment (LPS +). Effects of cytokine production in LPS-stimulated U937
cells treated for 48 h with varying concentration of five Rubiaceae crude extracts and rifampicin. Data are mean ± SD value. Statistical analysis was performed using
Dunnett’s multiple comparisons test using two-way ANOVA. ∗P < 0.05, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001 versus LPS-stimulated cells only.

which is a bar graph representing the cumulative results of five
of the extracts.

DISCUSSION

Tuberculosis is a re-emerging infectious disease causing
considerable mortality as well as morbidity. Pathogenic

Mycobacterium spp. have developed resistance to many
antibiotics and this situation has called for an urgent need
to develop new anti-TB drugs from plants. Plants from the
Rubiaceae family have been reported to exhibit antimalarial,
antimicrobial, antihypertension, antidiabetic, antioxidant, and
anti-inflammatory activities (Sirigiri, 2015). We have previously
reported pharmacological activities of some South African
Rubiaceae species including antioxidant, anti-inflammatory,
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FIGURE 2 | Stained cells (untreated control) and crude extract of P. capensis after (A) 24 and (B) 48 h of treatment induced apoptosis of THP-1 cells. Q1: necrotic
cells (annexin V−/PI+); Q2: late apoptosis (annexin V+/PI+); Q3: apoptotic cells; (annexin V+/PI−) Q4: live cell (annexin V−/PI−).

FIGURE 3 | Stained cells and crude extract of C. triflora induces apoptosis of THP-1 cells post (A) 24h and (B) 48 h of treatment. Q1: necrotic cells (annexin
V−/PI+); Q2: late apoptosis (annexin V+/PI+); Q3: apoptotic cells; (annexin V+/PI−) Q4: live cell (annexin V−/PI−).
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FIGURE 4 | Evaluating the mode of cell death of THP-1 cell macrophages treated for 24 and 48 h with different concentration of plant extracts. Staurosporine
(0.2 µM) was used as positive control. The bar represents the mean ± SD of a representative experiment among three independent experiments. CT = Cremaspora
triflora, OS = Oxyanthus speciosus, PC = Psychotria capensis, PL = Pavetta lanceolata, PZ = Psychotria zombamontana.

synergistic effect, and antimycobacterial activities against
pathogenic tuberculous isolates and fast growing non-
tuberculous Mycobacterium species (Aro et al., 2015, 2016).
Following our earlier findings of antimycobacterial efficacy
of Rubiaceae plants against fast-growing non-tuberculous
Mycobacterium species, extracts of six South African species were
tested for this particular biological activity against pathogenic
Mycobacterium ATCC strains. Therefore, in this study, we
also evaluated the anti-inflammatory activity by the inhibition
of the enzyme soybean 15-LOX activity, which peroxidizes
polyunsaturated fatty acids.

The MIC values of the tested extracts of each plant
showed reasonable antimycobacterial activities for all strains
when compared with our positive control; rifampicin. The
antimycobacterial activity observed in this work could be
attributed to the presence of various bioactive phytochemicals
ranging from non-polar to intermediate compounds based on the

phytochemical profile of the TLC plate (Supplementary Data).
Our results are consistent with the study of Moraes et al. (2011);
Martins et al. (2013), and Elisha et al. (2017) who reported
that the antimycobacterial activity of some Rubiaceae species is
related to the presence of terpenoids and alkaloids.

A diversity of bioactive natural products occurs in Rubiaceae
plants. Extensive phytochemical investigations have been
conducted regarding the natural occurrence of phytochemicals
such as alkaloids, anthraquinones, and terpenoids in the family
(Sirigiri, 2015; Sultana et al., 2015). The weak cytotoxic profile on
the human macrophage cell line U937 and the human monocytic
cell line THP-1 is noteworthy. These two cell lines, U937 and
THP-1, are widely used to study immune response and cellular
activities, either in their monocyte or macrophage-like states
(Daigneault et al., 2010). However, the only difference between
the U937 and THP-1 cells is in their origin, in that U937 cells are
of tissue origin at more mature stage, while THP-1 cells originate
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from a blood leukemia origin at less mature stage, thus having
the same morphology and functional properties (Liu et al., 2005;
Saini et al., 2016).

Divangahi et al. (2010) showed that by activating the LOX
enzyme pathway, M. tuberculosis not only inhibited apoptosis
but also prevented cross-presentation of its antigens by dendritic
cells, which impedes the initiation of T cell immunity. A drug that
will interfere and prevent the activation of LOX and also inhibit
apoptosis could be a good candidate for drug development.
The effect of extracts from Rubiaceae plants on the activity of
15-LOX was investigated. Compared to quercetin used as positive
control, extracts of P. capensis and P. zombamontana showed
good inhibitory effect on LOX activity. This could imply that
these extracts might have some phytochemical constituents active
against LOX enzyme. LOX inhibitory activity of a Rubiaceae
species (Crossopteryx febrifuga) was previously demonstrated
by Maiga et al. (2006). The value obtained for the LOX
inhibitory activity of C. triflora (IC50 = 29.86 µg/mL) also
correlates with the results (IC50 = >50 µg/mL) of Elisha et al.
(2016). Several researchers have reported on the LOX inhibitory
properties of some medicinal plants and their potential for
treating inflammatory diseases (Malterud and Rydland, 2000;
Wangensteen et al., 2006; Ha et al., 2009).

Shah et al. (2013) reported that LOX inhibitors were involved
in many inflammatory diseases and the immune response to
bacterial infections. Extracts were evaluated in LPS-stimulated
human macrophage cells (U937) by performing inhibition
assays using six cytokines, namely, IL-2, IL-4, IL-5, IL-10,
IFN-γ, and TNF-α. Monocytic cells such as U937 cells can
undergo macrophage polarization depending on the type of
stimulations which can either be physiological (use of IFN-γ or
LPS) or exogenous chemical, phorbol esters such as phorbol-
12-myristate-13-acetate (PMA). As macrophage polarization is
a complex field that intersects with most physiological and
pathological scenarios, M1 macrophages are typically activated
by IFN-γ or LPS to produce pro-inflammatory cytokines,
phagocytize microbes, and eventually initiate an immune
response (Cavender et al., 1991). Activation of macrophages
by LPS enhances the production of proinflammatory mediators
and cytokines such as TNF-α and the IL-family (Dhar
et al., 2018). Analogs of diacyl glycerol (DAG) such as
PMA are known to induce protein kinase C (PKC). Hence,
PMA treatment activates PKC signaling cascade in U937
to enhance the expression of a wide range of cytokines,
chemokines, and genes through multiple transcription factors
(Fan et al., 2014). Therefore, an M1 type macrophages are
crucial for the control of immunity to intracellular mycobacteria
such as TB (Murray, 2017). The assayed cytokines are
commonly classified in one or the other category: TNF-
α, gamma-interferon (IFN-γ), and IL-2 are pro-inflammatory
cytokines whereas IL4, IL-5, and IL-10 are recognized as
anti-inflammatory cytokines (Pripp and Stanišić, 2014). In
Th1 responses, macrophages are activated by IFN-γ which
increases pro-inflammatory and microbicidal activities (Rook,
2007). The plant extracts of P. zombamontana were able to
induce the production of IFN-γ significantly thereby increasing
microbicidal and pro-inflammatory activities in an in vitro

model. As depicted in Figure 1, the crude extracts of
C. triflora were able to enhance the production of TNF-α
in a LPS-stimulated macrophage thereby increasing the pro-
inflammatory activities. TNF-α plays a critical role in the control
of mycobacteria, which drives granuloma development and
also concentrates antimycobacterial drugs within macrophages
(Bermudez et al., 1991).

Granuloma formation is an important mechanism necessary
to inhibit the growth of mycobacteria by subjecting it to stress
including starvation, reactive oxygen and nitrogen intermediates,
and hypoxia, eventually restricting the replication of the bacilli
(Wickremasinghe et al., 1999; O’Kane et al., 2007). However,
overproduction of this important cytokine is responsible for the
effects of TB including fever, weight loss, tissue necrosis, and
the Koch phenomenon, i.e., the necrotic response to intradermal
challenge with antigen of M. tuberculosis (Holland, 1996).
Therefore, it is necessary to balance the release of cytokines from
the Th1 and Th2 cells in order to control tumors and infections
(Büssing et al., 1999). The acetone extracts of C. natalensis,
C. triflora, and P. lanceolata enhanced the expression of IL-4
while it supressed the expression of IL-10. The amount of
IL-10 produced in activated macrophages largely depends on
the polarization status: M1 macrophages make IL-10, but M2
macrophages make more IL-10. Lang et al. (2002) reveal that
IL-10 increases the amount of IL-4R chain on cell surface, thus
making macrophages more sensitive to IL-4. All the studied
extracts were able to inhibit the production of the selected
Th2 cytokines and IL-5 except IL-10. It is thought that IL-10
may play an important regulatory role, preventing excessive
inflammation caused by the Th1 response (Gazzinelli et al., 1992).
The extracts of C. triflora, O. speciosus, and P. zombamontana had
a higher stimulatory effect than rifampicin on IFN-γ and TNF-α
production. The extract of P. zombamontana and O. speciosus
enhanced the production of IL-10 despite the fact that it also
had a good stimulatory effect on IFN-γ, thus revealing a
mixed Th1/Th2 effect while the extracts of C. triflora induced
a measurable degree of Th1 response. The result obtained
from this study is comparable with the findings from other
studies where a Th1/Th2 balance was observed for the studied
plant extracts (Büssing et al., 1999; Labuschagne et al., 2013;
Askari et al., 2016).

Rifampicin, a first-line anti-tubercular drug, completely
inhibited the production of pro-inflammatory cytokines IFN-γ
and IL-2 while stimulating the expression of anti-inflammatory
IL-10. This bactericidal antibiotic therefore kills bacteria without
releasing high quantities of pro-inflammatory cytokines. This
result is in line with observations from other studies with
rifampicin in that it suppresses the production of the pro-
inflammatory cytokines and increases the expression of anti-
inflammatory cytokines (Nau and Tauber, 2008). Some of these
plant extracts had a higher immunomodulatory effect than the
standard anti-TB drug, rifampicin, in vitro. According to Aro
et al. (2016), the acetone extracts of P. zombamontana displayed
good antioxidant activity (IC50 = 1.77± 0.13 µg/mL). Therefore,
antioxidant substances that can scavenge and eliminate ROS
may be useful in preventing or minimizing the occurrence of
oxidation-related diseases such as TB (Dzoyem and Eloff, 2015).
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The crude extract of P. zombamontana therefore has promising
free radical scavenging ability and stimulatory effect on
macrophages to produce pro-inflammatory cytokines. The ability
of the extract to induce the production of these cytokines can
possibly greatly aid the immune response in combating and
inhibiting the proliferation of mycobacteria.

Virulent pathogenic mycobacteria can evade the host
defense by inhibiting apoptosis and triggering necrosis of host
macrophages in order to delay adaptive immunity initiation
(Divangahi et al., 2010). Therefore, a therapeutic agent that is
able to induce apoptosis in the host macrophage can serve as a
chemotherapeutic agent in combating TB. Based on the several
events forming part of the apoptotic process, various techniques
have been developed to detect programmed cell death. One of
the early events is when cells undergoing apoptosis reorient
phosphatidylserine from the inner side of the plasma membrane
to its outer leaflet so cells can bind to annexin V and this process
can be used as a marker for apoptosis (Schutte et al., 1998).
Findings from this study suggest that the cell growth inhibition
of extracts treated THP-1 cells is associated with apoptosis
induction in comparison to control untreated cells in a dose and
time dependent manner with the acetone extract of C. triflora,
P. capensis, and P. zombamontana having the highest apoptotic
induction. The untreated group had a low percentage of apoptotic
and necrotic cells, indicating that more than 90% of the cells were
viable after 24 and 48 h (Figure 4). A higher necrotic effect was
observed with the treatment of O. speciosus and P. lanceolata
at 50 and 100 µg/mL which are values greater than the IC50
values (600 and 188 µg/mL, respectively) obtained from the
cytotoxicity assay. However, this discrepancies with the results
between the cytotoxicity assay using MTT and annexin V/PI
study could be associated to the fact that tetrazolium dye assays
such as MTT are susceptible to metabolic interference and could
lead to false positive results (Boyd, 1989; Haselsberger et al., 1996;
Kepp et al., 2011).

Interestingly, the acetone extracts of C. triflora and P. capensis
at 100 µg/mL after 48 h of treatment had the most profound
apoptotic effect, resulting in a 200-fold increase. A treatment
period of 48 h seems to be required to achieve an apoptosis-
inducing effect as observed in this study. Study conducted
by Saini et al. (2016) showed that apoptosis induction in
THP-1 cells is TNF-α dependent. Therefore, the notable
apoptosis induction effect exhibited by C. triflora could be
due to its ability to induce TNF-α as observed in the
immunomodulatory assessment.

While the reported apoptotic effect was observed in uninfected
cells only, the data as it is, only suggests that the extracts
were capable of inducing this mode of cell death which might
potentially be higher in infected cells. According to a study
where a gene expression analyses was done using the reverse
transcription polymerase chain reaction for the iNOS and the
cytokines IL-1, IL-12, IL-18, TNF-α, IFN-α, and IFN-γ in
non-infected and in Leishmania major-infected RAW 264.7
cells, low mRNA levels was observed in non-infected cells, but
considerably upregulated transcript expressions in infected cells
(Radtke et al., 2004). Hence, the promising apoptotic inducing
effects exhibited by these extracts could be more profound

in mycobacteria-infected macrophages. This interesting
preliminary result generated from this study encourages further
investigations of these extracts owning to the LOX-inhibitory
effect, immunomodulatory and apoptotic-inducing properties in
addition to their antimycobacterial properties.

The selected extracts promoted Th1/Th2 balances in an
in vitro model at the tested concentration which may suggest the
therapeutic value of the plant in inflammatory disease such as
TB. More so, any treatment or condition that favors apoptosis
may have desirable effects on infections (Büssing et al., 1999).
Based on the promising results generated from this study, the
crude extracts of C. triflora, P. capensis, and P. zombamontana
have the potential in an infection model to inhibit the replication
of mycobacteria by stimulating the macrophages to release
pro-inflammatory cytokines and scavenge free radicals such as
ROS, thereby modulating the immune system to combat the
disease. In addition to the above activity as possible mode of
action, the extracts were able to inhibit the 15-LOX enzyme
pathway in order to induce programmed cell death thereby
preventing the growth of the causative organisms. By combining
antimycobacterial activity, antioxidant and apoptosis induction
with immunomodulatory properties, a double-edged sword can
be produced to directly kill the Mycobacterium and boost
the host immune response to indirectly help the patient in
combating TB. The modulation of nitric oxide production
previously reported from this plant family might contribute to
their immunoregulatory and antimycobacterial effects and could
be significant as an immunotherapeutic agent against TB.

CONCLUSION

Findings from this study propose that some of the selected
extracts have the potential to act as adjuvants in the treatment
of mycobacterial infections. Further studies are required to
investigate the ability of these extracts to inhibit the growth
of mycobacteria intracellularly and confirm the immunological
activity of these plant extracts using an infection model likewise
an in vivo assay. Identifying bioactive principles from the
acetone extract of the selected plant species could yield more
leads in the battle against TB or could contribute toward
standardization of herbal formulations of these plants in
treating TB. These data may facilitate the development of novel
chemotherapeutic agents for the management and treatment of
mycobacterial infections. Isolation and identification of potential
antimycobacterial compounds from the crude extracts of these
plant extracts is ongoing in our laboratory.
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FIGURES S1–S3 | Thin layer chromatography plates developed in three mobile
system (1) benzene/ethanol/ammonia (BEA); (2) chloroform/ethyl acetate/formic
(CEF) and (3) ethyl acetate/methanol/water (EMW) sprayed with vanillin– sulphuric
acid showing varied chemical constituents of the Rubiaceae plant extracts
screened. PZ: Psychotria zombamontana, OS: Oxyanthus speciosus, PC:
Psychotria capensis, PL: Pavetta lanceolata, CT: Cremaspora triflora, CN:
Cephalanthus natalensis.

TABLE S1 | Anti-mycobacterial (MIC µg/mL), cytotoxicity (IC50 µg/mL) and
anti-lipoxygenase (IC50 µg/mL) activities of the tested extracts.
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