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Anakoinosis is a new cancer treatment paradigm that posits a key role for
communicative reprogramming within tumor systems. To date no mathematical or
computational models of anakoinosis have been developed. Here we outline the
NEATG_A system, a first computational model of communicative reprogramming. The
model recapitulates key features of real tumor systems and responses to both traditional
cytotoxic treatments and biomodulatory/anakoinotic treatments. Results are presented
and discussed, particularly with respect to the implications for future cancer treatment
protocols.
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INTRODUCTION

NEATG (Non-physiological Evolutionary Algorithm for Tumor Growth) is a computational model
of tumor growth which recapitulates a number of phenomena associated with real tumor growth
and response to anticancer treatments (Pantziarka, 2016). NEATG is a stochastic multi-scale agent-
based system that models cell-to-cell and tissue-level interactions, population growth dynamics
and cell competition. The system is structured such that different evolutionary scenarios can be
developed and previous work has included the modeling of tissue homeostasis, untreated tumor
growth, the impact of nutrient stress and response to cytotoxic treatments. Previous results have
shown cellular growth dynamics, tissue invasion patterns and tumor regrowth following cytotoxic
treatment that correspond to published data from in vitro growth of human cancer cell lines. Model
outputs were shown to be concordant with cell growth data from a panel of established cancer cell
lines. In particular the results showing accelerated tumor regrowth following aggressive cytotoxic
treatment were unexpected, suggesting that cell competition and cell death were both drivers of
resistance to cytotoxic cancer treatments.

Anakoinosis is a new cancer treatment paradigm predicated on a key role for communicative
reprogramming of tumor systems (Hart et al., 2015). Building on a systems biology approach to
cancer (Reichle and Vogt, 2008), anakoinosis utilizes a range of non-cancer and cancer drugs
in combination to treat advanced disease (Walter et al., 2017). In contrast to standard therapies,
anakoinosis protocols are characterized by low-toxicity and a good safety profile, with encouraging
responses in a number of clinical trials to date. The use of drug repurposing, that is the use of
non-cancer drugs as cancer treatments (Pantziarka et al., 2014, 2015), is especially a notable feature
of this approach.

To date no mathematical or computational models of anakoinosis have been developed.
NEATG_A, a new computational model, is an extension of the NEATG system to
incorporate elements of cell-tissue communication such that the impact of anakoinosis can
be modeled. As with the original NEATG system this is a computational model at a
level of abstraction that does not include the relevant biological/molecular pathways that
implement these behaviors in the patient or animal model. Neither does the model include
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data on the immune response, tumor neo-angiogenesis, aspects
of the tumor architecture or other biologically relevant factors.
Instead the focus is on abstract elements which characterize the
functional behaviors of modeled cells and tissues and how these
relate to cancer growth and response to treatment.

This paper outlines results which show how intrinsic
communicative networks act as inherent anticancer mechanisms
and that disruption of such communication promotes cancer
growth and tumor invasion. Furthermore the model shows how
communicative reprogramming after tumor development can
impact cancer growth.

MATERIALS AND METHODS

Non-physiological Evolutionary Algorithm for Tumor Growth is
a computational model coded in the Java programming language.
It is an agent-based model utilizing the gridded structure and
iterative processing of cellular automata and incorporating a
novel genetic algorithm to generate evolutionary changes in
the system. The system is non-deterministic and includes both
cell-level and tissue-level behaviors.

The tissue level is represented as a rectangular grid of m×n
elements, with each element hosting a number of software cells.
Each grid element exists in a given state, determined by the
relative population of different cell types that inhabit that cell.
Grid elements can change state at each iteration (clock-ticks) of
the system depending on the population of cells that it contains.

Cells are modeled as complex data structures that incorporate
a number of genes, metabolic regulators, a nutrient store and an
internal clock to count down its lifetime. Although the model can
be used with different sized genomes, as in the previous version
of NEATG the work described below uses cells with three genes
as this is computationally tractable and displays sufficient levels
of genetic evolution as to provide useful results. Cells exist in a
given state:

S = {HEALTHY,DIVIDING,APOPTOTIC,

TO_BE_CLEARED,NECROTIC}

Cells can change state in response to the availability of nutrients
to meet metabolic demands and depending on genetic factors.
When the number of cells in a given grid element exceeds the grid
element carrying capacity (i.e., the grid element is over-crowded)
cellular competition takes place and the least fit cells are removed.
The system includes two classes of cells – Normal and Malignant
cells. These are structurally similar and follow the same cellular
life-cycle and processes, however Malignant cells differ in that
they have the ability to both mutate and invade neighboring grid
elements during cell division.

Full details of the NEATG system are described in Pantziarka
(2016). As in that previous work, the experiments in this
paper use a simple cell structure that consists of three genes
and the same parameters as described in the Homeostasis
section of the original publication. Note that the cell state
Healthy represents the biological state of cellular Quiescence, it
implies that the cell is in a reversible non-proliferating state

(Daignan-Fornier and Sagot, 2011; Terzi et al., 2016). Where the
internal model code uses the term Healthy, we shall use the more
biologically relevant term Quiescent in this paper.

The principal innovation in NEATG_A is the incorporation
of a simple communication protocol between cells and the grid
element they inhabit. The protocol consists of a basic ‘handshake’
between an individual cell and the grid element it inhabits.
A signature is defined for each cell that includes a mix of
genomic and phenotypic information. The genomic information
includes data from all the genes in the cell. The phenotypic
information includes the metabolic demands of the cell and the
cell lifetime. The information is concatenated to form a single
string signature. For grid elements the signature is defined as
the signature of an untransformed (Normal) cell. The handshake
consists of a comparison of signatures and the calculation of the
Levenshtein distance (i.e., a numeric measure of the differences
between the signatures) (Levenshtein, 1966). This distance metric
counts the number of additions, deletions and point differences
between two strings. In the case where signatures match (i.e., an
individual Normal cell has the same signature as the grid element
it inhabits) the distance is zero. In the case of Malignant cells with
one or more genomic mutations or phenotypic alterations the
distance metric is greater than zero, and the greater the degree
of difference between the Normal cell the greater the numeric
value of the distance. Cell-tissue communicative dysfunction is
defined, therefore, as those instances where the distance > 0, in
other words when the grid level and the cell level do not share
the same signature.

Table 1 shows a number of examples of cell data structures,
the corresponding cell signature and the Levenshtein distance
between the Malignant cells and the Normal cell (row 1). Digits
indicated in red in the cell signature are point changes in relation
to the Normal cell signature.

In order to model the impact of communicative dysfunction,
and also to assess the impact of communicative reprogramming,
the NEATG_A system includes a system-level parameter, which
we have termed Tolerance, which is a measure of the degree of
tolerance or permissiveness of signature differences. A healthy
system is defined as one where there is zero tolerance (Tol = 0) for
differences during the handshake. In other words the Tolerance
acts as a threshold on the value of Distance allowed in the
system. The greater the degree of tolerance the greater the
probability that mutated cells are able to proliferate successfully.
By varying the degree of Tolerance at run-time the NEATG_A
system is able to model impacts of communicative dysfunction
and reprogramming on tumor growth.

The handshake protocol is shown in Figure 1.
As with the base NEATG system all cells undergo a simple cell

fate program:

Quiescent > Dividing > Apoptotic > To Be Cleared

In this system Quiescent is simply defined as the state the cell is
in while it is not under-going division or apoptosis – it implies
viability and therefore both Malignant and non-Malignant cells
are considered Quiescent. The cell fate program is shown in
Figure 2 – note that cell states are indicated in red.
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TABLE 1 | Cells, cell signatures, and distance.

Cell Cell Signature Distance

NORMAL:100:0:100:0.05:0.1:100.0:10:100:50:10:50:10:50:10 5010501050101001001001005 0

MALIGNANT:100:1:100:0.05:0.1:100.0:10:100:50:11:50:10:50:10 5011501050101001001001005 1

MALIGNANT:100:2:100:0.05:0.1:100.0:10:100:50:11:50:10:50:14 5011501050141001001001005 2

MALIGNANT:100:1:100:0.05:0.1:100.0:10:228:50:10:50:10:50:10 5010501050101002281001005 3

MALIGNANT:100:2:100:0.05:0.11:100.0:10:228:50:10:50:10:50:10 50105010501010022810011005 4

MALIGNANT:102:3:100:0.05:0.11:100.0:10:228:50:10:50:10:50:10 50105010501010222810011005 5

MALIGNANT:103:5:100:0.05:0.11:100.0:10:228:50:10:50:10:50:11 50105010501110322810011005 6

MALIGNANT:103:8:100:0.05:0.11:100.0:10:230:51:10:50:10:50:9 5110501050910323010011005 7

MALIGNANT:103:9:100:0.05:0.11:100.0:14:230:51:10:50:10:50:9 5110501050910323014011005 8

MALIGNANT:99:5:100:0.05:0.1:100.0:6:228:50:10:51:10:50:10 50105110501099228601005 9

MALIGNANT:101:10:100:0.05:0.1:100.0:2:228:50:10:49:11:50:8 50104911508101228201005 10

Note that all distances are measured in comparison with the Normal cell in row 1. Cell signature digits in red indicate changes in comparison to the Normal cell. In the last
two rows changes include digit deletions.

FIGURE 1 | Handshake protocol.

There are two aspects of the cell fate program which
warrant particular attention. The first point is that cells may
transition from Dividing to Apoptotic when they have reached
the end of their lifetime, which may have been accelerated
for cells poorly adapted to their local environment, or when
their metabolic demands exceed the availability of nutrient
supply. Cell division will result in a new Quiescent daughter
cell (which may be Normal or Malignant, depending on the
type of the parent cell). The parent cell may move to the
Apoptosis state if it is out of nutrients or the cell exceeds
the allowed degree of mutational change (i.e., the handshake
protocol is invoked). In the homeostatic situation most cases
cell of division do not lead to Apoptosis and both parent
and daughter cells are Quiescent. However, when there is a
high degree of nutrient stress, over-population and competition
due to encroaching Malignant cells then division may lead to
Apoptosis for the parent cell. This process is shown in more detail
in Figure 3.

The second key point is that the only difference between
cells flagged as Normal or Malignant is that during cell
division Malignant cells may probabilistically undergo mutation.
A mutation event is triggered if a random number in the range
0–1 is generated and is below the level of the mutation rate
(which is a model parameter in the range 0–1, with typical

FIGURE 2 | Cell fate program – note the same cycle is used for both
Malignant and Normal cells. At cell division Malignant cells may
probabilistically undergo a mutational event.

values being in the order of 0.05). In grid elements which are
overcrowded there is also a probability that a Malignant cell
may migrate to a neighboring grid element, again using random
number generation to assess the probability of an invasion
event occurring. Cell division therefore can both increase the
overall number of cells, including mutable Malignant cells
when there is communicative dysfunction, and it can also lead
tumor cell invasion.

The NEATG and NEATG_A systems are designed to test
different treatment strategies and include the functionality
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FIGURE 3 | Cell division and apoptosis.

to define new treatment protocols. In this work four such
strategies are explored. The first is a No Treatment strategy
in which tumor growth is allowed to proceed unchecked.
This strategy acts as a baseline to explore the impact of
changing the degree of communicative dysfunction in order
to assess the impact on tumor growth. The Chemo Treatment
strategy assesses the impact of a single high-dose treatment
with a generic cytotoxic agent. This is a strategy that was
also used in the original NEATG model. The Communicative
Reprogramming strategy is a new protocol developed for
NEATG_A. This treatment strategy is used to change the
Tolerance level during a model run such that we can assess the
impact of tumor growth when communicative reprogramming
changes the degree of communication dysfunction after tumors
are established. Finally, the combination of Chemo and
Communicative Reprogramming allows the system to model
the combination of cytotoxic treatment with reprogramming
communicative dysfunction.

All experiments were performed on a laptop with an Intel
i7-5500U 2.40 GHz processor, 12 GB of RAM and running 64-
bit Microsoft Windows 10. The NEATG_A system was executed
using a Java hot-spot 64-bit server VM/JRE 1.8. In terms of
execution time the key determinants of performance are the size
of the grid and the number of iterations per run. The algorithm
displays O(n2) performance with respect to grid size and O(n)
performance with respect to number of iterations. The mean and
standard deviation of elapsed time per 1000 iterations is shown
in Table 2.

TABLE 2 | Mean and standard deviation of elapsed run-time per 1000 iterations,
in seconds, for different grid sizes.

Len/width Mean elapsed time (seconds) SD elapsed time (seconds)

25 20.1 3.7

50 81.2 12.5

75 155.3 8.5

100 314.8 18.5

RESULTS

No Treatment
In this first series of experiments the intention is to show the
tumor growth dynamics under different levels of Tolerance.
A 50 × 50 grid element is used, with each element of the grid
populated with five Normal cells. At time = 0 a single Malignant
cell is seeded in the central grid element and each experiment was
allowed to run for 3000 iterations. Both Normal and Malignant
cells have the same three-gene structure as previously used
in the NEATG experiments as they are known to consistently
generate viable tumor growth. The Tolerance value was varied
from 0 to 9, and the system run 10 times for each value
and the data averaged for analysis. All tests of significance use
Student’s t-test.

Figure 4 shows the averaged results for different values of
Tolerance – note that in the interests of clarity not all values of
Tolerance have been shown, and mean values only are reported.
Tumor growth can be assessed either as the simple count of
Malignant cells at each time point, as shown in Figure 4A, or
as the spatial distribution of Malignant cells (i.e., the number of
grid elements which have been invaded by Malignant cells), as
shown in Figure 4B. It is apparent from both these figures that
when Tol = 0, i.e., when there is no communicative dysfunction in
the system, that tumor growth does not take place. As the system
becomes more permissive, that is as the Tolerance value increases,
the rate of tumor growth clearly increases. The relationship is
not linear, for example the data shows that in this dataset tumor
growth when Tol = 2 is slightly slower than when Tol = 1,
but as this is an evolutionary system there are instances where
particularly beneficial mutations may emerge which can develop
into aggressive tumors.

However, if we compare the final values of Malignant cell
counts and invaded grid elements at the end of system runs (at
iteration 3000), then we can see a clear relationship between
tumor growth and degree of communicative dysfunction, as
shown in Figure 5. Note also the standard deviation showing
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FIGURE 4 | Impact of Tolerance on rate of tumor growth. (A) Change in Malignant cell counts over time for different values of Tolerance. (B) Change in number of
Grid Elements invaded by tumor over time for different values of Tolerance.

FIGURE 5 | Relationship between tumor growth and Tolerance value. (A) Number of Malignant cell counts at 3000 iterations for different values of Tolerance (mean
and standard deviation). (B) Number of Grid Elements invaded by tumor at 3000 iterations for different values of Tolerance (mean and standard deviation).

the variance between different runs of the system for the
same parameters.

The relationship between Tolerance value and the number
of Malignant cells at 2000 iterations is statistically significant,
P = 0.007. Also significant is the rate of growth between
iteration = 1100 and 1500 and Tolerance value, P = 0.001,
and between iteration = 1500 and 2000, P = 0.000001. These
time periods are used in the experiments that follow as
they are sufficient to allow tumor growth to occur before
treatment interventions take place and yet are sensitive to the
Tolerance value.

The Tolerance value also has some effects on the degree
of genetic heterogeneity, as shown in Figure 6. In Figure 6A
we see the average number of mutations per Malignant
cell at the end of the 3000 iterations. It is clear that in
the case of Tol = 1 the Malignant cell population has
undergone a far higher degree of evolutionary change than
the Malignant cells in more Tolerant conditions. In contrast
we see in Figure 6B that there is a trend to a higher
number of clonal subpopulations (i.e., distinct populations of
Malignant cells sharing the same genomes) in more Tolerant
conditions. The data is suggestive that there is a greater
evolutionary pressure for low values of Tolerance but that this

evolutionary pressure does not necessarily lead to greater intra-
tumor heterogeneity.

Another view of the degree of evolutionary change and the
relationship with Tolerance is shown in Figure 7. Figure 7A
shows the cumulative number of distinct genotypes which have
existed through the lifetime of the system, including all clonal
subpopulations that have become extinct. This is in effect a
measure of the rate of evolutionary change in the system, and
it clearly indicates that Tol = 1 has a higher rate of change
than more Tolerant conditions. In Figure 7B we show the
secular trend for Tol = 1 and Tol = 9, showing that relative
rates of change. Note also the degree of variance indicated
by the error bars.

Figure 8 shows the spatial distribution of tumor growth
for one representative run of the system. In this example
Tol = 9 and the figure shows an aggressive tumor mass that
expands over time.

Cytotoxic Treatment
Having established that increasing communicative dysfunction
is associated with more aggressive tumor growth, the next
series of experiments will assess the relationship between
cytotoxic treatment and communicative dysfunction. The same
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FIGURE 6 | Genetic heterogeneity and Tolerance value. (A) Number of mutations per malignant cell at 3000 iterations for different values of Tolerance (mean and
standard deviation). (B) Number of clonal subpopulations at 3000 iterations for different values of Tolerance (mean and standard deviation).

FIGURE 7 | Genomic evolution and Tolerance. (A) Number of distinct genomes at 3000 iterations for different values of Tolerance (mean and standard deviation).
(B) Evolution of distinct genomes for Tol = 1 and Tol = 9 (mean and standard deviation).

parameters will be used as in the previous experiments though
the system will be run for only 2000 iterations as we know
that by this stage tumors are generally well-established. The
treatment strategy used in these experiments is based on the
idea of maximum tolerated dose chemotherapy. Treatment is
initiated at iteration 1500 and is applied for 25 iterations. The
treatment induces apoptosis in cells close to cell division, with
Malignant cells having a greater vulnerability, although there
is some level of ‘collateral’ damage to Normal cells (i.e., some
Normal cells also undergo apoptosis due to the treatment). Full
details of this treatment strategy are described in Pantziarka
(2016), and in this case the ratio of Malignant to Normal
cells that undergo apoptosis through this treatment is 5:1.
Experiments were repeated 20 times and the mean value used
for the analysis.

The results are shown in Figure 9. For both Malignant
cell counts and for tumor invasion the initiation of cytotoxic
treatment causes a sharp decrease in cell numbers, in line
with real tumor response to cytotoxic chemotherapy. However,
following the cessation of treatment there is a recovery of
tumor growth. It is clear that there is a relationship between
communicative dysfunction and this regrowth rate – the greater
the value of Tolerance the more aggressive the rare of regrowth.

Two important metrics when assessing cytotoxic therapy are
the kill rate and the tumor regrowth rate. The first is the
percentage of the Malignant cells that die off due to the cytotoxic
treatment – in our example this is computed as the percentage
difference in Malignant cell counts at treatment initiation
(iteration = 1500) and the first time point immediately after
cessation of treatment (iteration = 1526). The tumor regrowth is
defined here as the percentage difference in Malignant cells count
from cessation of treatment (iteration = 1526) to 400 iterations
after treatment cessation run (iterations = 1926). The results are
shown in Figure 10, the relationships between Tolerance and
kill rate and Tolerance and recovery rate are both significant at
P = 0.001. Also significant is the relationship between kill rate
and recovery rate at P = 5.4× 10−9.

Anakoinosis – Communicative
Reprogramming
A key element of the anakoinosis concept is the communicative
reprogramming through the use of a cocktail of repurposed
non-cancer drugs to modulate the biology of the entire
tumor system rather than focus purely on the cancer cells
(Hart et al., 2015; Walter et al., 2017). Given that we
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FIGURE 8 | (A) Spatial distribution of tumor growth over time. Note the emergence of necrotic areas in the tumor mass (denoted in black). (B) The corresponding
growth curve showing increase in Malignant cell counts.

FIGURE 9 | Tumor response to cytotoxic treatment. (A) Impact of cytotoxic treatment on Malignant cell counts for different values of Tolerance. (B) Impact of
cytotoxic treatment on tumor invasion for different values of Tolerance.

FIGURE 10 | Tumor kill and recovery rates. (A) The tumor kill rate for different values of Tolerance. (B) The tumor regrowth rate for different values of Tolerance.
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have shown that communicative dysfunction, as defined here
by Tolerance > 0, is associated both with tumor growth
and tumor regrowth following cytotoxic treatment, the next
series of experiments investigated the effect of communicative
reprogramming on tumor growth.

The model run parameters are as in the previous section,
with the exception that a Tolerance value of Tol = 9 is used
as the background rate. As was shown above, this level of
communicative dysfunction is associated with robust tumor
growth over a period of 2000 iterations. The treatment strategy is
initiated at iteration 1500, when communicative reprogramming
takes place and the Tolerance is reduced, as we would expect with
anakoinosis treatment, to the range Tol = 0 to Tol = 8. Each
experiment was repeated 10 times and the mean of the results
used in the analysis. Note that treatment in these experiments was
for iterations = 100, a value that empirical testing had shown was
associated with robust responses.

Figure 11 shows the tumor response, in terms of
Malignant cell counts and tumor invasion, of anakoinosis –
the communicative reprogramming such that Tolerance is
reduced from Tol = 9 to lower Tolerance for the duration of
treatment, that is between iterations 1500 to 1600. The Tolerance
value is reduced in a step-change and remains at the lower
level until the end of treatment, at which point it is increased
again in a step-change back to Tol = 9. Note that the control
case, where Tolerance is not reverted but remains at Tol = 9
is also shown. There are differences in growth rates prior to
initiation of treatment at iteration = 1500, but as this is an
evolutionary model we would expect some variation. Cell counts
at iteration = 500, 1100, and 1500 were uncorrelated with the
treatment schedule and essentially chance artifacts that are
not significant. Furthermore, an additional set of experiments
was performed for 50 runs for three values of treatment to
confirm that the pre-treatment growth rates converged, as shown
in Figures 12A,B.

It is the reduction in cell numbers during and after treatment
which are of importance and clearly the responses in terms of
the number of Malignant cells are quite strong (Figure 11A),
however there is a less clear effect in terms of a reduction in
tumor invasion as shown in Figure 11B. It is also apparent from
Figure 11A that recovery in Malignant cell numbers emerges
very quickly after treatment ends at iteration 1600, in many cases
before the treatment has ceased.

Examination of the mean kill rate (difference in Malignant
cell counts between iteration = 1500 and iteration = 1601),
shows that in fact with the exception of reversion to the lowest
levels of communicative dysfunction (Tol = 0 to Tol = 2) the
treatment did not lead to a reduction in tumor growth, as
shown in Figure 13A. Paradoxically, the mean recovery rate is
higher for the lower values of Tolerance following the cessation
of treatment, as shown in Figure 13B. However, while the rate
increases rapidly, the final cell counts are lower for lower values
of Tolerance during treatment.

The relationship between the reverted Tolerance value and
Malignant cell kill rate is highly significant, P = 2.2 × 10−23,
and the relationship between kill rate and recovery is also highly
significant at P = 3.8× 10−7.

Combination Treatment
In the final set of experiments we explore the strategy
of combining cytotoxic treatment with communicative
reprogramming. In this series of experiment we will assess
the impact of applying the cytotoxic treatment in parallel with
reverting communicative dysfunction from Tol = 9 to Tol = 0.
The parameters for the cytotoxic treatment are as before. In
addition in this series of experiments the impact of increasing
the anakoinosis treatment period, from 100 to 500 iterations
is assessed. The duration of the model runs is extended to
iteration = 2500 so that the impact of the longer treatment period
can be assessed.

The results are shown in Figure 14, and it is apparent,
both in terms of Malignant cell counts and grid elements, that
the initial sharp drop in cell counts due to the combination
of cytotoxic treatment and communicative reprogramming is
followed by a slower decline in cell numbers. Tumor regrowth
commences only after the cessation of all treatments. As we would
predict, the longer treatment period is associated with longer
responses to treatment.

The tumor kill and recovery rates are shown in Figure 15,
and these reflect the same findings in that longer treatment
periods are strongly associated with greater kill rates and reduced
recovery rates. The relationship between kill rate and treatment
length is significant, P = 1.1× 10−9, as is the relationship between
kill rate and recovery, P = 4.2× 10−4.

DISCUSSION

Both NEATG and NEATG_A are non-physiological agent-based
evolutionary models. While they exhibit complex behaviors
that are analogous to real tumor systems they do not infer
specific biological pathways or molecular signaling. Agent-
based evolutionary models are an ideal methodology for
investigations into biological systems at the cell level. Unlike
more traditional mathematical/statistical models, agent-based
models are designed to investigate the interactions between many
individual cells rather than treating all cells as an amorphous
mass. Recent publications in oncology have investigated the
Warburg effect (Shan et al., 2018), drug-radiation interactions
in the tumor-microenvironment (Mao et al., 2018) and an
investigation into tumor response to PD1 and PDL1 inhibition
(Gong et al., 2017). There are many others, demonstrating that
this modeling technique is able to generate new insights and
results in biologically relevant contexts. In the case of NEATG
some of the mechanisms described in the model, particularly
related to the role of cell competition and the pro-tumor impact
of apoptosis, have subsequently been found to be in accord with
the role of Myc-mediated cell competition in cancer initiation
and progression (Di Giacomo et al., 2017b).

Data previously published showed that the NEATG model
results were similar to in vitro results for a number of cancer cell
lines (Pantziarka, 2016). Figure 16, shows the results produced
by the NEATG_A model in comparison with growth data from
a published panel of human cancer cell lines (Castro et al.,
2003). These results (produced with Tol = 9, no treatment
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FIGURE 11 | Tumor response to anakoinosis. (A) Impact of anakoinosis treatment on Malignant cell counts for different values of Tolerance. (B) Impact of
anakoinosis treatment on tumor invasion for different values of Tolerance.

FIGURE 12 | Anakoinosis treatment for 50 runs. (A) Mean pre-treatment growth rate for 50 runs. (B) Mean and standard deviation of Malignant cell counts after 50
runs at 1000, 1500, and 2000 iterations.

FIGURE 13 | Tumor kill and recovery rates following anakoinosis. (A) The tumor kill rate for different values of Tolerance after anakoinosis treatment. (B) The tumor
regrowth rate for different values of Tolerance after anakoinosis treatment.

and run for 15000 iterations), shows that as with the previous
version of the model, NEATG_A cancer cell growth dynamics
recapitulate features from in vitro laboratory data. This data
also suggests that with high values of Tolerance this version of
the model produces results in line with the non-anakoinosis
version of the model.

In the case of this work, NEATG_A is a significant advance
on the original NEATG model. It has incorporated the idea of
communicative dysfunction and communicative reprogramming
into the model. The model itself is agnostic as to the specific
biological features of this cell-tissue communication system,
although it incorporates both genotypic and phenotypic features
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FIGURE 14 | Tumor responses to combination treatment. (A) Impact of combination treatment on Malignant cell counts for different treatment duration. (B) Impact
of combination treatment on tumor invasion for different treatment duration.

FIGURE 15 | Tumor kill and recovery rates after combination treatment. (A) The tumor kill rate for different duration of combination treatment. (B) The overall
Malignant cell growth rate for different duration of combination treatment.

FIGURE 16 | NEATG_A data comparison to real tumor growth. (A) Long-term growth, for l5000 iterations, of Malignant cells and concomitant reduction in
non-tumor grid elements (mean and standard deviation). (B) Growth of monolayer cells from human cancer cell lines (reproduced from Castro et al., 2003),
superimposed in red Malignant cell growth from (A) (red line) scaled and transformed to compare to human cancer cell lines.

into a handshake signature between cells and tissue. The
results show that this cell-tissue communication system acts as
an intrinsic non-cell autonomous anticancer mechanism. This

enhancement of the model therefore increases the biological
relevance and incorporates additional mechanisms which are
of great importance in mediating responses of real tumors
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to treatments. In particular, the interaction between cell-
mediated and cell-autonomous processes reflects more closely the
underlying biology of cancer.

There is some evidence to support such a finding in biological
systems, for example Bussard and Smith report experiments
in which cancer cells transplanted into non-cancer mammary
tissues are reverted from their cancer phenotype (Bussard and
Smith, 2012). Indeed there is some interest in the idea of a pre-
cancerous niche, whereby cancer initiation is associated with
chronic inflammation, tissue injury or some other cause of tissue
dysfunction (Pantziarka, 2015). Multiple lines of evidence point
to the importance of the host tissue environment in the formation
of metastases (Kaplan et al., 2006; Barcellos-Hoff et al., 2013).
Clearly such tissue dysfunction, which is associated with many
of the “hallmarks of cancer” (Hanahan and Weinberg, 2011),
involves multiple cell-dependent and independent processes.
Therefore, a handshake signature that combines both genomic
and phenotypic data is supported by a strong biological rationale.

Intra-tumor heterogeneity is an important feature of cancer
and the focus of intense interest (McGranahan and Swanton,
2017), particularly as it may relate to response to cancer
treatments (Jamal-Hanjani et al., 2015; Gatenby and Brown,
2017). As shown in Figures 6, 7, the model exhibits the
evolutionary development of sub-clonal expansion and an
increase in mutational load. Furthermore the data shows that
Tolerance is an important evolutionary factor – low Tolerance
(Tol = 1) acts on selection and therefore drives a greater degree
of evolutionary change (in terms of mutational load and the
accumulated number of distinct genomes expressed during 300
iterations of the system) than more Tolerant systems. In this
system the Malignant cells try to adapt to the low Tolerance
conditions by rapid rates of change. However, we may note
that this greater rate of mutational change does not necessarily
lead to greater rates of tumor growth. In fact despite the
greater rate of mutational burden shown when Tol = 1, the
growth of Malignant cell counts and tumor invasion is highest
when Tolerance is higher. Indeed, as shown in Figure 6B, the
greatest number of clonal subpopulations exists when Tol = 9,
suggesting that under lower Tolerance levels many of the clonal
subpopulations do not survive.

Of course in physical systems the degree of Tolerance would
not be static and may co-evolve with the growth of clonal
subpopulations. We may speculate that a cancer may first
develop in situations of low Tolerance in which a high degree of
mutational change takes place, but that as the cancer develops the
degree of Tolerance increases thereby leading to rapid expansion
of some of these clonal subpopulations.

No Treatment Results
The initial series of experiments, using the No Treatment
scenario, are broadly in line with the results from the NEATG
model, with the exception of the cases where Tolerance = 0.
These results consistently show that the implanted Malignant
cells are not able to establish viable tumors in a ‘healthy’ tissue
environment. However, when there is a degree of permissiveness,
as set by Tolerance > 0, then implanted Malignant cells
proliferate and form invasive tumors. The relationship between

communicative dysfunction and the degree of tumor growth,
as shown in Figure 5, appears to be broadly logarithmic. Why
would we not expect a linear relationship? A greater Tolerance
value would translate into an increased evolutionary search
space for Malignant cells – but this increased capacity for
mutational change also means that there is a greater probability
for mutations that are either ‘silent’ or that reduce the fitness of
individual Malignant cells. Therefore we may expect to see some
diminishing returns as the Tolerance value increases. We should
also note that this is a stochastic model and that in some runs
particularly good or bad evolutionary trajectories emerge, with
corresponding high or low rates of tumor growth. For example,
as clearly shown in Figure 5, the results for tol = 5 are higher than
expected, while for tol = 8 the figures lower.

Treatment Results
The first treatment strategy to be assessed is the Chemo strategy,
which is designed to be analogous to high-dose cytotoxic
therapy. The treatment parameters, including treatment period
(25 iterations), were based on previous results that have been
shown to induce a significant reduction in Malignant cell
numbers and the degree of invasion (as measured by the number
of grid elements which predominately contain Malignant cells).
In this series of experiments it is not the treatment that was
varied but the degree of communicative dysfunction as defined
by the Tolerance value. The results show statistically significant
relationships between the Tolerance value and both tumor kill
rate (the proportion of Malignant cells killed by the end of
treatment) and the rate of tumor regrowth.

In particular it is the relationship between the recovery rate
and the degree of Tolerance which is important here. The
implication is that resistance to therapy, in the form of fast
tumor regrowth following chemotherapy, may be related to the
level of tissue dysfunction rather than being driven entirely
by the characteristics of cancer cells. This phenomenon, which
has been termed environment-mediated drug resistance (Meads
et al., 2009), is clearly of clinical concern. There is evidence
that chemotherapy itself may exacerbate tissue dysfunction and
therefore induce further resistance to treatment (Vyas et al.,
2014). For example, high rates of apoptosis in breast cancer
has been shown to be associated with a worse prognosis
(Nishimura et al., 1999), and a possible prognostic marker in
circulating tumor cells (Jansson et al., 2016). Apoptotic cell
death is clearly not a ‘silent’ process, with multiple impacts
on surrounding cells, tissues and immunological responses
(Gregory and Pound, 2011; Wang et al., 2013; Labi and
Erlacher, 2015; Lauber and Herrmann, 2015). In the context
of anakoinosis, the ‘phoenix rising phenomenon’ is especially
pertinent in that caspase-3-dependent apoptosis induced by
cytotoxic chemotherapy activates the COX-2 pathway, thereby
promoting prostaglandin-E2-mediated proliferation of surviving
cells (Fogarty and Bergmann, 2015).

In the next series of experiments the focus was on reverting
communicative dysfunction, in the form of changing the
Tolerance value following the successful seeding of a tumor mass.
The background Tolerance value was set at Tol = 9, which the
previous experiments have shown is associated with aggressive
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tumor growth, and then at initiation of treatment at iteration
1500 this Tolerance value was reduced in the range Tol = 0 to
Tol = 8. The results, in Figure 11, show that reducing Tolerance
from a high value to a low value can slow the rate of tumor growth
and, in some cases, cause a degree of tumor regression. It also
shows that while Tol = 0 can stop the formation of tumors, once
a tumor is well-established reverting to Tol = 0 is not sufficient
to completely remove all Malignant cells. It is also clear that only
large reductions in Tolerance value can induce tumor regressions.
Both Figures 11A, 12A therefore illustrate the same behavior –
that reducing Tolerance from a high level (Tol = 9) to a low-
level (between Tol = 0 and Tol = 5) induces growth arrest or
regression for the duration of the low Tolerance period only but
that when treatment ends and Tolerance returns to a high level
tumor growth recommences and indeed may be more aggressive
than prior to treatment. This finding has important implications
in terms of treatment protocols for cancer patients undergoing
anakoinotic treatments.

Also of note is that tumor regrowth following cytotoxic
treatment, as shown in Figure 9, is more aggressive than the
regrowth following communicative reprogramming, Figure 11.
We may speculate that the former reduces tumor growth
through inducing artificially high rates of apoptotic cell death,
while the latter reduces tumor growth through tissue-intrinsic
anticancer mechanisms.

These results suggest that patients treated with medicines to
address systemic communicative dysfunction – in other words
drugs for communicative reprogramming – would benefit more
when the degree of normalization is highest. Further, it suggests
that treatment with these drugs alone may not be sufficient to
induce complete regressions. Finally, cessation of treatment may
be followed be a rapid recurrence of disease. Data from a Phase
II clinical trial of communicative reprogramming in non-curative
hepatocellular carcinoma provides support for this model finding
(Walter et al., 2017). If we accept that serum concentration
of C-reactive protein (CRP) is a proxy for communicative
dysfunction this study showed both that pre-treatment level was

correlated with survival and, as importantly, that reduction in
CRP during treatment was also predictive of survival.

In the final round of experiments the intention was to
assess the combination of chemotherapy and communicative
reprogramming. Additionally, given that all treatments have
shown tumor regrowth following cessation of therapy, this
series of experiments assessed the impact of extending the
treatment periods. In this combination one initial dose of
cytotoxic treatment was modeled, for iteration = 25 as before,
concurrently with communicative reprogramming for periods of
iteration = 100 to iteration = 500. The rationale for this approach
is that increasing the duration or intensity of chemotherapy
imposes unacceptable toxicity in patients, while communicative
reprogramming using repurposed drugs is relatively non-toxic
and more tolerable.

Results in Figure 14 show that the combination treatment
does induce a rapid reduction in Malignant cell count and
subsequent tumor regrowth. However, the longer treatment
periods are associated with a greater level of tumor cell kill and
a slower rate of recovery. Indeed, calculation of the growth rate
at iteration = 400 following cessation of treatment shows a very
strong relationship, P = 7.7 × 10−5, with treatment length, as
shown in Figure 17.

This result clearly supports the use of long-term
treatments using the anakoinosis approach of communicative
reprogramming with non-toxic therapies. It also suggests that
the use of this approach with chemotherapy may also have some
utility. A possible biological rationale is that DNA damaging
drugs can elicit a signal response [DNA damage response (DDR)]
able to modulate cell-autonomous and cell-non-autonomous
processes, possibly driving cells toward a caspase-independent
apoptosis – in other words to induce a ‘silent’ apoptotic
response mediated by the combination of chemotherapeutics
and anakoinotic drugs (Bruni et al., 2018).

Perhaps surprisingly, little, if any, experimental evidence of
the long-term effects of anticancer treatments on in vitro cancer
cell systems is available, especially dealing with modulatory

FIGURE 17 | Growth at iteration = 400 following combination treatment.
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drugs. Therefore, it is not possible so far to fully assess the
validity of the NEATG_A system on this issue. To explore
further, we set up ad hoc experimental protocols, using cytotoxic,
modulatory, and combination treatments on human tumor cell
cultures. The very long experiments, that are still ongoing, have
demonstrated that cytotoxic treatments drastically reduce cell
number, as expected, but promote faster regrowth of cells with
increased chemoresistance, in line with the phoenix rising model.
Modulatory drugs induce a more gradual growth inhibition, but
do not promote faster regrowth; on the contrary, proliferation
reduction is even maintained after drug removal, provided the
drugs were maintained for a minimum number of days (e.g.,
necessary to reprogram gene expression). Such experimental
findings, now in the completion phase and soon to be submitted
(Corsi et al., unpublished), strikingly match the NEATG_A
results, reinforcing the strong predictive ability of the model,
and suggesting mechanisms through which the “handshake” may
modulate the response to drug treatment in cancer patients.

One of the key results from previous work with the NEATG
model, and confirmed in this study, is that high rates of cell death
are pro-tumor and linked to subsequent tumor progression.
The clear implication of these results is that anakoinosis
may be effective as a cancer treatment because it alters the
communicative environment and interferes with the pro-tumor
impact induced by high rates of chemotherapy-related apoptosis.
A second implication is that cell competition, which is an
emerging area of research in oncology, is also impacted by
anakoinosis – again, changing the communicative environment
through reprogramming alters the tumor system such that
Malignant cells with high-levels of fitness due to mutational
change are penalized rather than rewarded.

A key strength is that these results arise from the functional
interactions of the elements modeled by the system, namely
cells and tissues. The behaviors are emergent rather than pre-
programmed or explicitly coded in the model. As such it
is encouraging that several clinically relevant outcomes from
clinical studies using the anakoinosis approach also emerge in
these model results. Furthermore, it suggests that additional
mechanisms related to cell death and cell competition may be
relevant in this treatment approach.

This is a computational model at a level of abstraction that,
at this stage of development, does not consider the relevant
biological/molecular pathways that implement these behaviors in
the patient or animal model. For example, it does not include data

on the relative importance of immune response, angiogenesis,
tumor architecture or other key factors. However, there may
be scope to enhance the model to include more physiologically
relevant pathways such that the impact of addressing these factors
clinically can also be modeled. The handshake function that is
included in NEATG_A in this study is still a very crude protocol;
recent work, for example on cell competition and carcinogenesis,
suggests that there is a more complex interplay at work (Di
Giacomo et al., 2017a; Watanabe et al., 2018).

CONCLUSION

Anakoinosis, or communicative reprogramming is an emerging
treatment modality that uses a combination of non-cancer drugs
with standard cancer treatments. To date this approach has not
been subject to mathematical or computational modeling. Here
we present results from a complex agent-based evolutionary
computational model. The results are broadly in line both with
clinical results and with the rationale behind the development of
the anakoinosis approach. These positive results lend support to
the treatment approach, particularly the long-term use of low-
toxicity treatments that reduce the risk of treatment-induced
accelerated tumor regrowth and the process of environment-
mediated drug resistance.

Finally, these results predict that a combination of cytotoxic
treatment and communicative reprogramming lead to a reduced
tumor regrowth following cancer treatment. This strategy
warrants further pre-clinical investigation.
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