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Despite of the low occurrence rate in the entire genomes, de novo mutation is proved
to be deleterious and will lead to severe genetic diseases via impacting on the gene
function. Considering the fact that the traditional family based linkage approaches
and the genome-wide association studies are unsuitable for identifying the de novo
mutations, in recent years, several pipelines have been proposed to detect them based
on the whole-genome or whole-exome sequencing data and were used for calling them
in the rare diseases. However, how the performance of these variant calling pipelines on
detecting the de novo mutations is still unexplored. For the purpose of facilitating the
appropriate choice of the pipelines and reducing the false positive rate, in this study,
we thoroughly evaluated the performance of the commonly used trio calling methods
on the detection of the de novo single-nucleotide variants (DNSNVs) by conducting a
comparative analysis for the calling results. Our results exhibited that different pipelines
have a specific tendency to detect the DNSNVs in the genomic regions with different GC
contents. Additionally, to refine the calling results for a single pipeline, our proposed filter
achieved satisfied results, indicating that the read coverage at the mutation positions
can be used as an effective index to identify the high-confidence DNSNVs. Our findings
should be good support for the committees to choose an appropriate way to explore
the de novo mutations for the rare diseases.

Keywords: de novo mutation, rare diseases, variant calling pipelines evaluation, gene function, whole-
exon sequencing

INTRODUCTION

The genomic structural variations, such as single-nucleotide variants (SNVs), copy-number
variants (CNV) and the indels, play important roles in the genetic diseases. The researches in the
past decade have discovered the landscape of SNVs in human and the strong causality between
the SNVs and the genetic diseases (Ku et al., 2012; Veltman and Brunner, 2012; Boycott et al.,
2013). Among the SNVs, the occurrence frequency of de novo SNVs (DNSNVs) in germline is as

Abbreviations: AJ, ashkenazi jewish; CNV, copy-number variants; DNSNVs, de novo single-nucleotide variants; GATK,
genomeanalysistoolkit; GIAB, genome in a bottle; OMIM, online mendelian inheritance in man; PCR, polymerase chain
reaction; SNV, single-nucleotide variants; Ti/Tv, the transition/transversion ratio; WES, whole-exome sequencing; WGS,
whole-genomes sequencing.
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low as 1.0~3.0 x 1078 SNVs per site per generation (Conrad
et al, 2012; Veltman and Brunner, 2012), but this type
of mutation is proved to be deleterious and will lead to
severe genetic diseases via impacting on the different gene
functions. It had been reported in recent studies that the rare
sporadic malformation syndromes (Hoischen et al,, 2010a,b;
Ng et al., 2010) as well as the neurodevelopmental diseases
(Hamdan et al, 2014; Turner et al, 2017) were primarily
caused by the DNSNVs in single specific genes or a set of
genes, elaborating the fundamentality of the de novo mutations
in the genetic diseases despite of the unclear underlying
mechanisms. Therefore, accurately identifying the de novo
mutations located in the rare-disease-causing genes can be
great helpful not only for improving the clinical diagnostics,
but also for better understanding the mechanisms in the rare
genetic diseases.

Due to the fact that the traditional family based linkage
approaches and the genome-wide association studies were
unsuited to the detection of de novo mutations, the emerging
next-generation sequencing technologies such as the whole-
genomes sequencing (WGS)/whole-exome sequencing (WES)
began to be applied in the researches of genetic diseases (Boycott
et al.,, 2013; Peters et al., 2015; Jin et al., 2017; Turner et al., 2017;
Hyrenius-Wittsten et al., 2018). A number of bioinformatics
pipelines have subsequently been proposed to call the de novo
mutations based on the WGS/WES data (McKenna et al., 2010;
Lietal, 2012; Koboldt et al., 2013; Kojima et al., 2013; Peng et al.,
2013; Ramu et al,, 2013; Cleary et al., 2014; Salzberg et al., 2014;
Santoni et al., 2014; He et al., 2015; Wei et al., 2015; Francioli
et al., 2017; Gomez-Romero et al., 2018; Zhou et al., 2018). The
heated discussions have been carried on in recent years about
applying these approaches in the diagnostics of rare diseases
and the potential clinical implementations (Yang et al.,, 2013;
Lee et al., 2014; Jamuar and Tan, 2015; Bacchelli and Williams,
2016; Krier et al., 2016; Thiffault and Lantos, 2016). However,
the occurrence of germline de novo mutations is much lower
than that of the inherited variations, resulting in the difficulty
of discriminating these variants from the noise derived from the
procedures of sequencing, reads mapping as well as the variant
calling and annotation. So far how the performance of these
variant calling pipelines on detecting the de novo mutations is
still unexplored.

Therefore, in our study, we thoroughly investigated three
commonly used trio calling pipelines named GATK (McKenna
et al, 2010; Francioli et al, 2017), RTG (Cleary et al,
2014) and VarScan (Koboldt et al, 2013) on the detection
of the DNSNVs and found that GATK can detect the
DNSNVs in the low GC-content region with a relative
low error rate while RTG and VarScan are more suitable
for detecting the DNSNVs in the high GC-content region.
In refining the calling results of a single pipeline, our
proposed filter not only effectively excluded the redundant
DNSNVs, but also ensured the transitions/transversions ratio
of the results, indicating that the read coverage at the
mutation positions of the son’s genome and the parents
genomes can be an important index for evaluating the
quality of DNSNVs.

MATERIALS AND METHODS

Dataset

The WES data of the Ashkenazi Jewish (AJ) trio set (NA12878)
were applied in our study (Zook et al, 2014, 2016). The
preprocessed BAM files of the mother (HGO004), the father
(HGO003) and the son (HG002), for which the data preprocessing
steps including the reads alignment and duplicates marking had
been conducted beforehand, were directly downloaded from the
Genome in a Bottle (GIAB) website' and used for calling the
de novo mutations. In order to facilitate the comparison of the
similarities and differences of the pipelines and make the point
clear, in our study, we only focused on the de novo SNVs on
the autosomes. It is worth noting that the structure variations,
e.g., indels, as well as the mutations on the chromosomes X
and Y are also important for the genetic diseases, but it will
make the problem more complicated when involving them in
the comparisons.

Trio Calling Pipelines

Three pipelines, namely GenomeAnalysisToolKit (version
4.0.5.2) (McKenna et al., 2010; Francioli et al., 2017), RTG
(non-commercial version 3.9.1) (Cleary et al., 2014) and VarScan
(version 2.3.9) (Koboldt et al., 2013), were applied in this study
to call the DNSNVs. In GATK pipeline, the gVCF files for the
trio samples were firstly generated by using HaplotypeCaller
separately and combined into a multi-sample gVCF file
through CombineGVCFs. Then, the raw SNVs were called by
GenotypeGVCFs and recalibrated by VariantRecalibrator and
ApplyVQSR. Finally, after deriving the posterior probabilities of
the genotypes by CalculateGenotypePosteriors, the low quality
genotypes were filtered out by VariantFiltration and the de novo
SNVs were annotated by VariantAnnotator. In RTG pipeline, the
quality calibration files for the BAM files of trio samples were
firstly prepared and applied in the subsequent calling procedures.
The de novo SNVs were called and extracted by RTG with two
parameters of family and vcffilter. As to the Varscan pipeline, the
BAM files of trio samples were firstly sorted and combined into
a three-sample pileup file. Subsequently, the de novo SNVs were
called by running the VarScan trio command.

Metrics for the Comparison of the
Pipelines

We used three metrics namely GC content (Shin et al., 2013),
substitution type (Zook et al., 2014) and SNV density (Choi et al.,
2018), to evaluate the differences in the calling results generated
by three pipelines. A genomic sequence of 100 bases centered on
a DNSNV was extracted from the reference genome and the GC
content can be calculated via the following equ.

number of bases G and C
100

GC content (%) = x 100% (1)

The substitution type includes the point mutations of transition
and transversion. The transition refers to the nucleotide changes

!ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/
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from a purine to another purine (A<>G) or a pyrimidine
to another pyrimidine (C<>T), which occurs more frequently
than the transversion in the SNPs. The transversion refers to
the changes from purine to pyrimidine, or vice versa (A<T,
A<C, GoT, and C<«>C). By counting the total number of
SNVs in the genomic sequence of 100 bases centered on a
DNSNV, the SNV density can be calculated via the equ. (2):

number of SNVs
100

Definition of DNSNV Filter

To distinguish the high-confidence DNSNV's from the noise, the
read coverage at the mutation point is an important indicator for
this purpose. Based on the concept of signal-to-noise ratio, we
not only expect that the number of reads mapped to the reference
genome at the mutation point for the parents’ datasets is high
than that mapped to the mutated sequence as much as possible,
but also expect that the number of reads mapped to the mutated
sequence for the son’s dataset is higher than that mapped to the
reference genome. Therefore, to refine the calling results from
the pipelines, we proposed a DNSNV filter by considering both
read coverage at the mutation point in the son’s dataset and the
parents’ datasets. The filter was defined as the following equ:

|Fref - Falt' + |Mref - Malt')
2 % |Salt - Sref|

SNV density (%) = x 100% (2)

3)

Score = log (

Where the Fye, Mif, and Ser indicate the number of reads
mapped to the reference genome at the ith mutation point for the
datasets of father, mother and son, respectively. The Fyj,, My,
and S,y indicate the number of reads mapped to the mutated
sequence at the ith mutation point for the datasets of father,
mother and son, respectively. We assigned the scores for the
DNSNVs and rank them by their scores. In this study, we took
a non-stringent score (score = 0) as the threshold to investigate
the improvement of the calling results.

Genotype Quality

Genotype Quality (GQ) (Zhang et al., 2013) is used to evaluate the
filtering results of DNSNVs, which indicates the quality value of
the most likely genotype. The quality value refers the possibility
of the genotype being present at the site. The larger value means
the greater the likelihood of the genotype.

RESULTS

To facilitate the appropriate choice of the trio calling pipelines
for detecting the DNSNVs, in our study, we firstly evaluated the
results of three commonly used pipelines named GATK, RTG,
and VarScan by using the WES data of a father-mother-child trio
set from Ashkenazi Jews, and then proposed a filter for removing
the redundant DNSNVs from the calling results.

The Landscape of the Calling Results

From Three Pipelines
In total, 2570, 189 and 374 DNSNVs in the autosomes
were identified by GATK, RTG and VarScan, respectively. In

1800
1600
1400
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I transition
Il transvertion

1000
800
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400
200

Number of DNSNVs

GATK

RTG VarScan

FIGURE 1 | The numbers of transitions and transversions in the calling results
generated by GATK, RTG and VarScan.

terms of the quantity of DNSNVs, GATK exhibited higher
detecting sensitivity than RTG and VarScan. For the point of
mutation types, Figure 1 showed clear difference between the
numbers of transitions and transversions in the calling results
of three pipelines. Generally the number of transitions was
greater than that of the transversions for all the pipelines. The
transition/transversion ratio (Ti/Tv) had been suggested in GIAB
study (Zook et al., 2014) to be a metric for evaluating the quality
of the novel calling variants based on the assumption that Ti/Tv in
novel variants would be similar to that in the common variants.
In our results, Ti/Tv for GATK was 1.88 (1679/891), which was
higher than those for the other two pipelines [1.25 (105/84) and
1.19 (203/171) for RTG and VarScan, respectively], indicating
a lower error rate in the GATK calling results. In addition, we
mapped the DNSNVs to the dbSNP database* and separately
calculated the overlap rates between the DNSNVs and all the
variations, as well as between the DNSNVs and the common
variations for the three pipelines (Supplementary Figure S1).
The overlap rate was calculated by dividing the number of
overlapped DNSNVs by the total number of DNSNVs identified
by the pipeline. From the figure we can see that GATK achieved
the highest overlap rate among three pipelines, indicating the
least proportion of DNSNVs involved in the calling results. On
the contrary, VarScan achieved the lowest overlap rate, indicating
the largest proportion of DNSNVs involved in the calling results.
Meanwhile, the Ti/Tv rates of three pipelines indicated the lowest
error rate in the calling results of GATK and highest error
rate in the results of VarScan. It suggested that VarScan and
RTG tend to reveal more DNSNVs in their reported results, but
the reliability of them needs to be more carefully validated by
further experiments.

Considering the fact that with the increase of GC content,
the difficulty of polymerase chain reaction (PCR) amplification
in sequencing procedure will increase, which will result in an
increase in the error rate of the calling results, we further
investigated the distribution of GC contents around the DNSNV's

Zhttps://www.ncbi.nlm.nih.gov/snp/

Frontiers in Pharmacology | www.frontiersin.org

April 2019 | Volume 10 | Article 358


https://www.ncbi.nlm.nih.gov/snp/
https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles

Liang et al.

Comparative Analysis for the Detection of de novo Mutations

GATK
RTG
VarScan

0 6 0.8

.4 0.l
GC content
I

[ i!III!IIIIIIIIIII-IIIIIIIlHl!HiH'-EZ ; e

RTG

VarScan

0.0

FIGURE 2 | The distribution of GC contents around the de novo SNVs
identified by GATK, RTG and VarScan.

for three pipelines (Figure 2). The majority of the DNSNVs called
by GATK located in the regions with GC contents less than 50%
while the DNSNVs called by RT'G mainly located in the regions
with relatively high GC contents (>50%). This may be the reason
that GATK can yield the higher Ti/Tv ratio (1.88) than that
(1.25) obtained by RTG. Interestingly, although VarScan yielded
a relatively low Ti/Tv ratio (1.19), the distribution of the calling
results from VarScan had two peaks that covered the regions with
both low (~40%) and high (~60%) GC content. We separately
inspected the point mutation types of the DNSNVs called by
VarScan in the genome regions with GC content >50% and GC
content <50%. The Ti/Tv ratios for the high (>50%) and low
(<50%) GC-content regions were 1.32 (116/88) and 1.05 (87/83),
respectively. It may indicate that, for the high GC-content region,
the VarScan can identify the DNSNVs with even lower error rate
than RTG (Ti/Tv = 1.25). As to calling the DNSNVs in the low
GC-content region, the performance of VarScan (Ti/Tv = 1.05) is
inferior to GATK (Ti/Tv = 1.88).

To further elucidate the performance of the three pipelines,
we subsequently summarized the distributions of SNV densities

around the DNSNVs (Figure 3). As the SNV density increases,
the error rate for calling DNSNVs may increase. It can be seen
from the figure that, for the RTG pipeline, only ~70% DNSNVs
located in the regions with the SNV density less than 5%, and
the accumulated percentage gradually increased to 90% when
counting the DNSNVs in the regions with the SNV density
less than 15%, indicating a larger error rate may exist in the
call results. Compared to RTG, over 90% DNSNVs called by
GATK and VarScan located in the regions with the SNV density
less than 5%, which may suggest the better quality of the
identified DNSNVs.

Performance of Our Proposed Filter on

Refining the DNSNVs

To obtain the high-confidence DNSNVs, we suggested further
refining the calling results of three pipelines by using a proposed
filter, which was taken both read coverage at the mutation sites of
the son’s genome and the parents’ genomes into consideration to
identify the DNSNVs and can be directly applied to an individual
pipeline without reference to the information of other pipelines.
Figure 4 showed the numbers of DNSN Vs kept by the filter when
applying different cut-offs. The number of DNSNV:s called by all
the pipelines took on a tendency of descension when the cut-
off became more stringent, especially for the GATK pipeline.
The number of the left DNSNVs called by GATK dramatically
decreased from over 1,500 to 15 as the value of the cut-off
increased from —3 to 3.

In this study, we just took a non-stringent cut-off (score = 0)
as an example for the comparison of the three pipelines. When
filtering the DNSNVs with the score >0, the numbers of
DNSNVs detected by GATK decreased from 2570 to 630. For
RTG and VarScan, the numbers of DNSNVs decreased from
189 and 374 to 124 and 350, respectively. Figure 5A showed
the number of transitions and transversions in the filtered
calling results. The GATK pipeline still yielded the highest ratio
(T1/Tv = 1.96) among three pipelines, which was improved after
filtering a number of DNSNVs from the calling results. For
the pipelines of RTG and VarScan, since only a small number
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FIGURE 3 | The distribution of SNV densities around the de novo SNVs identified by GATK, RTG, and VarScan.
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Mother

of DNSNVs were removed, the quality of final DNSNVs were
comparable to that of the original calling results, with a slight
decrease in the ratio (Ti/Tv = 1.14 and 1.12 for RTG and VarScan,
respectively). Our results may suggest that our proposed filter
can efficiently reduce the error rate in the DNSNVs from the
redundant calling results. In addition, for the calling results with
less redundancy, our filter can well maintain the quality of the
original results.

The chromosomal distribution of the filtered DNSNVs was
shown in Figure 5B. The DNSNVs identified by three calling
pipelines mainly located on the chromosomes 1, 2, 6, 14, 16,
and 19, which indicates that the DNSNVs are more likely to
occur on these six chromosomes. Conversely, the DNSNVs
rarely occur on chromosomes 13, 18, and 21. Figure 5C showed
the overlaps of the filtered DNSNVs among three pipelines.
Because both RTG and VarScan were adapted for detecting the
DNSNVs in the high GC-content region with relative low error
rate, close to 36% (45/124) DNSNVs identified by RTG can
be found in the results called by VarScan even if 65 out of
189 DNSNVs identified by RTG had been removed out by the
filter. When comparing GATK with RTG and VarScan, only
about 19% (23/124) and 8% (29/350) DNSNVs called by RTG
and VarScan, respectively, were involved in the calling results
of GATK. The reason may be that GATK was fit for calling
the DNSNVs in the low GC-content region while the ability
of RTG and VarScan to identify the DNSNVs in this region is
inferior. This should be further validated by using the real disease

samples. Eventually, a total of 22 DNSNVs were detected by
all the pipelines.

Figure 6 showed the distribution of DNSNVs GQ of the trio
before and after filtering. For GATK, significant difference exists
between the calling results before and after filtering. However, for
RTG and VarScan, the difference is slight. But for the latter two
pipelines, the filtered DNSNVs GQ distribution is still slightly
better than that before filtering. In general, the GQ distributions
of DNSNVs for the three pipelines after filtering are better than
those before filtering.

Biological Relevance of the Overlapped

DNSNVs Among Three Pipelines

The 22 overlapped DNSNVs can be detected by three pipelines
simultaneously, and should be of relatively high confidence. To
investigate the biological relevance of these DNSNVs, we firstly
mapped them to the corresponding genes and then explored the
associations of the genes with genetic diseases by the Online
Mendelian Inheritance in Man (OMIM) database searching and
literature survey. The description of 22 DNSNVs as well as the
corresponding genes finally identified by all pipelines was listed
in Table 1. In the results, six out of 22 genes has been proved to
be directly associated with the rare genetic diseases. For example,
the gene DTNB in chromosome 2 is an important protein-coding
gene of beta-dystrobrevin. This protein is found to interact
directly with dystrophin and the low expression level of it will
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TABLE 1 | The 22 overlapped DNSNVs identified by all the trio calling methods and the corresponding genes associated with the diseases.

Chromosome Position Substitution Gene symbol phenotype

2 25457155 C—T DTNB* Muscular dystrophy

2 197791183 C—T — -

2 241835203 G—>T — -

3 4669342 A—T ITPR1* Gillespie syndrome Spinocerebellar
ataxia 15 Spinocerebellar ataxia 29,
congenital non-progressive

48603870 G—A UQCRCH1 Predisposition of Alzheimer’s disease

52547912 C—G PBRM1* Clear cell renal cell carcinoma

109740508 T—-C FIG4* Polymicrogyria, bilateral
temporooccipital Amyotrophic lateral
sclerosis 11 Charcot-Marie-Tooth
disease, type 4J Yunis-Varon syndrome

5 140730969 A—G — —

30703949 C—>G GSR* Hemolytic anemia due to glutathione
reductase deficiency

9 131041047 G->T LAMC3* Cortical malformations, occipital

9 131851319 C—G - -

11 82698724 T—C — -

14 77245340 C—T TMEMB3C

14 93170535 G—A — —

14 96180196 C—G — -

14 106330036 T—A — —

14 106993919 A—>G — -

15 79852462 G—->T MTHFS Heart defects; lung cancer

17 53638886 G—A — -

19 45720935 C—>T FBXO46 -

22 23029544 A—C — -

22 23029596 AT - -

*The genes were reported to be directly associated with genetic diseases in the OMIM database.

cause severe Duchenne muscular dystrophy (Blake et al., 1998).
The genes FIG4 and LAMC3 were reported to be highly correlated
with the polymicrogyria and cortical malformations, respectively.
Campeau et al. (2013) demonstrated that the inactivation of
FIG4 would result in the central nervous system dysfunction
and extensive skeletal anomalies. The research by Barak et al.
(2011) exhibited an important role of the gene LAMC3 in cortical
organization. It can be seen that to a certain extent our proposed
filter can be helpful for removing the redundant DNSNVs from
the calling results.

DISCUSSION

Nowadays, it has been proved that the de novo mutations played
an important role in human genetic diseases. Based on the next-
generation sequencing technology, more and more researches
focused on detecting the de novo mutations in the rare genetic
diseases as well as the potential applications in the clinics
for the purpose of improving the clinical diagnosis and better
understanding the mechanisms of the genetic diseases. However,
it is still a tough work and remains challenging to accurately
identify the genomic variants because of the complexity of the
sequencing experiments and the variants calling procedures. In

the previous study, Reumers et al. (2012) suggested that an
optimized filtering procedure would be helpful for reducing the
error rate when detecting the genomic variants with the short-
read sequencing data. Considering the fact that the occurrence
rate of de novo mutations is much lower than those of inherited
variations and somatic variants, it is more difficult to distinguish
them from the errors in the whole genome. At present, a
number of trio calling methods were proposed to detect the
de novo mutations based on the WGS/WES data, but how
the performance of these pipelines on detecting the de novo
mutations is still unexplored. Therefore, by carefully comparing
the results from three commonly used trio calling pipelines, we
elucidated that the performance of the three pipelines on calling
DNSNVs in high or low GC-content region was different. In
addition, based on the read coverage, our proposed filter can be
well applied to the single pipeline for refining the calling results.
In this study, we analyzed the calling results from three
pipelines named GATK, RTG and VarScan. Generally speaking,
GATK can identify the DNSNVs in the low GC-content region
with the lowest error rate among the three pipelines while RTG
tends to detect the DNSNVs in the high GC-content region.
Considering the effect of high GC-content on experimental and
computational results of SNV detection, the Ti/Tv ratio achieved
by RTG was lower than that achieved by GATK, indicating
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a higher error rate in RTG calling results. Therefore, when using
single pipeline to identify the DNSNVs, people should pay more
attention to the DNSNVs in the GATK calling results that fell into
the high GC-content region, or the DNSNVs in the RTG results
that fell into the low GC-content region. For VarScan, although
the calling results covered a broad region of the GC-content, the
Ti/Tv ratio of the DNSNVs in the low GC-content region was
only 1.05, which is much lower than that achieved by GATK
(Ti/Tv = 1.88). The Ti/Tv ratio of the DNSNVs in the high GC-
content region (Ti/Tv = 1.32) was comparable to that achieved
by RTG (Ti/Tv = 1.25). So, people still need to carefully validate
the DNSNVs detected in the low GC-content region when using
VarScan for calling.

For the purpose of removing the redundant DNSNVs, we
proposed a filter to refine the calling results for the single pipeline
by considering the read coverage at the mutation sites of the
son’s genome and the parents’ genomes. Our results showed that
a number of DNSNVs were removed from the GATK calling
results when applying a non-stringent cut-oft (score = 0) and
the Ti/Tv ratio of the left DNSNVs increased, indicating an
improvement of the calling results. For the less redundant results,
e.g., the DNSNVs detected by VarScan, only a small number of
DNSNVs were filtered out and the Ti/Tv ratio did not changed
significantly. Our findings indicated that the proposed filter
might be benefit to the refinement of the DNSNVs identified by
current pipelines.

It is worth noting that, considering the fact that the size of
the input data is small, the filtering algorithm can be further
improved by giving a confidence index score and a statistical
test index, (e.g., p-value) for the score of a DNSNV, which
can be estimated from the mapping probability of the reads
and the confidence level of the read coverage. It is helpful for
increasing the confidence level of the findings. Moreover, due
to the limitation of samples, we only used normal samples
for the comparative analysis in this study. The work could be
further improved by using genetic disease samples, which would
make the evaluation of the variant calling error rate of the
specific pipeline more accurate. When constructing the filtering
algorithm, we only used the exome sequence as an input. The
proposed algorithm can be broadened to the analysis of whole
genome sequence by integrating additional steps to trim the
whole genome. Additionally, we only discussed the difference
of de novo SNVs detected by different pipelines. In fact, other
types of de novo structural variations, such as indels, also play
important roles in the biological processes in the genetic diseases.
While taking more types of structural variations into account will
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