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Antipsychotics are the first-line medications prescribed for patients with schizophrenia or 
other mental disorders. Cumulative evidence has revealed that metabolic dysfunctions 
frequently occur in patients receiving antipsychotics, especially second-generation 
antipsychotics, and these effects may decrease patient compliance and increase health 
costs. Metformin is an effective pharmaceutical adjuvant for ameliorating antipsychotic-
induced metabolic dysfunction (AIMD) in clinical practice. However, the mechanism of the 
effects of metformin on AIMD remains unclear. The gut-brain axis is a bidirectional 
communication system between the gastrointestinal tract and the central nervous system 
and has been associated with many pathological and physiological conditions, such as 
those related to metabolism. Antipsychotics interact with and have affinity for dopamine 
receptors and other receptors in the brain, and treatment with these antipsychotics has 
been shown to influence gut microbiota metabolism and composition, as observed in both 
animal and human studies. Metformin exerts an antidiabetic effect that is correlated with 
activation of AMP-kinase in the hypothalamus, and metformin also influences gut flora. 
Therefore, the gut-brain axis may play a role in the effect of metformin on AIMD. Since no 
direct evidence is available, this perspective may provide a direction for further research.
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INTRODUCTION

Antipsychotics, known for their antagonism of dopamine receptors in the brain, have been 
widely prescribed for patients with schizophrenia and other mental disorders since the early 
1950s (Owen et  al., 2016). Second-generation antipsychotics (SGAs) have gradually replaced the 
first-generation antipsychotics as first-line medications due to their superior therapeutic effects 
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and the lower probability of causing extrapyramidal symptoms. 
However, patients who receive SGAs are at risk of metabolic 
dysfunctions, which may induce severe disease [e.g., type 2 
diabetes (T2D), cardiovascular disorders, and obesity], decrease 
patient compliance, and increase health costs (Lochmann van 
Bennekom et  al., 2013; Werner and Covenas, 2014). In clinical 
practice, metformin has been used as an effective pharmaceutical 
adjuvant for ameliorating antipsychotic-induced metabolic 
dysfunction (AIMD) (Wu et  al., 2007; Samara et  al., 2016; 
Stroup and Gray, 2018).

To date, the mechanisms of how AIMD can be  ameliorated 
by metformin remain unclear. AIMD is related to many 
physiological and pathologically altered systems, such as the gut 
microbiota and many neurotransmitter receptors targeted by 
antipsychotics (Manu et al., 2015; Reynolds and McGowan, 2017). 
Metformin, a biguanide, is primarily used for T2D, but is also 
used in the treatment of obesity and polycystic ovary syndrome 
(PCOS) (Maruthur et  al., 2016). Animal studies have suggested 
that the effects of both antipsychotics and metformin on appetite 
are correlated with the effects in the hypothalamus in the brain 
(Lv et  al., 2012; Rojczyk et  al., 2015). On the other hand, 
cumulative evidence has suggested that both antipsychotics and 
metformin exert their therapeutic effects by influencing gut 
microbiota metabolism and composition (McCreight et  al.,  
2016; Skonieczna-Zydecka et  al., 2018). The neurohumoral 
communication system between the gastrointestinal tract (GIT) 
and the central nervous system (CNS) is known as the gut-brain 
axis, and its dysfunction has been implicated in various endocrine, 
nutritional, immunological, and psychiatric disorders (Mayer 
et  al., 2015). Therefore, the gut-brain axis may play a role in 
the effect of metformin on AIMD. Since there is no direct 
evidence to support this role, in this perspective, we first review 
the relationships among the gut-brain axis, metformin, and 
AIMD and then provide a direction for further research.

THE GUT-BRAIN AXIS AND 
METABOLISM

There is increasing evidence suggesting that gut microbiota 
play a vital role in the regulation of the gut-brain axis. In the 
healthy human gut, Firmicutes and Bacteroidetes make up the 
dominant phyla of microbiota, while the proportion of phyla 
varies in different disease and environmental conditions (Sandhu 
et al., 2017). Short-chain fatty acids (SCFAs), including butyrate, 
acetate, and propionate, are predominately generated by Firmicutes 
and Bacteroidetes in the colon. SCFAs are known to affect 
energy homeostasis and regulate glucose, lipid, and cholesterol 
metabolism in various tissues. In addition, free SCFAs can 

cross the blood-brain barrier and can influence various  
regions of the brain. SCFAs exert various physiological effects 
not only by controlling the release of satiety hormones such 
as cholecystokinin, glucagon-like peptide 1 and peptide  
YY in the GIT but also by affecting the expression of  
anorectic neuropeptides such as the melanocortin precursor 
proopiomelanocortin (POMC) and neuropeptide Y (NPY) and 
agouti-related peptide (AgRP) in orexigenic neurons in the 
hypothalamus (Tolhurst et  al., 2012; Frost et  al., 2014; Bauer 
et  al., 2016). Hunger and satiety signals are integrated in the 
brain. Ghrelin, the “hunger hormone,” is secreted in the GIT 
and regulates appetite by binding to ghrelin receptors in the 
hypothalamus. Leptin, an adipose-secreted hormone, is opposed 
by the actions of the hormone ghrelin and regulates energy 
expenditure by acting on receptors in the hypothalamus. 
Polymorphisms of the genes coding for these two hormone 
receptors have been correlated with obesity, T2D, and AIMD 
(Yang et  al., 2012; Puangpetch et  al., 2018). Furthermore, 
activation of the hypothalamic-pituitary-adrenocortical axis may 
induce changes in the gut flora and intestinal epithelium (Petra 
et  al., 2015). In sum, the bidirectional communication of the 
gut-brain axis is important for maintaining metabolic homeostasis.

ANTIPSYCHOTIC-INDUCED METABOLIC 
DYSFUNCTION AND METFORMIN

Evidence in Clinical Studies
Metformin treatment has been considered a safe and effective 
way to ameliorate AIMD. The first report of metformin as an 
intervention for ameliorating AIMD was conducted in 19 
pediatric patients who were receiving antipsychotics, significant 
weight loss and decreases in body mass index (BMI) were 
observed after the coadministration (Morrison et  al., 2002). 
Subsequently, two randomized controlled trials (RCTs) confirmed 
the therapeutic effect of metformin on AIMD in both adolescent 
and adult patients. One of these studies demonstrated that 
metformin can prevent olanzapine-induced weight gain and 
insulin resistance in severe schizophrenia or schizoaffective 
adults (Baptista et  al., 2006). The other RCT was conducted 
in children and adolescent patients who had more than 10% 
increases in body weight after at least 1 year of SGA treatment. 
Metformin treatment was well tolerated and improved weight 
control, insulin resistance, and abnormal glucose metabolism 
after 16  weeks of the drug combination (Klein et  al., 2006). 
Similar results were reported in studies of first-episode or drug-
naïve schizophrenia patients. Metformin intervention can attenuate 
antipsychotic-induced weight gain, dyslipidemia, amenorrhea, 
and insulin resistance (Wu et  al., 2008a,b, 2012, 2016).

Evidence in Preclinical Studies
Similar to humans, rodents receiving antipsychotics presented 
metabolic dysfunction, while metformin is generally capable  
of ameliorating AIMD. Coadministration with metformin 
ameliorated olanzapine- and risperidone-induced weight gain, 

Abbreviations: AgRP, Agouti-related peptide; AIMD, Antipsychotic-induced 
metabolic dysfunction; BMI, Body mass index; CNS, Central nervous system;  
GIT, Gastrointestinal tract; GWAS, Genome-wide association study; HFD,  
High-fat diet; NPY, Neuropeptide Y; PCOS, Polycystic ovary syndrome; POMC, 
Proopiomelanocortin; RCT, Randomized controlled trial; SCFA, Short-chain fatty 
acid; SGA, Second-generation antipsychotic; STAT3, Signal transducer and activator 
of transcription 3; T2D, Type 2 diabetes.
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white fat accumulation, insulin resistance, hyperglycemia, and 
hyperlipidemia (Adeneye et  al., 2011; Boyda et  al., 2012; Hu 
et  al., 2014). Interestingly, therapeutic doses of metformin 
(150  mg/kg) attenuated hepatic insulin resistance in male rats 
following acute olanzapine treatment, while greater than therapeutic 
doses of metformin (400  mg/kg) showed an elevation of lactate, 
a by-product of gut microbiota metabolism (Remington et al., 2015).

ANTIPSYCHOTICS AND THE  
GUT-BRAIN AXIS

Evidence in Preclinical Studies
The gut microbiota is necessary and sufficient for AIMD. Mice 
in conventional housing conditions gained more weight after 
receiving a high-fat diet (HFD) plus olanzapine for 7  weeks 
than the HFD alone group had gained. In germ-free mice, 
the HFD plus olanzapine group and HFD alone group showed 
no significant difference in body weight (Morgan et  al., 2014). 
Likewise, compared to the control group, mice treated with 
risperidone gained significantly more body weight and reduced 
energy expenditure. Furthermore, the total resting metabolic 
rate was decreased in the group that received fecal transplants 
from the risperidone-treated mice but not in the group that 
received fecal transplants from vehicle-treated mice (Bahr et al., 
2015b). Oral antipsychotic treatment showed an antibiotic-like 
effect on gut microbiota diversity; for example, olanzapine 
seemed to decrease alpha diversity, and aripiprazole significantly 
increased alpha diversity (Morgan et  al., 2014; Cussotto et  al., 
2018). At the phylum level, an increased ratio of 
Firmicutes/Bacteroidetes was the most commonly observed effect 
in rodents receiving SGA treatment (Davey et al., 2012; Morgan 
et al., 2014; Bahr et al., 2015b; Cussotto et al., 2018). In addition, 
the abundance of Actinobacteria and Proteobacteria was decreased 
in mice after receiving olanzapine in a sex-dependent manner 
(Davey et  al., 2012). The concentration of SCFAs, especially 
acetate, was increased in the feces of rats with AIMD, which 
indicated that the structure or function of the microbiota could 
be  partly changed (Cussotto et  al., 2018; Kao et  al., 2018). 
Another strong piece of evidence of a relationship between 
AIMD and the microbiota is that AIMD can be  ameliorated 
or suppressed by other microbiome regulators, such as antibiotics, 
prebiotics, and probiotics (Davey et  al., 2013; Kao et  al., 2018).

In addition to dopamine receptors in the brain, antipsychotics 
also affect a wide range of neurotransmitter receptors, including 
serotonergic, histaminergic, muscarinic, and adrenergic receptors, 
which may be correlated with AIMD (Reynolds and McGowan, 
2017). The Roman high- and low-avoidance rats showed 
schizophrenia-like behavioral and physiological characteristics. 
Compared to vehicle-treated rats, body weight, blood glucose, 
and dopaminergic receptor expression in the cortico-mesolimbic 
system were higher in the olanzapine-treated Roman high-
avoidance rats; in contrast, the Roman low-avoidance rats 
showed no differences in these measures. The discrepancy was 
due to the Roman high-avoidance rats having elevated central 
dopaminergic sensitivity, which indicated that dopamine receptor 

expression is related to olanzapine-induced weight gain (Evers 
et  al., 2017). The serotonin 2C receptor has been implicated 
in many neurological and biological processes, including the 
regulation of food intake, body weight, and glucose metabolism. 
Unlike wild-type mice with olanzapine treatment, HTR2C-
knockout mice showed no significant differences in body weight, 
food intake, blood glucose or insulin levels compared with 
these measures in the vehicle-treated group. In addition, mice 
that received lorcaserin, a specific serotonin 2C receptor agonist, 
also showed a suppression of olanzapine-induced hyperphagia 
and weight gain (Lord et  al., 2017). Histamine receptors were 
the most studied neurotransmitter receptor in association with 
AIMD. Olanzapine-treated female rats showed a significant 
reduction in H1 receptor binding density in the ventromedial 
nucleus and a reduction in histamine H1 mRNA expression 
in the arcuate nucleus and ventromedial nucleus, which correlated 
with olanzapine-induced increases in body weight and food 
intake (Han et  al., 2008). Similar results were observed in 
risperidone-treated rats, but not with aripiprazole or haloperidol 
treatment (Han et  al., 2008; Lian et  al., 2015). Furthermore, 
compared with controls, olanzapine increased AMPKα activation 
in the hypothalamus. This increase was accompanied by 
significantly upregulated NPY and H1 receptor mRNA expression 
and downregulated POMC mRNA expression, which correlated 
with appetite, glucose and fatty acid uptake activation and 
oxidation (Lian et  al., 2014). Coadministration of betahistine, 
an H1 receptor agonist and an H3 receptor antagonist, was 
capable of significantly ameliorating olanzapine-induced weight 
gain and reducing feeding efficiency, which confirmed the role 
of the histamine receptor in AIMD (Deng et  al., 2012).

Evidence in Clinical Studies
The gut-brain axis seems to play an important role in 
neuropsychiatric disorders, especially in neurodegenerative diseases 
(Westfall et  al., 2017; Nguyen et  al., 2018). Bahr et  al. (2015a) 
conducted a cross-sectional study and a prospective study in 
male psychiatric children and adolescents with risperidone 
treatment. Compared to the control group, patients who received 
chronic risperidone administration exhibited significant weight 
gain accompanied by an increased diversity of gut microbiota 
and ratio of Firmicutes/Bacteroidetes, while the phyla ratio gradually 
increased over the course of treatment (Bahr et  al., 2015a,b). 
In another cross-sectional study, BMI was higher and microbiome 
diversity was significantly lower in SGA-treated bipolar disorder 
patients than in non-SGA-treated individuals. The abundance 
of Lachnospiraceae was preferentially increased, while the 
abundance of Akkermansia was decreased, in the SGA-treated 
group compared with the non-SGA-treated group (Flowers et al., 
2017). The latest study was conducted in first-episode and drug-
naïve SCZ patients. Compared to healthy controls, RIS-treated 
patients had significant metabolic dysfunction, increased 
abundance of Bifidobacterium spp. and Escherichia coli  
and decreased abundance of the Clostridium coccoides group 
and Lactobacillus spp. (Yuan et al., 2018). These results provided 
direct evidence linking the gut microbiome to AIMD in humans; 
however, replicated studies are needed in the future.
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Satiety-related hormones, such as ghrelin and leptin, as 
well as some metabolic parameters, were altered in AIMD 
patients. A recent meta-analysis demonstrated that blood 
leptin levels were increased, while blood ghrelin levels were 
decreased, in patients with AIMD (Potvin et  al., 2015; Goetz 
and Miller, 2018). Furthermore, polymorphisms of the satiety-
related hormone receptor genes (GHRL, LEP, and LEPR) 
showed significant associations with AIMD in clinical studies  
(Gregoor et  al., 2009; Wu et  al., 2011; Yang et  al., 2012). 
In addition to these genes, polymorphisms of genes encoding 
for receptors that antipsychotics have affinity for, 
neurodevelopmental modulators, and neuroendocrine pathway-
related proteins have been investigated for association with 
AIMD via pharmacogenetic studies. The HTR2C rs3813929 
polymorphism was the first found functional single-nucleotide 
polymorphism associated with antipsychotic-induced weight 
gain in Chinese schizophrenia patients (Reynolds et al., 2002). 
However, due to the diverse allele frequencies in different 
ethnic groups, discrepant results have been observed in studies 
with different populations. Recently, Brandl et  al. (2016) 
conducted the first genome-wide association study (GWAS) 
in patients with AIMD, and rs9346455 of the OGFRL1 gene 
was significantly associated with weight gain in the Clinical 
Antipsychotic Trials of Intervention Effectiveness (CATIE) 
samples after various antipsychotic treatments. The other 
GWAS of AIMD was performed in the Chinese population, 
and the PTPRD rs10977144 polymorphism showed the strongest 
association with weight gain (Yu et  al., 2016). A systematic 
review and meta-analysis of pharmacogenetic studies from 
around the world revealed that polymorphisms of HTR2C, 
MC4R, and LEP genes had consistent associations with AIMD, 
while another study showed that only polymorphisms of 
HTR2C consistently showed associations with AIMD in the 
Chinese population (Zhang et  al., 2016; Luo et  al., 2019).

METFORMIN AND THE  
GUT-BRAIN AXIS

Evidence in Preclinical Studies
Cabreiro et al. (2013) first demonstrated that metformin increased 
the lifespan of Caenorhabditis elegans co-treated with Escherichia 
coli by altering microbial metabolism, suggesting that metformin 
has the potential to affect the intestinal microbiome in mammals. 
Indeed, cumulative evidence has revealed that metformin exerts 
a therapeutic effect by inducing significant changes in gut 
microbial metabolism and microbiota composition (Lee and 
Ko, 2014; Zhang et  al., 2015; Lee et  al., 2018). In healthy mice, 
metformin increased the abundance of Verrucomicrobia and 
Bacteroidetes and decreased the abundance of Firmicutes and 
Proteobacteria (Ma et  al., 2018). The genera Akkermansia  
and Lactobacillus were significantly enriched in HFD-fed mice 
coadministered metformin compared to their levels in the control 
group (Shin et  al., 2014; Lee et  al., 2018). Both genera resulted 
in a significant improvement in the body weight, insulin,  
glucose and lipid profiles, which was subsequently confirmed 

in a model of gut microbiota transfer from HFD-fed rodents 
with metformin treatment into recipient peers (Shin et al., 2014;  
Zhou et  al., 2016; Bauer et  al., 2018; Lee et  al., 2018).

AMPK (AMP-activated protein kinase), mainly expressed 
in liver and brain, plays a role in cellular energy homeostasis, 
affects glucose and fatty acid uptake and oxidation. Metformin 
not only mediates duodenal AMPK-dependent neuronal 
signaling to influence the gut-brain axis but also penetrates 
the blood-brain barrier to act on the CNS directly (Lv et  al., 
2012; Duca et  al., 2015). In diabetic rats, oral metformin 
treatment reduced food intake by influencing orexigenic 
peptides, for example, through decreased mRNA expression 
of NPY and AgRP but not POMC and activation of signal 
transducer and activator of transcription 3 (STAT3) but not 
AMPK (Lv et al., 2012). Although the food intake was reduced 
in rats following intracerebroventricular injection of metformin, 
hypothalamic POMC but not NPY mRNA levels were elevated, 
and both phosphorylation of STAT3 and AMPK were increased  
(Lee et  al., 2012). In addition to neuropeptides, metformin 
also influences other neurotransmitter receptors in the 
hypothalamus. The 5-HT3 receptor is expressed throughout 
the central and peripheral nervous systems and mediates a 
variety of physiological functions, such as GIT motility 
(Michel et  al., 2005). Due to the structural similarity of 
metformin with selective agonists of the 5-HT3 receptor, 
metformin-induced 5-HT3 receptor-independent release of 
serotonin was observed in murine neuroblastoma N1E-115 
cells (Cubeddu et  al., 2000). Metformin improved leptin and 
insulin sensitivity via elevated receptor expression in the 
hypothalamus, which contributed to the anorectic effects 
(Aubert et  al., 2011; Malin and Kashyap, 2014; Tang et  al., 
2016). In addition, a recent study in baboons and macaques 
demonstrated that metformin regulated metabolic parameters 
by acting on the pituitary gland through multiple molecular 
pathways (Vazquez-Borrego et  al., 2018).

Evidence in Clinical Studies
Treatment with metformin has long been known to have side 
effects, including diarrhea, nausea, and abdominal pain, which 
indicates that metformin may exert a therapeutic effect not 
only in the liver but also in the GIT. The side effects were 
associated with an increase in relative abundance of Escherichia-
Shigella spp. in healthy volunteers treated with metformin 
(Elbere et  al., 2018). Compared to healthy controls, patients 
treated with metformin partially reversed T2D-induced 
Subdoligranulum and Akkermansia dysbiosis in samples from 
multiple countries. Moreover, the comparison of gut microbiota 
composition between metformin-treated and untreated T2D 
patients has revealed that metformin significantly increased 
the relative abundance of Escherichia spp. and reduced the 
relative abundance of the Intestinibacter genus (Forslund et  al., 
2015). Likewise, metformin enriched mucin-degrading 
Akkermansia muciniphila and several SCFA-producing bacteria 
while decreasing the abundance of the Intestinibacter genus in 
drug-naïve patients with T2D and a large cohort of Colombian 
T2D patients (de la Cuesta-Zuluaga et al., 2017; Wu et al., 2017). 
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In addition to its effect on gut microbiota, metformin was 
capable of regulating bile acid turnover, enhancing gut-related 
peptide secretion, and regulating intestinal glucose uptake and 
glucose homeostasis, which indicated an underlying mechanism 
of metformin’s ability to ameliorate metabolic dysfunctions 
(Brønden et  al., 2017; Borg et  al., 2018; Sun et  al., 2018).

Metformin affects the hypothalamus-pituitary-thyroid axis 
to influence hormone secretion and metabolic parameters. In 
women with PCOS, metformin improved glucose homeostasis 
accompanied by decreased serum luteinizing hormone and 
thyrotropin levels, which indicated that metformin treatment 
may have an impact on pituitary activity (Billa et  al., 2009; 
Krysiak and Okopien, 2015). Another clinical study demonstrated 
that T2D- or antipsychotic-induced hyperprolactinemia was 
significantly suppressed in women receiving metformin (Krysiak 
et  al., 2016, 2018). Furthermore, a pharmacogenetic study 
revealed that the rs2815752 polymorphism of NEGR1 (gene 
encoding the neuronal growth regulator 1 protein) was correlated 
with long-term weight loss in diabetic patients treated with 
metformin (Delahanty et  al., 2012).

CONCLUSION

Preclinical and clinical studies have demonstrated that treatment 
with antipsychotics and metformin had effects on the gut microbiota 
and the brain. Although the mechanism of the effects of metformin 
on AIMD remains unclear, there are some clues in the regulation 
of the gut-brain axis (Figure 1). The most important connections 
between metformin and AIMD in the gut microbiota were the 
mucin-degrading bacteria A. muciniphila and several SCFA-
producing bacteria, such as the phyla Firmicutes and Bacteroidetes. 
The gut microbiota were was influenced during AIMD, and these 
changes included a decrease in A. muciniphila and an increase 
in the ratio of Firmicutes/Bacteroidetes (Skonieczna-Zydecka et al., 
2018). Metformin enriched the abundance of A. muciniphila and 
lowered the ratio of Firmicutes/Bacteroidetes when exerting  
its therapeutic effects (McCreight et  al., 2016). In contrast, 
antipsychotics are known for their affinity for many neurotransmitter 
receptors that are capable of activating hypothalamic AMPK 
signaling, increasing levels of orexigenic peptides such as NPY 
and AgRP and decreasing levels of anorexins (Lian et  al., 2016). 

FIGURE 1 | The main clinical features of second-generation antipsychotics (SGAs) and metformin, and their main mechanisms via the gut-brain axis. Although 
metformin ameliorates antipsychotic-induced metabolic dysfunction (AIMD), the mechanisms via the gut-brain axis still remained to be investigated. AMPKα, 
adenosine monophosphate-activated protein kinase α; SCFAs, short-chain fatty acids.
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With metformin treatment, reduced NPY and AgRP expression 
and enhanced POMC expression in the hypothalamus have been 
observed (Duca et al., 2015). In addition, metformin ameliorated 
blood leptin elevations and ghrelin decreases in AIMD, which 
are two major hormones that affect the hypothalamus to regulate 
appetite (Malin and Kashyap, 2014). Although the gut-brain axis 
may play a theoretical role in the effect of metformin on AIMD, 
the relationship still remains to be  investigated.
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