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This Mini Review discusses the merits and shortfalls of transgenic (tg) rodents modeling
aspects of the human Alzheimer’s disease (AD) pathology and their application to
evaluate experimental therapeutics. It addresses some of the differences between
mouse and rat tg models for these investigations. It relates, in a condensed fashion,
the experience of our research laboratory with the application of anti-inflammatory
compounds and S-adenosylmethionine (SAM) at the earliest stages of AD-like amyloid
pathology in tg mice. The application of SAM was intended to revert the global
brain DNA hypomethylation unleashed by the intraneuronal accumulation of amyloid-
β-immunoreactive material, an intervention that restored levels of DNA methylation
including of the bace1 gene. This review also summarizes experimental pharmacology
observations made in the McGill tg rat model of AD-like pathology by applying “nano-
lithium” or a drug with allosteric M1 muscarinic and sigma 1 receptor agonistic
properties (AF710B). Extremely low doses of lithium (up to 400 times lower than used
in the clinic) had remarkable beneficial effects on lowering pathology and improving
cognitive functions in tg rats. Likewise, AF710B treatment, even at advanced stages
of the pathology, displayed remarkable beneficial effects. This drug, in experimental
conditions, demonstrated possible “disease-modifying” properties as pathology was
frankly diminished and cognition improved after a month of “wash-out” period. The
Mini-Review ends with a discussion on the predictive value of similar experimental
pharmacological interventions in current rodent tg models. It comments on the validity
of some of these approaches for early interventions at preclinical stages of AD,
interventions which may be envisioned once definitive diagnosis of AD before clinical
presentation is made possible.

Keywords: Alzheimer’s disease, cholinergic, DNA hypomethylation, experimental therapy, neuroinflammation,
lithium, muscarinic/sigma1 receptors, S-adenosyl methionine

INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the leading cause of
dementia in the elderly (Hardy et al., 2014; Aisen et al., 2017). Postmortem brains from AD
patients display characteristic pathological hallmarks, defined as extracellular amyloid plaques and
intracellular neurofibrillary tangles made of hyper-phosphorylated tau protein. In addition, the
cholinergic system is severely compromised. The vast majority of AD cases is sporadic, while <1%
of cases corresponds to autosomal dominant forms, or familial AD (FAD), in which specific genetic
mutations drive disease onset (Bateman et al., 2011; Ryman et al., 2014).
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To date, there is no treatment to cure or prevent the
development of the disease. Patients only have access to a few
therapeutic options which offer limited symptomatic relief. Three
of the four drugs approved by the Food and Drug Administration
(FDA) for AD are cholinesterase inhibitors (AChEI). They
enhance cholinergic synaptic transmission by preventing the
breakdown of acetylcholine, a neurotransmitter essential for
learning and memory. The fourth drug is memantine, an
NMDA-receptor antagonist, while an additional pharmacological
option combines one of the AChEI (donepezil) and memantine
(Alzheimer’s Association, 2018).

Although studies would indicate a decrease in the incidence
of AD in high-income countries over the past 10 years (Langa,
2015; Derby et al., 2017; Seblova et al., 2018), it is unlikely
to offset the aging population. In fact, AD prevalence is
increasing worldwide and is reaching near-epidemic proportions
(Hickman et al., 2016). In that context, it is urgent to develop
new drugs that can halt or prevent the progression of the
disease. As of January 30, 2018, there were 112 agents in the
AD treatment pipeline registered on clinicaltrial.gov, 63% of
which are disease-modifying therapies (Cummings et al., 2018),
illustrating the current efforts devoted to finding a cure for AD.
Preclinical studies constitute an important cornerstone in drug
development; validation of drug safety and efficacy in animal
models is a necessary step before moving a drug into clinical
trials. As such, animal models are a critical component to move
the research field forward.

In this review, we will provide a concise overview of transgenic
(tg) rodent models mimicking key aspects of the AD pathology
and discuss their value in the drug development pipeline, as well
as the challenges to predict drug efficacy in AD patients based on
animal studies. In particular, we will focus on our experience with
our transgenic mouse and rat models and describe experimental
pharmacology studies using these models.

OVERVIEW OF TRANSGENIC MODELS
OF ALZHEIMER’S DISEASE

A large number of tg mice and rats reproducing key features
of the AD pathology have been generated. As of December
2018, the Alzheimer Forum Website lists 160 tg rodent
models in its online database1 (Kinoshita and Clark, 2007),
156 of which are mice and only 4 are rats. The majority
of these models express human genes bearing mutations
described in FAD cases and human tauopathies, as well as
human genes identified by Genome Wide Association Studies
as susceptibility genes increasing the risk of developing AD
(Tosto and Reitz, 2013). As such, they mostly mimic rare
familial forms of AD and may not provide data translatable
to sporadic AD. The most popular models are based on
overexpression of human amyloid precursor protein (APP),
presenilin (PSEN) [part of the γ-secretase complex involved
in the cleavage of APP into amyloid-β (Aβ)] and tau,
alone or in combination, to trigger accumulation of high

1https://www.alzforum.org/research-models/alzheimers-disease

levels of Aβ into plaques as well as the development of
tauopathy (Spires and Hyman, 2005).

In particular, the most frequently used mouse models
have been mice overexpressing human APP with the double
Swedish (K670N and M671L) (Mullan et al., 1992) and
the Indiana (V717F) (Murrell et al., 1991) mutations, such
as the PDAPP (Games et al., 1995), tg2576 (Hsiao et al.,
1996) and J20 (Mucke et al., 2000) models, as well as mice
overexpressing mutant human APP and PSEN such as the
APP/PS1 (Holcomb et al., 1998) and 5xFAD (Oakley et al.,
2006) mice. One of the most popular mouse models to
date is the 3xTg model harboring mutated APP, PSEN and
tau genes (Oddo et al., 2003). In parallel, mouse models of
tauopathies, in particular the hTauP301S (Allen et al., 2002)
and PS19 mice (Yoshiyama et al., 2007), have become popular
to study the tau component of the AD pathology (Gotz et al.,
2007), although their main limitation resides in the expression
of human tau harboring mutations seen in frontotemporal
dementia and parkinsonism linked to chromosome 17 and
not in AD. The particular characteristics and merits of tg
mice for AD research have been discussed in several reviews
(Hsiao, 1998; Bales, 2012; LaFerla and Green, 2012; Puzzo
et al., 2015; Ameen-Ali et al., 2017; Jankowsky and Zheng,
2017; Sasaguri et al., 2017).

The most frequently used tg rats modeling the AD-like
amyloid pathology are the McGill-R-Thy1-APP (Leon et al.,
2010) and TgF344-AD (Cohen et al., 2013) rats. The clear
imbalance in the ratio of mouse/rat models of AD reflects
the inherent difficulty of producing tg rats in the early years
of transgenesis, rather than an advantage of mice over rats.
However, advances in transgenesis techniques have had a
substantial impact on the development of tg rats (Filipiak and
Saunders, 2006). In fact, rats are better suited than mice for
biomedical research relevant to human. The increased value of
rats over mice to study, in particular, human neurodegenerative
conditions has been highlighted in recent reviews, with an
emphasis on cognitive outcomes (Do Carmo and Cuello, 2013)
and brain imaging (Zimmer et al., 2014). More recently,
Drummond and Wisniewski (2017) discussed the relative
characteristics of diverse species for a better representation of the
human AD pathology and the challenges ahead.

Tg rodent models of AD have undoubtedly provided
invaluable insights into the pathological processes of AD. They
have also been instrumental in moving experimental therapy
into clinical trials, following reports of positive therapeutic
outcomes in rodent models. In this context, tg models played
a pivotal role in the development of immunotherapy for AD,
following the first experimental evidence that immunization of
PDAPP mice with fibrillary Aβ42 decreased amyloid pathology
(Schenk et al., 1999). Subsequent studies demonstrated that
vaccination with Aβ also prevented memory loss in tg mouse
models of AD (Janus et al., 2000; Morgan et al., 2000),
which rapidly led to clinical trials. The first of these trials
was unfortunately prematurely halted after a subset of patients
developed acute meningoencephalitis (Orgogozo et al., 2003).
Since then, more than one thousand publications have emerged
illustrating efficacy, in varying degrees, of a large range of
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compounds. Some of these experimental attempts have been
reviewed in LaFerla and Green (2012) and Sasaguri et al. (2017).

PHARMACOLOGICAL THERAPY IN
MOUSE AND RAT MODELS OF THE
AD-LIKE AMYLOID PATHOLOGY –
INSIGHTS FROM OUR EXPERIENCE

Our laboratory has developed tg lines expressing human APP
with the double Swedish and the Indiana mutations under the
Thy1 promoter, which recapitulate key features of the AD-like
amyloid pathology in mice and rats. The McGill-Thy1-APP mice
(Ferretti et al., 2011) and McGill-R-Thy1-APP rats (Leon et al.,
2010) have been extensively studied by us (Cuello et al., 2010,
2012; Ferretti et al., 2012a,b; Hanzel et al., 2014; Iulita et al., 2014,
2017; Pimentel et al., 2015; Do Carmo et al., 2016, 2018; Wilson
et al., 2017a,b, 2018; Hall et al., 2018) and others (Nilsen et al.,
2012, 2014a,b; Galeano et al., 2014, 2018; Qi et al., 2014, 2018;
Heggland et al., 2015; Martino Adami et al., 2017a,b; Parent et al.,
2017; Zhang et al., 2017; Prestia et al., 2018). In the following
section, we will discuss the particular value of these specific
models in experimental pharmacology.

McGill-Thy1-APP Mice
In the McGill-Thy1-APP mouse model, overexpression of mutant
human APP triggers intraneuronal accumulation of Aβ material,
including Aβ oligomers and fibrillary oligomers in cortical and
hippocampal pyramidal neurons. Cognitive deficits are present
prior to deposition of extracellular amyloid plaques at 4 months
of age. At the same time, cholinergic alterations are detected
in the cerebral cortex. Levels of insulin degrading enzyme, a
well-established Aβ degrading enzyme, are downregulated in
the cerebral cortex, suggesting that an impaired clearance of
Aβ material likely contributes to the Aβ accumulation (Ferretti
et al., 2011). In addition, microglial activation and recruitment
toward Aβ-burdened neurons is present before plaque formation,
along with an upregulation in major histocompatibility complex
II, inducible nitric oxide (i-NOS) and CD40. This pre-plaque
proinflammatory process is also accompanied by neuronal
cyclooxygenase-2 (COX-2) upregulation (Ferretti et al., 2012b).

Minocycline
At late, clinical stages of AD, there is well-characterized chronic
CNS inflammation. This late neuroinflammatory process is
characterized by a strong immune response and phagocytic
removal of Aβ material (McGeer and Rogers, 1992; McGeer
and McGeer, 2013). These findings and the evidence that long
term NSAIDs treatment for rheumathoid arthritis diminished
AD prevalence (McGeer et al., 1990) sparked the idea that
therapeutic agents directed at lowering inflammation could be
of benefit for AD patients. However, studies showed that anti-
inflammatories administered after AD clinical presentation did
not improve cognitive decline (Jaturapatporn et al., 2012). In
contrast, a large number of epidemiological studies confirmed
that cognitively normal individuals receiving long term anti-
inflammatory medication had a reduced risk of developing AD

when compared to the general population (Breitner et al., 2011;
McGeer and McGeer, 2013; Zhang et al., 2018). Taken together,
these apparent contradictory findings support the idea that CNS
inflammation at early (preclinical) and late (clinical) stages of AD
are fundamentally distinct processes and suggest that blunting
the early disease-aggravating inflammatory process may be of
benefit for AD patients, concepts that have been further discussed
in an opinion paper in TIPS (Cuello, 2017) and in a “white paper”
in Alzheimer’s and Dementia by Rogers (2018).

As detailed in the previous section, McGill-Thy1-APP
mice display an early pre-plaque disease-aggravating
neuroinflammatory process (Ferretti et al., 2011) which,
according to the above, may constitute an interesting target for
therapeutic intervention. To test this hypothesis, and supported
by prior observations (Seabrook et al., 2006), tg mice were treated
with minocycline, a tetracyclic derivative with anti-inflammatory
properties, at a young, pre-plaque stage, for one month.
Minocycline treatment corrected the upregulation of i-NOS and
COX-2, lowered interleukin-1β levels and decreased microglial
activation. The reduction in inflammation was accompanied
by changes in the APP processing, namely a decrease in full
length APP and Aβ trimer levels, while the activity of the β-site
APP cleaving enzyme 1 (BACE1) was normalized (Ferretti
et al., 2012a). Overall this study demonstrates that the early,
pre-plaque, disease aggravating neuroinflammatory process
triggered by the AD-like amyloid pathology can be dampened by
the pharmacological application of minocycline.

These findings would support the notion that targeting
inflammation early in the disease process should have a beneficial
outcome in individuals with preclinical AD pathology. Successful
implementation of such a strategy will, however, rely on the
unequivocal identification of biomarkers of AD preclinical stages.

S-Adenosylmethionine (SAM)
There is growing evidence revealing that epigenetic deregulations
and dysregulated DNA methylation may unleash disease-
aggravating mechanisms in several neuropathologies. AD
patients and AD animal models display global and gene-specific
DNA hypomethylation within the brain (West et al., 1995;
Mastroeni et al., 2010; Bakulski et al., 2012; Chouliaras et al.,
2013; Cadena-del-Castillo et al., 2014; De Jager et al., 2014; Iwata
et al., 2014; Smith et al., 2016; Nicolia et al., 2017; Zhao et al.,
2017), likely contributing to the AD pathology and associated
memory deficits. We have demonstrated the occurrence of global
DNA hypomethylation, which is prominent in neurons, at early
pathological stages in McGill-Thy1-APP mice. Importantly, the
bace1 promoter is hypomethylated in our tg mice. This was
associated with higher levels of BACE1 protein and BACE1
activity, and in consequence increased Aβ peptides in the CNS
(Do Carmo et al., 2016).

The cause of global hypomethylation in AD remains unclear.
However, we found that early intraneuronal accumulation of
Aβ is sufficient to provoke global DNA hypomethylation (Do
Carmo et al., 2016). Importantly, in AD patients the levels
of the ubiquitous methyl donor S-adenosylmethionine (SAM)
are low in the brain and cerebrospinal fluid (Bottiglieri et al.,
1991; Morrison et al., 1996). This prompted us to administer
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systemically SAM to McGill-Thy1-APP mice, starting at early
stages of the pathology. This straightforward therapy was
sufficient to abolish the pre-existing global hypomethylation, as
well as bace1 hypomethylation. BACE1 protein levels and activity
were restored to control levels and brain amyloid pathology
decreased. This strategy was sufficient to fully revert the cognitive
impairment consequent to the CNS amyloid pathology, as
revealed by the novel object recognition (NOR) and the Morris
water maze (MWM) tests (Do Carmo et al., 2016). The findings,
in our model, of an early neuronal demethylation and its
rescue by SAM treatment reinforce a causal link between Aβ

accumulation and impaired DNA methylation, rather than the
consequence of stochastic events.

In addition, in human brains from the Religious Orders Study
cohorts, we also found correlations between bace1 methylation
levels and amyloid and tangle load as well as measures of
cognition (Do Carmo et al., 2016). Overall, our observations in
tg mice and AD patients suggest that DNA hypomethylation
should be considered as a drugable target for the treatment of AD,
and that, in consequence, SAM-based therapy might constitute
a promising therapeutic avenue. Of note, the use of SAM in
the treatment of multiple neuropsychiatric disorders is currently
being explored (Sharma et al., 2017).

McGill-R-Thy1-APP Rats
The McGill-R-Thy1-APP rats display early intraneuronal
accumulation of Aβ in the hippocampus and cerebral cortex,
evident one week after birth. As the amyloid pathology progresses
with age, extracellular plaques start to develop. The first plaques
are observed in the subiculum at 6–9 months of age (Leon
et al., 2010) and later spread through anatomically connected
regions (Heggland et al., 2015). Cognitive deficits are apparent at
3 months of age and worsen as the pathology progresses (Leon
et al., 2010). This evolving pathology is accompanied by an early,
disease-aggravating, pre-plaque neuroinflammatory process
(Hanzel et al., 2014). Deficits in synaptic plasticity are evident at
the pre-plaque stage and appear to be inflammasome-dependent
(Qi et al., 2014, 2018). Similarly, deficits in synaptosomal
bioenergetics are reported before the appearance of plaques
(Martino Adami et al., 2017b). At the post-plaque stage, the NGF
metabolic pathway is dysregulated and shows impairment in
neurotrophin expression (Iulita et al., 2017), as seen during the
progression of AD in patients (Iulita and Cuello, 2016). These
changes are accompanied by a reduction in cholinergic synaptic
boutons (Iulita et al., 2017). Moderate neuronal loss in the
subiculum (Heggland et al., 2015), hippocampal shrinkage and
glucose hypometabolism further characterize the post-plaque
stage (Parent et al., 2017). Overall, in the McGill-R-Thy1-APP rat
model, a slowly evolving amyloid pathology triggers a cascade of
events reminiscent of what is seen in AD brains, thereby offering
an array of targets possibly amenable to therapeutic intervention.

NP03-Lithium
The complex nature of the human AD pathology, which involves
multiple processes such as abnormal Aβ and tau processing,
CNS inflammation, mitochondrial dysfunction and calcium
dyshomeostasis, calls for the use of multi-target drugs rather than

a compound targeting a single molecule. In that context, lithium
is of interest as it reportedly has the ability to modulate several of
these pathways (Malhi and Outhred, 2016).

Lithium salts are widely used in the treatment of psychiatric
conditions such as bipolar disorder. A limited number of studies
have also examined the potential use of lithium in amnestic
mild cognitive impairment and clinical AD populations, and
have reported promising but often conflicting results (Havens
and Cole, 1982; Terao et al., 2006; Macdonald et al., 2008;
Hampel et al., 2009; Leyhe et al., 2009; Forlenza et al., 2011,
2016; Nunes et al., 2013; Mauer et al., 2014; Morris and Berk,
2016; Kessing et al., 2017). Unfortunately, lithium has a narrow
therapeutic window and a low brain penetration. It elicits with
some frequency severe side effects which limit its long-term
use in the elderly population (Gelenberg and Jefferson, 1995;
Livingstone and Rampes, 2006; Azab et al., 2015). Coincidently
with the finding that trace amounts of lithium in drinking water
are associated with a reduced incidence of dementia (Mauer et al.,
2014; Kessing et al., 2017; McGrath and Berk, 2017; Fajardo
et al., 2018), there has been a growing interest for low-dose
lithium in the treatment of AD (Nunes et al., 2013, 2015; Zhao
et al., 2014). Treatment with microdose lithium was shown to
prevent cognitive decline in AD patients and in AD tg models
(Nunes et al., 2013, 2015).

NP03 is a novel formulation of lithium, in which microdose
lithium is encapsulated in a water-in-oil microemulsion
(Aonys technology developed by Medesis Pharma, Montpellier,
France). This formulation can enhance the CNS penetration of
significantly lower amounts of lithium, with doses 100 to 400
times lower than what is usually prescribed for bipolar disorder.
Such doses can most likely avoid the adverse effects associated
with classical, higher dosage, lithium formulations. Treatment of
young, pre-plaque McGill-R-Thy1-APP rats with NP03 resulted
in cognitive improvements as measured by the NOR, MWM
and fear conditioning tests. Unexpectedly, NP03 treatment also
reduced BACE1 levels and activity, leading to a decrease in levels
of soluble Aβ42. NP03 treatment was also shown to inactivate
GSK-3β, rescue impaired CRTC1 promoter binding of synaptic
plasticity genes and restore hippocampal neurogenesis in tg rats
(Wilson et al., 2017b). In addition, NP03 reduced oxidative stress
and inflammation markers in tg rats, as evidenced by decreased
levels of protein-bound 4-hydroxynonenal and protein-resident
3-nitrotyrosine, as well as reduced production of cytokines such
as TNF-α, IFN-γ, IL-10, and IL-5. Finally, NP03 downregulated
transcripts levels of the microglia surface receptor TREM2
concomitantly with a reduced recruitment of microglia toward
Aβ-burden neurons in the hippocampus (Wilson et al., 2018).
These findings highlight the value of novel formulations of
non-toxic microdose lithium NP03 in the treatment of AD at its
early, preclinical, stages.

Combined M1 Muscarinic/Sigma 1 Receptor Agonist
In the early 1990s, a pivotal study demonstrated that activation
of muscarinic cholinergic receptors could modulate the APP
processing toward a non-amyloidogenic pathway (Nitsch et al.,
1992), thereby reducing the production of toxic Aβ. It was
later shown that the M1 muscarinic receptors in particular
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played a key role in modulating the AD-like amyloid pathology
in vivo (Caccamo et al., 2006). Following these seminal
discoveries, it was hypothesized that M1 receptor agonists
could extend the cholinergic-based therapeutic arsenal for AD:
they should, not only enhance the cholinergic tone for the
cognitive benefits of AD patients, but also provide disease-
modifying properties. Unfortunately, first generation muscarinic
agonists lacked specificity for the M1 receptors, and activation
of other receptor subtypes led to major side effects (Fisher,
2008). However, the generation of novel subtype specific
muscarinic agonists has renewed the interest for this type of
compounds (Fisher, 2012).

Given the complexity of AD pathophysiology, drugs that can
target multiple receptors or impaired signaling pathways would
likely offer a therapeutic advantage over more conventional
single-target drug, as illustrated in the previous section. In
that regards, the novel compound AF710B (aka ANAVEX 3-
71) merits further attention. It is a combined selective allosteric
M1 muscarinic and sigma 1 receptor agonist (Fisher et al.,
2016). Targeting sigma 1 receptor has been shown to provide
neuroprotection and anti-amnestic properties (Marrazzo et al.,
2005; Maurice and Su, 2009; Villard et al., 2011). Combined with
M1 muscarinic receptor-mediated effects on APP metabolism,
it would confer AF710B a pharmacological profile of interest to
tackle various pathological aspects of AD.

AF710B can rescue synapse loss in vitro, while low doses
of the compound can attenuate cognitive deficits and alleviate
hallmarks of the established AD-like pathology in 3xTg-AD
mice (Fisher et al., 2016). In order to validate the putative
disease-modifying effect of the drug, AF710B was administered
(in the micromolar range) per os daily to post-plaque McGill-
R-Thy1-APP rats for 5 months. Completion of the treatment
was followed by a wash-out phase of 5 weeks, a unique
experimental design key to discriminate true disease-modifying
effects from symptomatic effects. The former should disappear
after treatment cessation while the latter would be persistent
(Ploeger and Holford, 2009). This treatment regimen was
sufficient to fully restore cognition in the McGill tg rats. It also
led to a substantial decrease in the production of cortical Aβ

and in the amount of mature amyloid plaques. Interestingly,
the reduction in Aβ load was accompanied by an increase
in CSF Aβ42 levels, suggesting that the drug could not only
lower Aβ production but also increase its clearance (Hall
et al., 2018). Of note, this finding may be of translational
value to non-invasively follow treatment response in a human
population. Further to it, CNS inflammation was decreased, as
mirrored by the abolishment of microglia recruitment toward
Aβ-burdened neurons in the hippocampus and the normalization
of hippocampal Iba1 protein levels and cortical IL-10 mRNA
expression levels. Finally, these changes were accompanied
by an increase in synaptophysin levels, suggesting possible
synaptogenic activity (Hall et al., 2018).

In summary, with M1/sigma-1 activity as well as putative
disease-modifying properties at very low dose, AF710B is well
positioned for therapeutic interventions in AD. The case of
AF710B as detailed above provides interesting clues pertaining to
potentially increasing the predictive value of preclinical studies.

In this particular case, results from the study in McGill-R-
Thy1-APP tg rats complemented the initial findings of AF710B
beneficial effects in trihexyphenidyl rats and tg mice, by offering
new insights into the properties of the drug (Fisher et al., 2016;
Hall et al., 2018). Such approach, where efficacy of a drug
is validated in several models and under different conditions,
should be encouraged before translation to human trials. This
is particularly important considering that no single model can
recapitulate all aspects of the human disease.

GENERAL CONSIDERATIONS:
TRANSLATIONAL VALUE OF
EXPERIMENTAL PHARMACOLOGY IN
RODENT MODELS

Despite the growing list of compounds that have demonstrated
positive therapeutic effects in tg rodent models, none of these
experimental leads have yet reached FDA-approval for the
treatment of AD in humans, highlighting a clear deficit in
translational research. In line with these failures, the question that
arises is: how can we better predict drug efficacy in humans based
on animal studies?

Although tg APP rodent models have been instrumental in
increasing our understanding of Aβ-driven pathogenic processes
in AD, it is challenging to ascertain whether the phenotypes
observed in these tg animals can be solely attributed to
elevated Aβ levels or result from overexpression of APP. To
address this concern, single humanized APP knock-in (KI)
mice have been recently developed (Saito et al., 2014), paving
the way toward more physiological models of the disease.
Evidently, one of the main shortcomings of the current tg
AD models is that they express genes carrying mutations seen
in FAD, whereas most AD cases are sporadic. It remains an
open question whether the findings obtained from FAD-like
models can in fact be translated to heterogeneous sporadic
cases, in which a multitude of susceptibility factors likely drive
disease onset (genetic, environmental or lifestyle) (Rocchi et al.,
2003; Mattson, 2004).

Mouse has been the species of choice since the inception of
tg models, mostly for technical and economic reasons. Several
characteristics unique to rats would, however, indicate that they
may be better suited than mice for research relevant to humans,
especially in the neuroscience field [reviewed in Do Carmo and
Cuello (2013); Zimmer et al. (2014) and Ellenbroek and Youn
(2016)]. Indeed, rats have a more complex CNS than mice and
their brain development in postnatal life is more similar to
humans than mice (Wood et al., 2003; Pressler and Auvin, 2013).
Although the rat and mouse brains are anatomically similar, there
are important functional differences between the two, including
substantial differences in neuronal plasticity. For example, recent
studies indicate that in adult rats, the rate of hippocampal
neurogenesis is faster than in mice and new neurons are more
likely to be recruited during learning than in mice (Snyder et al.,
2009). Rats display a richer behavior including more complex
social behavior (such a juvenile play) compared to mice, allowing
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for a larger range of cognitive analyses (Whishaw et al., 2001; Do
Carmo and Cuello, 2013). Genetically, they also resemble humans
more than mice do. For example, the rat apolipoprotein E (ApoE)
gene bears more homology with human ApoE than mouse ApoE
(Rajavashisth et al., 1985; Tran et al., 2013). This is of significance
considering that polymorphism in ApoE is a strong genetic risk
factor for AD, with ApoE4 showing the strongest association
with the disease (Poirier et al., 1993; Strittmatter et al., 1993;
Roses et al., 1994). As the genetic toolbox for rats is growing, the
number of tg rat models will likely increase in the future. Whether
rat-based models will better predict the human condition and the
efficacy of experimental therapeutics remains to be established.

One important aspect of current tg models is that they
likely mimic early disease stage when the focus of most current
clinical trials has been mild-moderate AD. It is therefore
highly likely that some of the therapeutic leads emerging from
experimentation in tg mice and rats might have an important
impact in slowing or diminishing the AD pathology at the
preclinical stage. Such opportunity would have a consequential
impact on the global AD prevalence since it has been estimated
that a 5-year delay in the onset of clinical AD would decrease
the total number of affected individuals by 50% at the end
of a 25 year period (Alzheimer’s Association, 2015). However,
adequate identification and selection of human participants for
such trials remains challenging and is pending on the discovery of
novel biomarkers that can unequivocally identify preclinical AD
stage. In the meantime, some clinical trials have been focusing
on individuals with a high risk of developing AD dementia due
to a family history of AD. These individuals have been recruited
and enrolled before they develop any sign of cognitive decline
(Cummings et al., 2018). Results from these ongoing prevention
trials such as the DIAN-TU, DEPEND or HEART studies (which
have enrolled individuals with a family history of autosomal
dominant AD, a family history of AD or a parental history of AD,
respectively) are highly anticipated and may indicate whether
pharmacological interventions at preclinical AD stages could
prevent or delay cognitive decline.

CONCLUSION

Over the past decades, our understanding of AD has grown
tremendously, owing for a large part to the contribution of

tg models mimicking various aspects of the AD pathology.
However, despite intensive research, there is still no cure for this
devastating disease. As the prevalence of AD increases worldwide,
it is crucial to identify bottlenecks in the drug development
pipeline, which may slow down progress toward the market
approval of promising drug candidates. The shortcomings of
current tg models of AD are well-acknowledged by the research
community. In response, there is a growing effort to provide
better predictive animal models of the disease. Along these lines,
current efforts toward the identification of biomarkers that would
identify an ongoing AD process before clinical presentation
will most likely culminate in refined clinical trial design. These
initiatives are much needed to translate positive preclinical
studies into efficacy in human clinical trials. An optimist outlook
regarding successful preclinical studies is that they might offer
novel therapeutic avenues with probable tangible benefits if
applied at the earliest, preclinical stages of the disease. A favorable
future scenario in which diagnosis of AD pathology is made
about 10 years before dementia could help radically change the
currently disappointing therapeutic arsenal.
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