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Several molecular technologies aimed at regulating gene expression that have been recently 
developed as a strategy to combat inflammatory and neoplastic diseases. Among these, 
antisense technology is a specific, rapid, and potentially high-throughput approach for 
inhibiting gene expression through recognition of cellular RNAs. Advances in the 
understanding of the molecular mechanisms that drive tissue damage in different 
inflammatory diseases, including Crohn’s disease (CD) and ulcerative colitis (UC), the two 
major inflammatory bowel diseases (IBDs) in humans, have facilitated the identification of 
novel druggable targets and offered interesting therapeutic perspectives for the treatment 
of patients. This short review provides a comprehensive understanding of the basic concepts 
underlying the mechanism of action of the oligonucleotide therapeutics, and summarizes 
the available pre-clinical and clinical data for oligonucleotide-based therapy in IBD.
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INTRODUCTION

The central dogma of molecular biology states that DNA encodes RNA, which is then 
translated into proteins. In recent years, the use of compounds that are able to bind messenger 
RNAs (mRNAs) has gained increasing interest as inhibition of protein expression can 
be  helpful for controlling the course of inflammatory and neoplastic diseases. The two 
major therapeutic approaches in this field are the antisense oligonucleotides (ASOs) that 
inhibit mRNA translation and the oligonucleotides, which function via RNA interference 
(RNAi) pathway (Chan et  al., 2006; Chery, 2016). Synthetic oligonucleotides are negatively 
charged molecules with different chemical properties based on the technology used for 
their design. In order to regulate target gene expression, these compounds have to reach 
disease-associated tissues and cross cell membranes. This is in part facilitated by the 
manipulation of their chemical structure, which makes oligonucleotides also more powerful 
and less toxic with a lower chance to have off-target effects and to activate the host immune 
system (Sharma and Watts, 2015).
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In the last decades, the advent of new techniques of 
molecular and cellular biology has advanced our understanding 
of the factors/mechanisms that promote tissue damage in 
several chronic inflammatory diseases, including Crohn’s 
disease (CD) and ulcerative colitis (UC), the two major 
inflammatory bowel diseases (IBDs) in humans (Neurath, 
2017). This has contributed in identifying novel druggable 
targets, thus offering interesting therapeutic perspectives for 
the treatment of these patients. We  here shortly review the 
basic concepts underlying the mechanism of action of the 
ASOs and summarize the available data for ASO-based therapy 
in IBD.

ANTISENSE OLIGONUCLEOTIDE 
STRATEGY AND MOLECULE DESIGN

An antisense oligonucleotide (ASO) is a single-stranded 
deoxyribonucleotide, which is complementary to the mRNA 
target. The goal of the antisense approach is the downregulation 
of a molecular target, usually achieved by induction of RNase 
H endonuclease activity that cleaves the RNA-DNA heteroduplex 
with a significant reduction of the target gene translation 
(Figure 1). Other ASO-driven mechanisms include inhibition 
of 5′ cap formation, alteration of splicing process (splice-
switching), and steric hindrance of ribosomal activity (Chan 
et  al., 2006; Bennett et  al., 2017; Crooke, 2017).

The recent developments in the human genome sequencing, 
the possibility of a rational design of oligonucleotides and 
the theoretical simplicity, and relatively cheap costs of these 
compounds led to their use as either therapeutic agents or 
tools for assessing gene function. Although, the researchers 
usually select the ASO candidate by testing the activity of 
few oligonucleotides that specifically regulate the target gene 
expression, it would be  recommendable to identify the ideal 
ASO through an accurate evaluation of a panel of putative 
oligomers (Tu et  al., 1998; Stein, 2001). It is crucial that 
the ASOs do not bind, even partially, to a non target mRNA. 
In this context, it is noteworthy that 6–7 base pairs between 
the ASO and non target mRNA are sufficient to initiate RNase 
activity, leading to cleavage of the wrong target. The secondary 
and tertiary structure of the RNA must be taken into account 
to minimize the possibility that the selected sequence is 
inaccessible to binding (Ho et  al., 1998; Vickers et  al., 2000; 
Andronescu et  al., 2005). To this end, the use of software 
with a robust RNA folding program (e.g., Sfold or mfold) 
can help select the optimal candidate (Zuker, 2003; Ding 
et al., 2004). Generally, the length of an ASO is approximately 
20 nucleotides and the ASO is selected to target either the 
methionine (AUG) initiation codon (to block translation) or 
splice sites (to block splicing) (Chan et  al., 2006; Chery, 
2016). The effective knockdown of the target is usually 
demonstrated at the protein level, but analysis of RNA 
expression should be  made in order to exclude that the 

FIGURE 1 | Basic mechanisms of action for therapeutic antisense oligonucleotides (ASOs) and RNA interference (RNAi).
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target protein is down-regulated through a non-sequence 
specific mechanism. To maximize sequence specificity, ASOs 
should not be  designed into polymorphic/mutated regions 
of the genome and selection should exclude oligonucleotides 
targeting four contiguous guanosine residues in order to 
avoid generation of tetraplexes via Hoogsteen base-pair 
formation (Sen and Gilbert, 1992; Benimetskaya et  al., 1997; 
Crooke, 2004).

Since in their “naïve” form, ASOs could be rapidly digested, 
thus limiting their bioavailability (Eder et  al., 1991), most 
of ASOs are phosphorothioated (Eckstein, 2014). This 
modification facilitates binding of ASOs to plasma proteins, 
thereby reducing their renal loss and improving uptake to 
several organs (e.g. liver, bone marrow, and lymph nodes). 
The chemical modification influences neither RNase H activity 
nor ASO solubility, thus allowing administration by different 
routes (e.g. subcutaneous, intravenous, topical, oral, or rectal). 
However, phosphorothioate oligonucleotides containing one 
or more CpG motifs can bind the Toll-like receptor (TLR) 
9 and trigger innate immune responses. This issue can 
be  overcome by either selecting oligonucleotides containing 
no CG or replacing the C with 5 methyl C, which does not 
stimulate the immune system (Stein, 2001).

Increased ASO binding affinity and biostability have also 
been obtained using oligonucleotides with ribose modifications 
[i.e. substitution of the hydrogen at the 2-position by an 
O-alkyl group and locked nucleic acid technology (LNA)] 
that reduce conformational plasticity (Wahlestedt et  al., 2000; 
Prakash, 2011; Hagedorn et  al., 2018). However, LNA can 
accumulate in the liver and promote hepatotoxicity, mainly 
due to an off-target RNase H dependent RNA degradation 
(Burel et  al., 2016).

ASOs have been already used in various human pathologies. 
For instance, in 1998, FDA approved the use of fomivirsen, 
a compound that inhibits the translation of the mRNA 
encoding for the major immediate early region proteins of 
cytomegalovirus, for the treatment of cytomegalovirus-induced 
retinitis (Jabs and Griffiths, 2002). In 2013, FDA approved 
the use of mipomersen, a compound targeting apolipoprotein 
B100, for the treatment of familial hypercholesterolemia (Duell 
et  al., 2016), while later on, eteplirsen was introduced to 
treat Duchenne muscular dystrophy, and nusinersen was 
approved for spinal muscular atrophy treatment (Khorkova 
and Wahlestedt, 2017; Goyal and Narayanaswami, 2018). 
Eteplirsen binds to the disease-related-exon 51 of dystrophin 
RNA and allows the splicing of exon 52 to exon 51, thus 
generating a shortened but partly functional protein  
(exon skipping strategy) (Khorkova and Wahlestedt, 2017). 
Differently, nusinersen uses an exon switching strategy to 
increase the amount of functional full-length survival motor 
neuron-2 protein. After hybridization to its target, this 
oligonucleotide forces the inclusion of exon 7 into the mRNA 
and prevents the generation of short-lived/non-functional 
proteins (Goyal and Narayanaswami, 2018). Clinical trials 
employing ASOs in amyotrophic lateral sclerosis and familial 
amyloid polyneuropathy are also ongoing (Goyal and 
Narayanaswami, 2018).

ANTISENSE OLIGONUCLEOTIDE-BASED 
THERAPIES FOR INFLAMMATORY 
BOWEL DISEASE

Alicaforsen: Intercellular Adhesion 
Molecule-1 Antisense Oligonucleotide
IBD are chronic, immune-mediated diseases of the gastro-
intestinal tract, which are characterized by tissue damage and 
development of local and extra-intestinal lesions (Abraham 
and Cho, 2009; Neurath, 2017). One of the mechanisms 
sustaining the inflammatory process in IBD is the recruitment 
of immune cells from the peripheral blood to the intestine. 
Once activated in secondary lymphoid organs, such as Peyer’s 
patches and isolated follicles, leukocytes enter the circulation, 
and through a process named gut homing, eventually go back 
to the intestinal wall. This process is triggered mainly by 
chemoattractants produced within the inflamed tissue and 
favored by interaction between integrins expressed on leukocyte 
surface and proteins expressed on endothelial cells, such members 
of immunoglobulin superfamily [i.e. intercellular adhesion 
molecule (ICAM)-1, ICAM-2, and vascular cell adhesion 
molecule (VCAM)-1] (Hart et  al., 2010).

In inflamed gut of CD patients and UC patients, there is 
an enhanced expression of ICAM-1, a transmembrane glycoprotein 
constitutively expressed on the surface of intestinal epithelial 
cells and vascular endothelial cells (Vainer and Nielsen, 2000). 
Knockdown of ICAM-1 with specific ASO in mouse models 
of colitis reduced leukocyte trafficking to the gut and attenuated 
mucosal inflammation (Bennett et  al., 1997). In a proof of 
concept study, Alicaforsen (ISIS 2302), a 20 base-long 
phosphorothioate ASO inhibiting ICAM1 production, was 
intravenously administered to 20 active CD patients for 26 days. 
The drug was well tolerated and superior to placebo in inducing 
clinical remission (Yacyshyn et  al., 1998). However, steroid-
dependent or resistant CD patients treated with intravenous 
or subcutaneous alicaforsen in two subsequent clinical trials 
showed no clinical benefit (Schreiber et  al., 2001; Yacyshyn 
et  al., 2002). Similar negative results were also obtained in two 
subsequent placebo-controlled phase III trials, in which alicaforsen 
was given to moderate-to-severe active CD patients (Yacyshyn 
et al., 2007). Therefore, the therapeutic development of alicaforsen 
in CD was discontinued.

An alicaforsen-containing enema formulation was developed 
for patients with UC or patients with pouchitis, an inflammatory 
condition of the ileal pouch reservoir, which can develop in 
UC patients undergoing colectomy and ileal pouch-anal 
anastomosis. In mild to moderate left-sided UC patients, alicaforsen 
enema had no significant effect on the course of the disease 
(Miner et  al., 2006; Van Deventer et  al., 2006). Afterwards, a 
retrospective analysis evaluating the efficacy of alicaforsen enema 
(240  mg/day for 6  weeks) showed clinical benefits in patients 
with left-sided and distal UC and in patients with chronic 
pouchitis (Greuter et  al., 2018). However, treatment was not 
sufficient to stably control the inflammation as more than 2/3 
of the patients relapsed within 16  weeks (Greuter et  al., 2016). 
A phase III, multicenter, double-blind, placebo-controlled trial 
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(NCT02525523) assessing the safety and efficacy of topical 
alicaforsen enema (240  mg/day for 6  weeks) has been recently 
completed in subjects with antibiotic refractory pouchitis but 
results are not yet available.

NF-κB Antisense Oligonucleotide
NF-κB is a transcription factor composed of two proteins 
(p50 and p65) regulating the expression of many inflammatory 
and anti-inflammatory genes (Rogler et  al., 1998; Schreiber 
et  al., 1998). It was shown that either intravenous or intra-
rectal ASO targeting the p65 subunit of NF-κB inhibited 
production of inflammatory cytokines and signs of colitis 
induced in mice by trinitrobenzene sulfonic acid (TNBS) or 
IL-10 deficiency (Neurath et al., 1996). Consistently, the specific 
p65 ASO reduced production of inflammatory cytokines in 
macrophages and endothelial cells isolated from the gut of 
CD patients (Neurath et  al., 1998). These data were in line 
with the demonstration that downregulation of NF-κBp65 with 
a specific ASO attenuated dextran sodium sulfate (DSS)-induced 
colitis (Murano et al., 2000) and intestinal fibrogenic processes 
in mice (Lawrance et  al., 2003). Despite these encouraging 
data in IBD-like murine models, no data are currently available 
on the use of NF-κB ASO in IBD.

Smad7 Antisense Oligonucleotide
IBD is believed to be  triggered by complex interactions among 
host genetic susceptibility and many environmental factors, 
which lead to a sustained activation of inflammatory pathways 
and defects in counter-regulatory mechanisms in the gut (Gorelik 
and Flavell, 2002; MacDonald et al., 2011). In intestinal immunity, 
transforming growth factor (TGF)-β1, a pleiotropic cytokine 
produced by many cell types suppresses inflammatory responses 
to luminal antigens, thus contributing to immune tolerance 
induction. The anti-inflammatory mechanism of TGF-β1 relies 
mainly on the intracellular phosphorylation and subsequent 
activation of TGF-β1 receptor-associated Smad2/3 proteins 
(Heldin et  al., 1997; Shi and Massague, 2003). In IBD patients, 
phosphorylated-Smad2/3 expression is reduced thus underlying 
the inability of TGF-β1 to adequately control inflammatory 
signals (Babyatsky et al., 1996). Such a defect has been associated 
with increased levels of Smad7, a cytosolic protein that inhibits 
TGF-β1/Smad-associated pathway (Monteleone et  al., 2001; 
Sedda et  al., 2015). Responsiveness of IBD mucosal cells to 
TGF-β1 is restored by downregulation of Smad7 with a specific 
ASO (Monteleone et  al., 2001). Oral administration of Smad7 
ASO to mice with TNBS and oxazolone-induced colitis restores 
TGF-β1-associated Smad signaling and mitigates intestinal 
inflammation (Boirivant et  al., 2006).

Later on, a pharmaceutical compound, which contains a 
Smad7 ASO targeting the RNA encoding by the 107–128 DNA 
region, was developed for CD therapy. The drug, named 
mongersen (previously called GED-0301), (Monteleone et  al., 
2012; Laudisi et al., 2016), was formulated in order to maximize 
the active compound release into the lumen of the terminal 
ileum and right colon, the intestinal regions mainly involved 
in CD. A phase I  clinical, open-label, dose-escalating study 

in patients with active, steroid-dependent/resistant CD showed 
that mongersen was safe and well-tolerated and treatment was 
associated with a clear clinical benefit (Monteleone et al., 2012). 
Although TGF-β1 is known to be  pro-fibrogenic (Leask and 
Abraham, 2004; Vallance et  al., 2005), no patient recruited 
into the trial developed strictures (Zorzi et  al., 2012). This 
later result was consistent with data generated in mice with 
TNBS-mediated colitis-driven intestinal fibrosis, in which 
knockdown of Smad7 with the specific ASO reduced intestinal 
inflammation and fibrosis (Izzo et  al., 2018). A double blind, 
placebo controlled, phase II trial was conducted in 166 active, 
steroid-dependent/resistant CD patients (Monteleone et  al., 
2015). Patients were allocated to receive one of three doses 
of mongersen (10, 40, or 160  mg per day) or placebo daily 
for 2 weeks. Patients receiving the 40 and 160 mg of mongersen 
reached significant higher rates of remission (55 and 65%, 
respectively) than those treated with 10  mg or placebo  
(12 and 10%, respectively). At the end of follow-up, the 
percentage of patients who had a steroid-free remission was 
significantly greater in the 160-mg group than in the placebo 
group. The study confirmed the safety profile of the drug 
(Monteleone et  al., 2015). These data were confirmed by a 
subsequent multicenter, randomized study, which evaluated the 
effect of mongersen on endoscopic outcomes (Feagan et  al., 
2018). Sixty-three active CD patients were randomized (1:1:1) 
to 4, 8, or 12  weeks of oral mongersen (160  mg daily). 
Endoscopic improvement was observed in 37% of participants. 
All three mongersen regimens induced rapid, clinically 
meaningful decreases in Crohn’s disease activity index scores. 
Moreover, reductions in high-sensitivity C-reactive protein levels 
and fecal calprotectin were observed in patients with increased 
values at baseline (Feagan et  al., 2018). A phase III clinical 
trial has been recently suspended due to an interim analysis 
documenting the lack of efficacy of mongersen. The reasons 
for this unexpected result are still to be  clarified.

RNA INTERFERENCE STRATEGY AND 
ITS THERAPEUTIC APPLICATION

Another strategy to inhibit the expression of mRNA is represented 
by RNAi. RNAi is mediated by many endogenous RNAs [e.g. 
piwi-interacting RNA (piRNA), microRNA (miRNA), and small 
interfering RNA (siRNA) (Li and Rana, 2012)]. Once incorporated 
into the RNA-induced silencing complex (RISC), these RNAs 
cause translational repression/degradation of the targeted mRNA 
through the partial or complete base paring of the guide strand 
(Figure 1). This result can be obtained by using single stranded 
RNAs (ssRNAs), which can be directly incorporated into RISC, 
or double stranded RNAs (dsRNAs), which require cleavage 
by the cytoplasmic endoribonuclease Dicer prior to 
be  incorporated into RISC (Li and Rana, 2012). Due to their 
chemical characteristics, synthetic silencing RNAs do not 
efficiently enter into cells and are highly susceptible to nuclease 
degradation. To overcome these limitations, silencing RNAs 
can be  complexed with nanoparticles, typically as polymer- or 
lipid-based formulations (Tatiparti et  al., 2017). It is, however, 
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noteworthy that nanoparticles can increase the toxicity of the 
compound or alter pharmacokinetics and biodistribution of 
the silencing RNAs. Patisiran is the first RNAi-based drug 
approved by FDA for the treatment of polyneuropathy caused 
by hereditary transthyretin-mediated amyloidosis (hATTR). It 
consists of a dsRNA encapsulated in a nanoparticle that allows 
the active molecule to reach the liver, where it specifically 
inhibits the hepatic synthesis of transthyretin (Adams et  al., 
2018). It remains to be  clarified whether this strategy can 
be  effective in organs other than liver, where delivery could 
be  more difficult.

Another strategy is to conjugate the silencing RNAs with 
ligands of the target molecule. An example is the addition of 
N-acetylgalactosamine (GalNAc) to the RNA, thus enhancing 
asialoglycoprotein receptor (ASGR)-mediated uptake into liver 
hepatocytes (Nair et  al., 2014). The major limitation of this 
strategy could be the rate of receptor recycling. GalNAc delivery 
is actually involved in several clinical and pre-clinical studies 
with exciting results (Tanowitz et  al., 2017).

SMALL INTERFERING RNA-BASED 
THERAPIES FOR INFLAMMATORY 
BOWEL DISEASE

STNM01: Small Interfering RNA Targeting 
Carbohydrate Sulfotransferase 15
The late stage of inflammation in IBD is characterized by the 
fibrotic process, which derives from an altered balance between 
matrix deposition and degradation (Rieder et  al., 2017). 
Carbohydrate sulfotransferase 15 (CHST15) is a sulfotransferase 
responsible for biosynthesis of chondroitin sulfate E-type (CS-E), 
which binds to pro-inflammatory and pro-fibrotic mediators, 
adhesion molecules, receptor for advanced glycation end-product 
(RAGE), and pathogenic microorganisms, all of them involved 
in fibrogenesis. CHST15 is increased in the colon of active 
CD patients (Belmiro et  al., 2005; Suzuki et  al., 2016, 2017). 
STNM01, a synthetic, double-stranded RNA oligonucleotide 
directed against CHST15, ameliorated acute and chronic DSS 
induced-colitis and reduced colonic deposition of collagen in 
mice (Suzuki et  al., 2016). A phase 1, randomized, double 
blind, placebo-controlled, clinical trial evaluated the safety of 
STNM01  in patients with CD (Suzuki et  al., 2017). Eighteen 
CD patients with mucosal lesions refractory to conventional 
therapies received a single-dose, endoscopic, submucosal injection 

of 2.5, 25, or 250  nM STNM01 (three patients per group) or 
placebo (nine patients). The drug was well tolerated, CHST15 
expression was reduced 1 month after the injection, and the 
drug attenuated intestinal inflammation and fibrosis.

CONCLUSION

The rationale for the use of antisense-based therapies in IBD 
is supported by the benefit seen in preclinical models and 
initial clinical studies, together with the safety profiles of the 
compounds. Unfortunately, however, large clinical trials have 
not confirmed the promising results obtained with ASOs in 
preclinical models. Although, it is unclear why these treatments 
failed in patients, it is conceivable that some factors either 
related to the target or route of administration may have 
contributed to these negative results. For example, the negative 
results of alicaforsen can, in part, rely on the fact that ICAM-1 
is just one of the various molecules involved in leukocytes 
trafficking, and therefore, even in the absence of ICAM-1, 
other integrins could promote recruitment of activated leukocytes 
in the gut. Another possibility is that systemic administration 
of ASO could be  not ideal for allowing optimal concentration 
of the drug within the gut tissue, where there is the main 
expression of the target. This hypothesis is supported by the 
demonstration that rectal administration of alicaforsen is of 
benefit in patients with distal UC and in patients with pouchitis. 
While STNM01 is the only siRNA currently tested in IBD, 
there is sufficient evidence to believe that RNAi technology 
can represent a new and valid approach to regulate the expression 
of disease-related genes. Some issues in the design and 
development of these compounds, such as correct identification 
of target mRNAs, stability, and delivery to the site of interest 
remain to be  solved.
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