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Existing treatments against drug addiction are often ineffective due to the complexity

of the networks of protein-drug and protein-protein interactions (PPIs) that mediate

the development of drug addiction and related neurobiological disorders. There is an

urgent need for understanding the molecular mechanisms that underlie drug addiction

toward designing novel preventive or therapeutic strategies. The rapidly accumulating

data on addictive drugs and their targets as well as advances in machine learning

methods and computing technology now present an opportunity to systematically mine

existing data and draw inferences on potential new strategies. To this aim, we carried

out a comprehensive analysis of cellular pathways implicated in a diverse set of 50

drugs of abuse using quantitative systems pharmacology methods. The analysis of the

drug/ligand-target interactions compiled in DrugBank and STITCH databases revealed

142 known and 48 newly predicted targets, which have been further analyzed to identify

the KEGG pathways enriched at different stages of drug addiction cycle, as well as those

implicated in cell signaling and regulation events associated with drug abuse. Apart

from synaptic neurotransmission pathways detected as upstream signaling modules

that “sense” the early effects of drugs of abuse, pathways involved in neuroplasticity

are distinguished as determinants of neuronal morphological changes. Notably, many

signaling pathways converge on important targets such as mTORC1. The latter emerges

as a universal effector of the persistent restructuring of neurons in response to continued

use of drugs of abuse.

Keywords: drug abuse, quantitative systems pharmacology, pleiotropic proteins, mTOR complex 1, drug-target

interactions, neurotransmission, machine learning, cellular pathways

INTRODUCTION

Drug addiction is a chronic relapsing disorder characterized by compulsive, excessive, and
self-damaging use of drugs of abuse. It is a debilitating condition that potentially leads to serious
physiological injury, mental disorder and death, resulting in major health, and social economic
impacts worldwide (Nestler, 2013; Koob and Volkow, 2016). Substances with diverse chemical
structures and mechanisms of action are known to cause addiction. Except for alcohol and

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2019.00191
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2019.00191&domain=pdf&date_stamp=2019-03-08
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:liubing@pitt.edu
mailto:bahar@pitt.edu
https://doi.org/10.3389/fphar.2019.00191
https://www.frontiersin.org/articles/10.3389/fphar.2019.00191/full
http://loop.frontiersin.org/people/638945/overview
http://loop.frontiersin.org/people/638895/overview
http://loop.frontiersin.org/people/640399/overview
http://loop.frontiersin.org/people/241868/overview


Pei et al. Pleiotropy of Drug Abuse Targets

tobacco, substances of abuse are commonly classified
into six groups based on their primary targets or effects:
cannabinoids (e.g., cannabis), opioids (e.g., morphine,
heroin, fentanyl), central nervous system (CNS) depressants
(e.g., pentobarbital, diazepam), CNS stimulants (e.g.,
cocaine, amphetamine), hallucinogens (e.g., ketamine,
lysergic acid diethylamide), and anabolic steroids (e.g.,
nandrolone, oxymetholone).

The primary actions of drugs of abuse have been well
studied. In spite of the pleiotropy and heterogeneity of drugs
of abuse, they share similar phenotypes: from acute intoxication
to chronic dependence (Taylor et al., 2013), the reinforcement
shift from positive to negative through a three-stage cycle
involving binge/intoxication, withdrawal/negative effect, and
preoccupation/anticipation (Koob and Volkow, 2016). Notably,
virtually all drugs of abuse augment dopaminergic transmission
in the reward system (Wise, 1996). However, the detailed cellular
pathways of addiction processes are still far from known. For
example, cocaine acts primarily as an inhibitor of dopamine
(DA) transporter (DAT) and results in DA accumulation in the
synapses of DA neurons (Shimada et al., 1991; Volkow et al.,
1997). However, it has been shown that DA accumulation per se
is not sufficient to account for the rewarding process associated
with cocaine addiction; serotonin (5-HT) and noradrenaline
(or norepinephrine, NE) also play important roles (Rocha
et al., 1998; Sora et al., 1998). Another example is ketamine,
a non-selective antagonist for N-methyl-d-aspartate (NMDA)
receptor (NMDAR), notably most effective in the amygdala and
hippocampal regions of neurons (Collingridge et al., 1983). In
addition to its primary action, ketamine affects a number of other
neurotransmitter receptors, including sigma-1 (Mendelsohn
et al., 1985), substance P (Okamoto et al., 2003), opioid
(Hustveit et al., 1995), muscarinic acetylcholine (mACh) (Hirota
et al., 2002), nicotinic acetylcholine (nACh) (Coates and Flood,
2001), serotonin (Kapur and Seeman, 2002), and γ-aminobutyric
acid (GABA) receptors (Hevers et al., 2008). The promiscuity
of drugs of abuse brings an additional layer of complexity,
which prevents the development of efficient treatment against
drug addiction.

In recent years, there has been significant progress in the
characterization of drug/target/pathway relations driven by the
accumulation of drug-target interactions and pathways data, as
well as the development of machine learning, in silico genomics,
chemogenomics, and quantitative systems pharmacology (QSP)
tools. Several innovative studies started to provide valuable
information on substance abuse targets and pathways. For
example, Li et al. curated 396 drug abuse related genes
from the literature and identified five common pathways
underlying the reward and addiction actions of cocaine, alcohol,
opioids, and nicotine (Li et al., 2008). Hu et al. analyzed
the genes related to nicotine addiction via a pathway and
network-based approach (Hu et al., 2018). Biernacka et al.
performed genome-wide analysis on 1,165 alcohol-dependence
cases and identified two pathways associated with alcohol
dependence (Biernacka et al., 2013). Xie et al. generated
chemogenomics knowledgebases focused on G-protein coupled
receptors (GPCRs) related to drugs of abuse in general (Xie

et al., 2014), and cannabinoids in particular (Xie et al., 2016).
Notably, these studies have shed light on selected categories or
subgroups of drugs. There is a need to understand the intricate
couplings between multiple pathways implicated in the cellular
response to drugs of abuse, identify mechanisms common to
various categories of drugs while distinguishing those unique to
selected categories.

We undertake here such a systems-level approach using
a dataset composed of six different categories of drugs of
abuse. Following a QSP approach proposed earlier (Stern
et al., 2016), we provide a comprehensive, unbiased glimpse of
the complex mechanisms implicated in addiction. Specifically,
as shown in Figure 1, a set of 50 drugs of abuse with a
diversity of chemical structures (Supplementary Figure 1) and
pharmacological actions were collected as probes, and the known
targets of these drugs as well as the targets predicted using
our probabilistic matrix factorization (PMF)method (Cobanoglu
et al., 2013) were analyzed to infer biological pathways associated
with drug addiction. Our analysis yielded 142 known and 48
predicted targets and 173 pathways permitting us to identify both
generic mechanisms regulating the responses to drug abuse as
well as specific mechanisms associated with selected categories,
which could facilitate the development of auxiliary agents for
treatment of addiction.

A key step in our approach is to identify the targets for
drugs of abuse. There exists various drug-target interaction
databases (DBs), web servers and computational models, as
summarized recently (Chen et al., 2016). The DBs utilized in
this work are the drug-target database DrugBank (Wishart et al.,
2018) and the protein-chemical database STITCH (Szklarczyk
et al., 2016). DrugBank is a bioinformatics and cheminformatics
resource that combines drug data with comprehensive target
information. It is frequently updated, with the current version
containing 10,562 drugs, 4,493 targets and corresponding 16,959
interactions. Since most of drugs of abuse are approved or
withdrawn drugs, DrugBank is a good source for obtaining
information on their interactions. STITCH, on the other hand, is
much more extensive. It integrates chemical-protein interactions
from experiments, other DBs, literature and predictions,
resulting in data on 430,000 chemicals and 9,643,763 proteins
across 2,031 genomes. We have used in the present analysis
the subset of human protein-chemicals data supported by
experimental evidence. The method of approach adopted here
is an important advance over our original PMF-based machine
learning methodology for predicting drug-target interactions
(Cobanoglu et al., 2013). First, the approach originally developed
for mining DrugBank has been extended to analyzing the
STITCH DB, the content of which is 2–3 orders of magnitude
larger than DrugBank (based on the respective numbers of
interactions). Second, the information on predicted drug-target
associations is complemented by pathway data on humans
inferred from the KEGG pathway DB (December 2017 version;
Kanehisa et al., 2017) upon pathway enrichment analysis of
known and predicted targets. Third, the outputs are subjected
to extensive analyses to detect recurrent patterns and formulate
new hypotheses for preventive or therapeutic strategies against
drug abuse.
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FIGURE 1 | Workflow of the quantitative systems pharmacological analysis. (A) 50 drugs of abuse with a diversity of chemical structures and pharmacological actions

were collected as probes. (B) 142 known targets of these drugs were identified through drug-target interaction database DrugBank and chemical-protein interaction

database STITCH. (C) 48 predicted targets were predicted using our probabilistic matrix factorization (PMF) method (Cobanoglu et al., 2013). (D) 173 human

pathways were inferred from the KEGG pathways database by mapping the known and predicted targets. (E,F) The pathways were grouped into 5 clusters. The

functioning of identified targets and pathways and their involvement in drug addiction were comprehensively examined.

MATERIALS AND METHODS

Selection of Drugs of Abuse and Their
Known Targets
We selected as input 50 drugs commonly known as drugs
of abuse using two basic criteria: (i) diversity in terms
of structure and mode of action, and (ii) availability of
information on at least one human target protein in DrugBank
v5 (Wishart et al., 2018) or STITCH v5 (Szklarczyk et al.,
2016). The selected drugs represent six different categories: CNS
stimulants, CNS depressants, opioids, cannabinoids, anabolic
steroids, and hallucinogens (see Supplementary Table 1 and
Supplementary Figure 1).

A dataset of 142 known targets, listed in
Supplementary Table 2, were retrieved from DrugBank
and STITCH DBs for these 50 drugs. The list includes all
targets reported for these drugs in DrugBank, and those
with high confidence score, based on experiments, reported
in STITCH. Each chemical-target interaction is annotated
with five confidence scores in STITCH: experimental,
DB, text-mining, prediction, and a combination score of
the previous four, each ranging from 0 to 1. We selected
the human protein targets with experimental confidence
scores of 0.4 or higher. Supplementary Table 2 summarizes
the 142 targets we identified as well as the associated 445
drug-target interactions.

Structure-based and interaction-pattern-based similarities
between pairs of drugs were evaluated using two different
criteria. The former was based on structure-based distance
calculated as the Tanimoto distance between their 2D structure
fingerprints. Tanimoto distances were evaluated using Python
RDKit suite (RDKit: Open-Source Cheminformatics Software.

https://www.rdkit.org/). Similarities based on their interactions
patterns with known targets were evaluated by evaluating
target-based distances. To this aim, we represented each drug
i by a 142-dimensional “target vector” di, the entries of
which represent the known targets and are assigned values
of 0 or 1, depending on the existence/observation of an
interaction between the corresponding target and drug i.
Interaction-pattern similarities between drug pairs i and j
were evaluated by calculating the correlation cosine cos(di
. dj) = (di . dj)/(|di| |dj|) between these vectors, and the
corresponding cosine distance is [1–cos(di . dj)]. Likewise,
ligand-based distances between target pairs i and j were evaluated
as the cosine distance between the 50-dimensional vectors
ti and tj corresponding to the two targets, the entries of
which are 0 or 1 depending on absence or existence of an
interaction between the target and the corresponding drug
of abuse.

Probabilistic Matrix Factorization (PMF)
Based Drug-Target Interaction Prediction
Novel targets for each drug were predicted using our
probabilistic matrix factorization (PMF) based machine
learning approach (Cobanoglu et al., 2013, 2015). Briefly,
we start with a sparse matrix R representing the known
interactions between N drugs and M targets. Using the PMF
algorithm, we decomposed R into a drug matrix U and a
target matrix V, by learning the optimal D latent variables
to represent each drug and each target. The product of UT

and V assigns values to the unknown (experimentally not
characterized) entries of the reconstructed R, each value
representing the confidence score for a novel drug-target
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interaction prediction

RN×M= UT
N×DVD×M

Using this method, we trained two PMF models, one based
on 11,681 drug-target interactions between 6,640 drugs and
2,255 targets from DrugBank v5, and the other based on
8,579,843 chemical-target interactions for 311,507 chemicals
and 9,457 targets from STITCH v5 human experimentally
confirmed subset, respectively. We evaluated the confidence
scores in the range [0, 1] for each predicted drug-target
interaction, in both cases. We selected the interactions
with confidence scores higher than 0.7 within the top 10
predicted targets for each input drug. This led to 161 novel
interactions identified between 27 out of the 50 input drugs
and 89 targets (composed of 41 known and 48 novel targets;
Supplementary Table 3).

Pathway Enrichment Analysis
We mapped the 50 drugs with 142 known and 48 predicted
targets to the KEGG pathways (version December 2017, homo
sapiens) (Kanehisa et al., 2017). 114 and 173 pathways were
mapped by 142 known targets and all targets (both known and
predicted) respectively (see Supplementary Table 4). In order to
prioritize enriched pathways, we calculated the hypergeometric
p-values based on the targets as the enrichment score as follows.
Given a list of targets, the enrichment p-value for pathway A (PA)
is the probability of randomly drawing k0 or more targets that
belong to pathway A:

PA=
∑

k0≤k≤m

(

K

k

) (

M − K

m− k

)

(

M

m

)

where M is the total number of human proteins in the KEGG
Pathway, m is the total number of proteins/targets we identified,
and K is the number of proteins that belong to pathway A, while
k0 is the number of targets we identified that belong to pathway
A. The obtained p-values are adjusted by a False Discovery
Rate (FDR) correction to account for multiple testing, using
the widely used Benjamini-Hochberg method (Benjamini and
Yekutieli, 2001). The cutoff of the adjusted p-values gives us an
upper bound of the false discovery rate. The false discovery rate
is the fraction of false significant pathways maximally expected
from the significant pathways identified in our case. We sort p-
values from smallest to largest, with m being the total number
of pathways. The adjusted p-value, p∗i , corresponding to the ith
pathway is:

pi
∗ = mink=i...m{min(pkm/i, 1)}

Supplementary Table 4 lists these p-values for pathway
enrichments based on both known and predicted targets.

The source code used for generating the results reported in
this study is available at https://github.com/Fengithub/DA.

RESULTS

Functional Similarity of Drugs of Abuse
Does Not Imply Structural Similarity,
Consistent With the Multiplicity of
Their Actions
Figure 2 presents a quantitative analysis of the functional and
structural diversity of the examined n = 50 drugs of abuse,
and the similarities among the m = 142 known targets of
these addictive drugs. The n × n maps in Figures 2A,B display
the drug-drug pairwise distances/dissimilarities based on their
2D fingerprints (Figure 2A), and their interaction patterns
with their targets. Figures 2C,D display the corresponding
dendrograms. The drugs are indexed and color-coded as
in Supplementary Table 1 and Supplementary Figure 1. As
expected, drugs belonging to the same functional category (same
color) exhibit more similar interaction patterns (Figure 2D).
However, we also note outliers, such as cocaine lying among
opioids, as opposed to its categorization as a CNS stimulant,
or promethazine, a CNS depressant, lying among hallucinogens
(shown by arrows). The peculiar behavior of cocaine is consistent
with its high promiscuity (see Figure 3A for the number of
targets associated with each examined drug). This type of
promiscuity becomes even more apparent when the drugs are
organized based on their structure (or 2D fingerprints; see
section Materials and Methods) as may be seen in Figure 2A.
For example, opioids (cyan labels/arc; clustered together in
Figures 2B,D based on their interactions) are now distributed
in two or more branches of the structure-based dendrogram in
Figure 2C; likewise, CNS depressants (blue) and cannabinoids
(light brown), grouped each as a single cluster in target-based
dendrograms in Figure 2D, are now distributed into two or more
clusters in Figure 2C.

Overall these results suggest that the functional categorization
of the drugs does not necessarily comply with their structural
characteristics. The similar functionality presumably originates
from targeting similar pathways, but the difference in the
structure suggests that either their targets, or the binding
sites on the same target, are different; or the binding is not
selective enough such that multiple drugs can bind the same site.
Consequently, a diversity of pathways or a multiplicity of cellular
responses are triggered by the use and abuse of these drugs.

The Selected Drugs and Identified Targets
Are Highly Diverse and Promiscuous
We evaluated the similarities between proteins targeted by
drugs of abuse, based on their interaction patterns with the
studied drugs of abuse. Figures 2E,F display the respective
target-target distances, and corresponding dendrogram.
Supplementary Table 2 lists the full names of these targets,
organized in the same order as the Figure 2E axes. We discern
several groups of targets clustered together in consistency with
their biological functions. For example, practically all GABA
receptor subtypes (brown) are clustered together. This large
cluster also includes the riboflavin transporter 2A (SLC52A2),
which may be required for GABA release (Tritsch et al., 2012).
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FIGURE 2 | Distribution of the dataset of 50 drugs of abuse based on their structure and interaction (with targets) similarities (A–D), and pairwise similarities and

classification of the corresponding targets based on their interaction patterns with the drugs of abuse. (A–D) Drug-drug distance maps for the studied 50 addictive

drugs based on (A) 2D structure fingerprints and (B) interaction patterns with targets using the correlation cosines between their target vectors (see Materials and

Methods), and corresponding dendrograms (C,D). The indices of drugs of abuse in (A,B) follow the same order as those used in Supplementary Table 1. The drug

labels in (C,D) are color-coded based on their categories: CNS stimulants (green), CNS depressants (blue), opioids (cyan), cannabinoids (light brown), anabolic

steroids (black) and hallucinogens (magenta). Note that the drugs of abuse in the same category do not necessarily show structural similarities nor similar interaction

pattern with targets. (E) Pairwise distance map for the 142 known targets based on their interaction patterns with the 50 drugs. The indices in (E) follows the same

order as those listed clockwise in the dendrogram (F). The tree maps in (C,D,F) are generated based on the respective distances values in the (A,B,E).

On the other hand, the different subtypes of serotonin (or
5-hydroxytryptamine, 5-HT) receptors (5HTRs) participate in
distinct clusters pointing to the specificity of different subtypes
vis-à-vis different drugs of abuse (labeled in Figure 2F).

The large majority of neurotransmitter transporters, such
as Na+/Cl−-dependent GABA transporters (SLC6A1) and
glycine transporter (SLC6A9) are in the same cluster (pink,
labeled). Acetylcholine receptors also lie close to (or are
even interspersed among) Na+/Cl−-dependent neurotransmitter
transporters, presumably due to shared drugs such as cocaine.
However, the three transporters playing a crucial role in
developing drug addiction, DAT, NE transporter (NET) and

serotonin transporter (SERT) (labeled SLC6A2: NET, SLC6A3:
DAT, SLC6A4: SERT) are distinguished by from all other
neurotransmitter transporters as a completely disjoint group.
The corresponding branch of the dendrogram (highlighted by the
yellow circle) also includes vesicular amino acid transporters and
trace amine-associated receptor 1 (TAAR1) known to interact
with these transporters (Miller, 2011). We also note in the
same branch two seemingly unrelated targets: flavin monoamine
oxidase which draws attention to the role of oxidative events;
and α2-adrenergic receptor subtypes A-C, which uses NE as
a chemical messenger for mediating stimulant effects such as
sensitization and reinstatement of drug seeking, and adenylate
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FIGURE 3 | Promiscuity of drugs of abuse and their targets, and major families of proteins targeted by drugs of abuse. Number of known (gray) and predicted (white)

interactions are shown by bars for (A) drugs of abuse and (B) their targets. The examined set consists of 50 drugs of abuse and a total of 142 known and 48

predicted targets, involved in 445 (known) and 161 (predicted) interactions. (A) Displays the number of interactions known or predicted for all 50 drugs. (B) Displays

the results for the targets that interact with at least 4 known drugs (36 targets). The colors used for names of drugs and targets are same as those used in Figure 2.

(C) Displays the distribution of families of proteins targeted by drugs of abuse.
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cyclase as another messenger to regulate cAMP levels (Sofuoglu
and Sewell, 2009).

Supplementary Table 2 summarizes the 445 known
interactions between these 50 drugs and 142 targets. We
observe an average of 8.9 interactions per drug and 3.1
interactions per target. There are 23 promiscuous drugs that
target at least 10 proteins as shown in Figure 3A. Cocaine, the
most promiscuous psychostimulant, interacts with 45 known,
and 3 predicted targets. It is known that cocaine binds DAT to
lock it in the outward-facing state (OFS) and block the reuptake
of DA. It similarly antagonizes SERT and NET (Heikkila et al.,
1975; Sora et al., 1998), and also affects muscarinic acetylcholine
receptors (mAChRs) M1 and M2 (Williams and Adinoff, 2008).
Our PMF model also predicted a potential interaction between
cocaine and M5. While this interaction is not listed in current
DBs, there is experimental evidence suggesting that muscarinic
AChR M5 plays an important role in reinforcing the effects
of cocaine (Fink-Jensen et al., 2003), in support of the PMF
model prediction.

The PMF model enables us to predict novel targets.
For example, anabolic steroid nandrolone has only two
known interactions, and cannabinoid cannabichromene has
one. However, 10 new targets were predicted with high
confidence scores for each of them (Supplementary Table 3 and
Supplementary Figure 2A). This is due to the data available
in STITCH DB, which offers a large training dataset that
enhances the performance of our machine learning approach.
Overall, 89 new interactions were predicted for known targets,
and 42 novel targets were predicted with 72 interactions.
Figure 3C displays the distribution of all targets among different
protein families. As will be further elaborated below, among
the newly identified drug-target pairs, nandrolone-MAPK14
(mitogen-activated protein kinase 14, also known as p38α) and
canabichromene-IKBKB (inhibitor of NFκ-B kinase subunit β)
play a role in regulating mTORC1 signaling, which will be shown
to be a potential effector of drug addiction.

Turning to targets, three opioid receptors (OPRM1,
OPRD1, and OPRL1) exhibit the highest level of promiscuity
(Supplementary Figure 2B). The µ-type opioid receptor
(OPRM1) interacts with 14 known drugs including all
opioids as well as ketamine and dextromethorphan. We
also predicted a novel interaction between OPRM1 and the CNS
stimulant methylphenidate. This is consistent with experimental
observations that methylphenidate upregulates OPRM1’s activity
in the reward circuitry in a mouse model (Zhu et al., 2011).
Furthermore, tissue-based transcriptome analysis (Uhlén et al.,
2015) shows that 69% of our 190 targets are expressed in the
brain, and 49 of them show elevated expression levels in the
brain compared to other tissue types (Supplementary Table 5).
Among all the targets, NMDA receptor 1 (GRIN1) shows the
highest elevated expression. It is also one of the top 5 enriched
genes overall in the brain (Uhlén et al., 2015).

Taken together, the 50 selected drugs of abuse and the 142
known and 48 novel targets we identified cover a diversity of
biological functions, are involved in many cellular pathways,
and are generally promiscuous. In order to reveal the common
mechanisms that underlie the development and escalation of

drug addiction and also distinguish the effects specific to
selected drugs, we proceed now to a detailed pathway analysis,
presented next.

Pathway Enrichment Analysis Reveals the
Major Pathways Implicated in Various
Stages of Addiction Development
Our QSP analysis yielded a total of 173 pathways, including
114 associated with the known targets of the examined dataset
of drugs of abuse, and 59 associated with the predicted
targets. The detailed pathway enrichment results can be found
in Supplementary Table 4. These pathways can be grouped
in five categories (Figure 4; Supplementary Figures 3, 4, and
Supplementary Table 4):

Synaptic Neurotransmission (NT)
Six significantly enriched (with adjusted p-value < 0.05)
pathways are associated with synaptic neurotransmission:
dopaminergic, serotonergic, glutamatergic, synaptic vesicle cycle,
cholinergic, and GABAergic synapses pathways. Sixty-eight
known targets and 7 predicted targets are involved in these
pathways. This is consistent with the fact that neurotransmission
plays a dominant role in the rewarding system and is key to drug
addiction (Volkow and Morales, 2015).

Signal Transduction (SG)
Forty-six intracellular signaling pathways were mapped by 92
targets comprised of 66 known and 25 predicted targets. Notably,
many of these pathways have been reported to play a role in
mediating the effects of drugs of abuse. These include the top five
[calcium signaling (Li et al., 2008), retrograde endocannabinoid
signaling (Mechoulam and Parker, 2013), cGMP-PKG signaling
(Shen et al., 2016), cAMP signaling (Philibin et al., 2011), and
Rap1 signaling (Cahill et al., 2016)] as well as some pathways with
relatively low enrichment score (i.e., 0.2< adjusted p-value), such
as TNF signaling (Zhu et al., 2018), MAPK signaling (Sun et al.,
2016), PI3K-Akt signaling (Neasta et al., 2011), NF-κB signaling
(Nennig and Schank, 2017), and mTOR signaling (Neasta et al.,
2014). We note that many receptors targeted by drugs of abuse
take part in the KEGG neuroactive ligand-receptor interaction
pathway. In the interest of focusing on intracellular signaling
effects, we have not included these in the SG category; they are
listed in the “Other Pathways” in Supplementary Table 4.

Autonomic Nervous System (ANS)-Innervation (ANS)
We also identified 10 pathways regulating ANS-innervated
systems such as endocrine secretion, taste transduction, and
circadian entrainment. Recent evidences suggested drugs of
abuse such as morphine (Al-Hasani and Bruchas, 2011)
and cocaine (Moeller et al., 1997; Prosser et al., 2014)
can influence ANS-innervated systems and may contribute
to the withdrawn symptoms associated with drug addiction.
Thirty-seven known and 9 predicted targets take part in
these pathways.

Neuroplasticity (NP). Eight enriched pathways with potential
to alter the morphology of neurons, were found to be related to
drug addiction. Among them, long-term potentiation (LTP) and
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FIGURE 4 | Results from pathway and target enrichments analysis. Five broad categories of pathways are distinguished among those involving the targets of drug

abuse: NT, synaptic neurotransmission pathways; SG, signal transduction pathways; DS, disease-associated pathways; ANS, autonomic nervous system-innervation

pathways; and NP, neuroplasticity related pathways. (A) Numbers of pathways (red bars) and targets (gray bars) of drug abuse lying in the five categories, based on

data available in DrugBank and STITCH. The pink and white stacked bars are the corresponding numbers for pathways and targets additionally predicted by PMF. (B)

Overlaps between the target content of the five pathway categories. Note that all targets belonging to the NP category pathways are represented in the other four

categories. See the complete list of pathways and targets in Supplementary Table 4.

long-term depression (LTD) are key to reward-related learning
and addiction by modifying the fine tuning of dopaminergic
firing (Jones and Bonci, 2005). Axon guidance pathway regulates
the growth direction of neuron cells (Bahi and Dreyer,
2005). Regulation of actin cytoskeleton plays important role in
morphological development and structural changes of neurons
(Luo, 2002). Gap junctions connect neighboring neurons via
intercellular channels that allow direct electrical communication
(Belousov and Fontes, 2013) and regulate the efficiency of
communication between electrical synapses (Belousov and
Fontes, 2013). Nineteen known targets and 5 predicted targets
are involved in these pathways. Insulin-like growth factor 1
receptor (IGF1R) is predicted as a target of drug triazolam
(Supplementary Table 4). IGF1R is involved in LTP, adherens
junction and focal adhesion pathways. It functions via canonical
signaling pathways noted above in the SG category, such as the
PI3K-Akt-mTOR and Ras-Raf-MAPK pathways (Lee et al., 2016)
and it plays important role in neuroplasticity (Lee et al., 2016).
We note that the NP group involves many pathways directly
relevant to drug addiction (Bahi and Dreyer, 2005; Kalivas and
Volkow, 2011; Moradi et al., 2013; Rothenfluh and Cowan, 2013).
There is no target unique to this particular group of pathways
(Figure 4B). However, the fact that the targets belonging to
the NP group are also shared by other groups consolidates the
significance of these targets.

Disease-Associated Pathways (DS)
Fifty enriched pathways mapped by 51 known and 17 predicted
targets are associated with diverse diseases in different organs
such as brain, liver, and lung. They also cover various drug
addiction mechanisms including: nicotine addiction, morphine
addiction, cocaine addiction, amphetamine addiction, and
alcoholism. Additionally, there are “other pathways” such

as those involved in cell migration, differentiation, immune
responses, and metabolic events, which can be seen in
Supplementary Table 4.

Taken together, the enrichment analysis reveals five major
categories of pathways that regulate the three stages of drug
addiction cycle: (1) binge and intoxication, (2) withdrawal and
negative affect, and (3) preoccupation and anticipation (or
craving) (Koob and Volkow, 2010). Drugs of abuse directly affect
neurotransmission pathways: they increase the accumulation
of DA and other neurotransmitters in the synaptic and
extrasynaptic regions, which in turn results in the hedonic feeling
(stage 1) and triggers the DA reward system. Dysregulation
of ANS-innervation pathways may cause negative effects and
feelings (stage 2) and feedback to the CNS. Addictive drugs
impair executive processes by disrupting the reward system
(neurotransmission pathways) and imparting morphological
changes via neuroplasticity pathways (e.g., LTD and LTP), which
then result in craving (stage 3). Below, we present an in-depth
analysis of the role of these pathways or their shared targets in
drug addiction.

Selected Targets Shared by Dominant
Pathways Emerge as Common Mediators
of Drug Addiction
We next analyzed the overlapping targets between the pathways
in different functional categories.

First, we note that eight pleiotropic proteins are shared
by all five categories (at the intersection of the five Venn
diagrams in Figure 4B): AMPA receptor (subtype GluA2;
GRIA2), NMDA receptors 1 and 2A-D (designated as GRIN1,
GRIN2A, GRIN2B, GRIN2C, and GRIN2D) and voltage-
dependent calcium channel Cav2.1 (or CACNA1A) as well as the
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predicted target phosphatidylinositol 3-kinase class 1A catalytic
subunit α (PIK3CA) (Supplementary Table 4).

Second, 15 proteins are distinguished as targets of four of
these major pathways: Serotonin receptors 5HTR2-A, -B and -
C), GABAA receptors 1-6 (GABRA1- GABRA6), β-1 adrenergic
receptor 1 (ADRB1), Ras-related C3 botulinum toxin substrate
1 (RAC1; member of Rho family of GTPases), mAChR M3

(CHRM3) and DA receptor D2 (DRD2), and two predicted
targets - p38α (MAPK14) and DA receptor D1 (DRD1).

AMPA receptor plays a crucial role in LTP and LTD, which
are vital to neuroplasticity, memory and learning (Volkow
et al., 2016). Serotonin receptors, expressed in both the CNS
and the peripheral nervous system (e.g., gastrointestinal tract),
are responsible for anxiety, impulsivity, memory, mood, sleep,
thermoregulation, blood pressure, gastrointestinal motility, and
nausea (Pytliak et al., 2011). They have been proposed to be
therapeutic targets for treating cocaine use disorder (Howell and
Cunningham, 2015). RAC1 is involved in five neuroplasticity
pathways, including axon guidance, adherens junction and tight
junction pathways (Supplementary Table 4), and 13 intracellular
signal transduction pathways. It regulates neuroplasticity, as
well as apoptosis and autophagy (Natsvlishvili et al., 2015). DA
receptor D2 is a target of 28 drugs of abuse (out of 50 examined
here) and is involved in cAMP signaling, and gap junction
pathways, in addition to dopaminergic signaling. It is implicated
in reward mechanisms in the brain (Blum et al., 1996) and
the regulation of drug-seeking behaviors (Edwards et al., 2006).
Finally, PI3K turns out to be the most pleiotropic target among
those targeted by drugs of abuse, being involved in 61 pathways
identified here, including neuroplasticity pathways such as axon
guidance, and several downstream signaling pathways such as
PI3K-Akt, mTOR, Ras and Jak-STAT pathways.

Overall, the above listed 23 proteins shared by at least four
different groups of pathways are distinguished here as highly
pleiotropic proteins involved in the large majority of pathway
categories implicated in drug abuse. Most of them are ligand-
or voltage-gated ion channels or neurotransmitter receptors,
mainly AMPAR, NMDAR, Cav2.1, mAChR, and serotonin and
DA receptors. However, it is interesting to note the targets PI3K
and p38α, not currently reported in DrugBank and STITCH,
emerge as highly pleiotropic targets of the drugs of abuse. These
are suggested by the current analysis to directly or indirectly
affect addiction development and await future experimental
validation. Finally, a number of proteins take part in specific
drug-abuse-related pathways and might serve as targets for
selective treatments. Supplementary Table 6 provides a list of
such targets uniquely implicated in distinctive pathways.

Pathway Enrichment Highlights the
Interference of Drugs of Abuse With
Synaptic Neurotransmission
It is broadly known that neurotransmitters such as DA, 5-
HT, NE, endogenous opioids, ACh, endogenous cannabinoids,
Glu, and GABA are implicated in drug addiction (Tomkins
and Sellers, 2001; Everitt and Robbins, 2005; Parolaro and
Rubino, 2008; Benarroch, 2012). Our analysis also showed

that the serotonergic synapse (adjusted p-value p∗i = 2.01E-
18), GABAergic synapse (p∗i = 1.19E-17), cholinergic synapse
(p∗i = 2.36E-07), dopaminergic synapse (p∗i = 1.66E-06)
and glutamatergic synapse (p∗i = 1.86E-03) pathways were
significantly enriched (Supplementary Table 4). A total number
of 34 drugs (across six different groups) target at least one of
these pathways. However, the identification of a pathway does
not necessarily mean that the drug directly affects that particular
neurotransmitter transport/signaling. There may be indirect
effects due to the crosstalks between synaptic signaling pathways.
For example, the ionotropic glutamate receptors NMDAR and
AMPAR are also the downstream mediators in the dopaminergic
synapse pathway. Likewise, GABARs are downstream mediators
in the serotonergic synapse pathway.

In Figure 5, we highlight five major neurotransmission
events that directly mediate addiction, and illustrate how eight
drugs of abuse interfere with them. Despite the promiscuity
of the drugs of abuse, some selectively map onto a single
synaptic neurotransmission pathway. For example, psilocin [a
hallucinogen whose structure is similar to 5HT (Diaz, 1997)]
interacts with several types of 5HTRs, regulating serotonergic
synapse exclusively (see Figure 5 and Supplementary Table 4).
In contract, loperamide (not shown) affects all neurotransmission
pathways by interacting with the voltage-dependent P/Q-type
calcium channel (VGCC), regulating calcium flux on synapses.
Cocaine targets four of these synaptic neurotransmission
events (serotonergic, GABAergic, cholinergic, and dopaminergic
synapses), through its interactions with 5-HT3R, sodium-
and chloride-dependent GABA transporter (GAT), muscarinic
(M1 and M2) and nicotinic AChRs, and DAT, respectively.
Methadone affects three synaptic neurotransmissions, including
serotonergic synapse, dopaminergic synapse, and glutamatergic
synapse through the interactions with SERT, DAT, and glutamate
receptors (NMDAR), respectively.

It is worth noting that the current analysis helps us generate
new hypotheses, yet to be experimentally validated, on the
ways drugs of abuse affect neurotransmission. In addition to
the new role of the muscarinic AChR M5 suggested by the
current analysis in section the selected drugs and identified
targets are highly diverse and promiscuous, our PMF model
suggested that cannabichromene, a cannabinoid whose primary
target is the transient receptor (TRPA1), could interact with DAT
and thus regulate dopaminergic transmission, which will require
further examination.

The above synaptic neurotransmission events act as upstream
signaling modules that “sense” the early effects of drug abuse. In
the next section, we focus on the downstream signaling events
elicited by drug abuse.

mTORC1 Emerges as a Potential
Downstream-Effector Activated by
Drugs Abuse
The calcium-, cAMP-, Rap1-, Ras-, AMPK-, ErbB-, MAPK-,
and PI3K-Akt-signaling pathways in the SG category
(Supplementary Table 4) crosstalk with each other and
form a unified signaling network. As shown in Figure 6,
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FIGURE 5 | The impact of drugs of abuse on synaptic neurotransmission. Five major neurotransmission events are highlighted, mediated by (counterclockwise,

starting from top): GABA receptors and transporters, ionotropic glutamate receptors (NMDAR and AMPAR) and cation channels, serotonin (5HT) receptors (5-HTR)

and transporters (SERT), muscarinic or nicotinic AChRs, and dopamine (DA) receptors and transporters. Vesicular monoamine transporters (VMAT) that translocate

DA are also shown. Drugs affecting the different pathways are listed, color coded with their categories, as presented in Figure 2. Solid red arrows indicate a known

drug-target interaction, dashed red arrows indicate predicted drug-target interactions. Other molecules shown in the diagram are: KA, kainate receptor; MAO,

monoamine oxidase; HVA, homovanillate; 3-MT, 3-methoxytyramine; MOR, mu-type opioid receptor; AChE, acetylcholinesterase; and 5-H1AA,

5-hydroxyindoleacetate.

ligand-binding to GPCRs modulates the production of cAMP,
which leads to the activation of Rap1. Activated Rap1 modules
the Ca2+ signaling by inducing the production of inositol
triphosphate (IP3) and also activates the PI3K-Akt signaling
cascade. Stimulations of ErbB family of receptor tyrosine
kinases (related to epidermal growth factor receptor EGFR)
as well as insulin-like growth factor receptor IGF1R trigger
both PI3K-Akt and MAPK signaling cascades (proteins colored
blue in Figure 6). Notably all these pathways merge and
regulate a group of downstream proteins (shown in dark
yellow in Figure 6); and at the center of this cluster lies the

mammalian target of rapamycin (mTOR) complex 1 (mTORC1)
which is likely to be synergistically regulated by all these
merging pathways.

mTORC1 is not only a master regulator of autophagy
(Rabanal-Ruiz et al., 2017), but also controls protein synthesis
and transcription (Ma and Blenis, 2009). It has been reported
to promote neuroadaptation following exposure to drugs
of abuse including cocaine, alcohol, morphine and 19-
tetrahydrocannabinol (THC) (Neasta et al., 2014). Our results
lead to the hypothesis that mTORC1 may act as a universal
effector of the cellular response to drug abuse at an advanced

Frontiers in Pharmacology | www.frontiersin.org 10 March 2019 | Volume 10 | Article 191

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Pei et al. Pleiotropy of Drug Abuse Targets

FIGURE 6 | A unified signaling network mediates the effects of drugs of abuse. Black arrows represent the activation, inhibition, and translocation events during signal

transduction. Solid gray arrows represent the known drug-target interactions. Dashed gray arrows represent predicted drug-target interactions. The diagram illustrates

the targets of several drugs of abuse belonging to different categories: loperamide, fentanyl, heroin, morphine, and methadone from opioids; midomafetamine,

ketamine, dextromethorphan, LSD, and psilocin from hallucinogens; triazolam, diazepam, alprazolam, pentobarbital, eszopiclone, flunitrazepam, and zaleplon from

CNS depressants; cannabichromene, 2-AG, cannabinol, and dronabinol from cannabinoids; methamphetamine, cocaine, AMPH, and phendimetrazine from CNS

stimulants; and nandrolone from anabolic steroids. mTORC1 emerges as a hub where the effects on several targets of addictive drugs appear to be consolidated to

lead to cell death and/or protein synthesis in the CNS, and in particular, to AMPAR/PSD95 synthesis that induces morphological changes in the dendrites.

(preoccupation and anticipation, or craving) stage, controlling
the synthesis of selected proteins and ensuing cell growth, which
may result in persistent alterations in the dendritic morphology
and neuronal circuitry.

In Figure 6, selected interactions between drugs from different
substance groups and their targets are highlighted using gray
arrows. The figure illustrates that not only many known
drug-target interactions, but also predicted ones involved in
the unified signaling network. For example, our PMF model
predicted that diazepam would interact with PI3K to influence
mTORC1 signaling (dashed gray arrows denote predictions). It
has been reported that Ro5-4864, a benzodiazepine derivative of
diazepam suppresses activation of PI3K (Yousefi et al., 2013),
which corroborates our prediction. We further predicted that
cannabichromene may interact with IκB kinase β (IKKβ) to
regulate mTORC1 by inhibiting TSC1/2. Interestingly, another
cannabinoid, arachidonoyl ethanolamine, is known to directly
inhibits IKKβ (Sancho et al., 2003). Taken together, our results

suggest a unified network that underlies the development of
drugs addiction, in which mTORC1 appears to play a key
effector role.

DISCUSSION

In the present study we focused on the targets and pathways
affected by drugs of abuse, toward gaining a systems-level
understanding of key players and dominant interactions that
control the response to drug abuse and the development of drug
addiction. Using machine learning methods, we focused on 50
drugs of abuse that form a chemically and functionally diverse
set, and analyzed their 142 targets as well as the corresponding
cellular pathways and their crosstalk. Our analysis identified:

(i) 48 additional proteins targeted by drugs of abuse, including
PIK3CA, IKBKB, EGFR, and IGF1R, are shown to be key
mediators of downstream effects of drug abuse.
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(ii) 161 new interactions between the drugs of abuse and
the known and predicted targets, including those between
cocaine and M5, methylphenidate and OPRM1, and
diazepam and PI3K, not reported in existing DBs, but
supported by prior experiments, and others (e.g., the
interactions of cannabichromene with IKBKB and DAT)
that await experimental validation.

(iii) A dataset of 70 pathways, composed of 6 neurotransmission
pathways, 46 signal transduction pathways, 8
neuroplasticity pathways and 10 autonomic nervous
system innervation pathways which are proposed to govern
different stages of the molecular, cellular and tissue level
responses to drug abuse and in addiction development.

Overall, our comprehensive analysis led to new hypotheses on
drug-target interactions and signaling and regulation mechanism
elicited by drugs of abuse in general, along with those on selected
targets and pathways for specific drugs. Below we elaborate on
the biological and biomedical implications of these findings.

Persistent Restructuring in Neuronal
Systems as a Feature Underlying
Drug Addiction
Enriched pathways in the neuroplasticity category include gap
junction, LTP, LDP, adherens junction, regulation of actin
cytoskeleton, focal adhesion, axon guidance, and tight junction
(Supplementary Table 4). These are responsible for the changes
in the morphology of dendrites. For instance, DA regulates
excitatory synaptic plasticity by modulating the strength and
size of synapses through LTP and LTD (De Roo et al., 2008;
Volkow andMorales, 2015). The restructuring of dendritic spines
involves the rearrangements of cytoskeleton and actin-myosin
(Volkow andMorales, 2015). The axon guidance molecules guide
the direction of neuronal growth.

Drugs of abuse can induce the changes in CNS through
these pathways. For example, chronic exposure to cocaine
increases dendritic spine density in medium spiny neurons
(Russo et al., 2010). The disruption in axon guidance pathway
and alteration in synaptic geometry can result in drug-
related plasticity (Bahi and Dreyer, 2005). The persistent
restructuring in the CNS caused by drugs of abuse is
responsible for long-term behavioral plasticity driving addiction
(Volkow et al., 2003; Russo et al., 2010; Volkow and
Morales, 2015). As will be further discussed below, mTORC1
plays a central role in the synthesis of new proteins (e.g.,
AMPARs) and thereby neuronal (dendrites) growth, alteration
of the synaptic geometry and therefore rewiring of the
neuronal circuitry.

ANS May Mediate the
Negative-Reinforcement of Drug Addiction
The current study further points to pathways regulating the
ANS-innervated systems. As the NP pathways influence the
neuroplasticity in the ANS, we hypothesize that drugs of abuse
might induce a persistent restructuring in the ANS as well. The
drug-related plasticity in ANS may lead to the dysregulation of
ANS-innervated systems and cause negative effects and feelings

during the second stage of drug addiction. Drug addiction is
well known as a brain disease (Volkow and Morales, 2015).
However, many drugs of abuse can disrupt the activity of
ANS and cause disorders in ANS-innervated systems (Al-Hasani
and Bruchas, 2011; Huang, 2017). For example, opioids (e.g.,
morphine) alter neuronal excitability and neurotransmission in
the ANS (Wood and Galligan, 2004), and induce disorders in
gastrointestinal system, smooth muscle, skin, cardiovascular, and
immune system (Al-Hasani and Bruchas, 2011). Cannabinoids
(e.g., THC) modulate the exocytotic NE release in ANS-
innervated organs through presynaptic cannabinoid receptors
(Ishac et al., 1996).

The pathways we identified in the ANS category regulate
insulin secretion, gastric acid secretion, vascular smooth
muscle contraction, pancreatic secretion, salivary secretion,
and renin secretion (Supplementary Table 4). Their dysfunction
may be associated with the autonomic withdrawal syndrome,
such as thermoregulatory disorder (chills and sweats) and
gastrointestinal upset (abdominal cramps and diarrhea), which
has been observed in drug/substance users (Wise and Koob,
2014). In addition, the stress and depression caused by these
negative effects may be part of the negative reinforcement of
drug addiction (Self and Nestler, 1995; Koob and Le Moal, 2001).
In other words, the drug induced ANS disorders can feedback
to CNS and mediate the negative reinforcement. Compared
to the structural changes in CNS, the disorder and persistent
restructuring in ANS is less studied and it could be a future
direction in the study of development of drug addiction and
related diseases.

mTORC1 Appears as a Key Mediator of
Cellular Morphological Changes Elicited in
Response to Continued Drug Abuse
The functioning and regulation of mTOR signaling has
been elucidated over the past two decades. It became clear
that mTORC1 plays a crucial role in regulating diverse
cellular processes including protein synthesis, autophagy,
lipid metabolism, and mitochondrial biogenesis (Saxton
and Sabatini, 2017). In the brain, mTORC1 coordinates
neural development, circuit formation, synaptic plasticity,
and long-term memory (Lipton and Sahin, 2014). The
dysregulation of mTORC1 pathway is associated with
many neurodevelopmental and neurodegenerative diseases
such as Parkinson’s disease and Alzheimer’s disease.
mTORC1 has been noted to be an important mediator
of the development of drug addiction and relapse
vulnerability (Dayas et al., 2012). Accumulating evidences
show that pharmacological inhibition of mTORC1 (often
through rapamycin treatment) can prevent sensitization of
methamphetamine-induced place preference (Narita et al.,
2005), reduce craving in heroin addicts (Shi et al., 2009),
attenuate the expression of alcohol-induced locomotor
sensitization (Neasta et al., 2010), suppress the expression
of cocaine-induced place preference (Bailey et al., 2012),
protect against the expression of drug-seeking and relapse by
reducing AMPAR (GluA1) and CaMKII levels (James et al.,
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2014), and inhibit reconsolidation of morphine-associated
memories (Lin et al., 2014).

Our unbiased computational analysis based on a diverse
set of 50 drugs of abuse supports the hypothesis that
mTORC1 may act as a universal effector or controller of
neuroadaptations induced by drugs of abuse (Neasta et al.,
2014). The major signal transduction pathways we identified
that involve targets of drugs of abuse interconnect and
converge to the mTORC1 signaling cascade (Figure 6). Most
drugs of abuse in our list target upstream regulators of
mTORC1, including membrane receptors (e.g., GPCRs, RTKs
and NMDAR), kinases (e.g., PI3K, p38α, and IKKβ), and ion
channels (e.g., CaV2.1 and TRPV2). Notably, the impact of some
of these known or predicted targets has been experimentally
confirmed. For example, blockade of the known target NMDAR
using MK801 reduces the amnesic-like effects of cannabinoid
THC (Puighermanal et al., 2009). Likewise, inhibition of PI3K
(a predicted target) by LY294002 suppresses morphine-induced
place preference in rats (Cui et al., 2010) and the expression
of cocaine-sensitization (Izzo et al., 2002). Our results thus
provide a pool of candidate targets implicated in cellular
responses to addictive drugs, which await to be consolidated by
further tests.

The downstream effectors of mTORC1, which specifically
mediate drug behavioral plasticity is far from known. mTORC1
can mediate the activation of S6Ks and 4E-BPs, which leads
to increased production of proteins required for synaptic
plasticity including AMPAR and PSD-95 (Dayas et al., 2012). EM
reconstruction of hippocampal neuropil showed the variability
in the size and shape of dendrites depending on synaptic
activity (Bartol Jr et al., 2015), which in turn correlates
with information storage. Recently studies have revealed that
Atg5- and Atg7-dependent autophagy in dopaminergic neurons
regulates cellular and behavioral responses to morphine (Su
et al., 2017). Cocaine exposure results in ER stress-induced
and mTORC1-dependent autophagy (Guo et al., 2015). Fentanyl
induces autophagy via activation of ROS/MAPK pathway
(Yao et al., 2016). Methamphetamine induces autophagy
through the κ-opioid receptor (Ma et al., 2014). These
observations are consistent with the currently inferred role of
mTORC1 as a downstream effector of cellular responses to
drug addiction.

Drug Repurposing Opportunities for
Combatting Drug Addiction
Autophagy modulating drugs have been shown to have
therapeutic effects against liver and lung diseases. The signaling
network presented in Figure 6 involves many targets of such
drugs. For instance, carbamazepine affects IP3 production
and enhances autophagy via calcium-AMPK-mTORC1 pathway
(Hidvegi et al., 2010). It has been identified as a potential
drug for treating α1-antitrypsin deficiency, hepatic fibrosis, and
lung proteinopathy (Hidvegi et al., 2010, 2015). Rapamycin is a
potential drug for lung disease such as fibrosis (Abdulrahman
et al., 2011; Patel et al., 2012). Other liver and lung drugs
which facilitate the removal of aggregates by promoting

autophagy may also affect drug-related neurodegenerative
disorders. Supplementary Table 7 summarizes 15 autophagy-
modulating drugs for liver and lung diseases. Target identification
and pathway analysis of this subset of drugs using the same
protocol as those adopted for the 50 drugs of abuse indeed
confirmed that drugs of abuse and liver/lung drugs share
many common pathways (Supplementary Figure 5). Notably,
among those pathways, neuroactive ligand-receptor interactions,
calcium signaling, and serotonergic synapse pathways are among
the top 10 enriched pathways of both drugs of abuse and
liver/lung drugs. Amphetamine addiction and alcoholism are
also enriched by targets of liver/lung drugs. Thus, an interesting
future direction is to examine whether autophagy modulating
drugs for liver and lung diseases could be repurposed, if necessary
by suitable refinements to increase their selectivity, for treating
drug addiction.

In summary, our results invite attention to new targets of
addictive drugs and pathways implicated in the development
of addiction, as well as new therapeutic opportunities. Recent
studies support the utility of such computationally-driven
QSP predictions. The validation of these predictions requires
comprehensive wet-lab bioactivity assays (Pahikkala et al., 2015).
In particular, the establishment of the proposed role of mTORC1
would require in vitro and in vivo longitudinal studies given
that our current study points to the involvement of mTORC1 at
later stages of drug addiction. In a recent study, we identified
the role of protein kinase A (PKA) pathway in Huntington’s
disease using a QSP approach and verified experimentally (Pei
et al., 2017). A similar combined computational-experimental
framework could be adopted to extend the current study and
establish new strategies. Though these experiments are beyond
the scope of the current paper, our unbiased computational study
provides insights into the pleiotropy of the targets of addictive
drugs as well as the common signaling platforms that may serve
as mediators of drug addiction.

Knowledge of pathways implicated in drug addiction
may be used, as a next step, to construct kinetic models to
quantitatively assess the orchestration of signals induced
by pathway crosstalks. Our previous studies on Toll-like
receptors (Liu et al., 2016) and cell fate decision processes
(Liu et al., 2014, 2017) have demonstrated the utility
of identifying such crosstalks for detecting synergistic
response mechanisms and designing polypharmacological
strategies. Therefore, the computational data presented
here presents a milestone toward developing new therapies
against drug addiction by identifying new targets beyond
those usually investigated by focused studies. Finally, our
analysis framework is generic and could be adopted for
characterizing the targets and pathways of other complex
disorders by suitable redefinition of the input set of drugs
of interest.
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