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Bcl-2 family protein is an important factor in regulating apoptosis and is associated with

cancer. The anti-apoptotic proteins of Bcl-2 family, such as Bcl-2, are overexpression

in numerous tumors, and contribute to cancer formation, development, and therapy

resistance. Therefore, Bcl-2 is a promising target for drug development, and several

Bcl-2 inhibitors are currently undergoing clinical trials. In this study, we carried out a

QSAR-based virtual screening approach to develop potential Bcl-2 inhibitors from the

SPECS database. Surface plasmon resonance (SPR) binding assay was performed to

examine the interaction between Bcl-2 protein and the screened inhibitors. After that,

we measured the anti-tumor activities of the 8 candidate compounds, and found that

compound M1 has significant cytotoxic effect on breast cancer cells. We further proved

that compoundM1 downregulated Bcl-2 expression and activated apoptosis by inducing

mitochondrial dysfunction. In conclusion, we identified a novel Bcl-2 inhibitor by QSAR

screening, which exerted significant cytotoxic activity in breast cancer cells through

inducing mitochondria-mediated apoptosis.

Keywords: Bcl-2, small molecule inhibitors, breast cancer cell, virtual screening, QSAR

INTRODUCTION

Apoptosis is a process of cellular suicide through which unwanted or unhealthy cells are eliminated
during organism development or cellular stress (Reed, 2002; Fernald and Kurokawa, 2013).
Deregulated apoptosis is a characteristic of cancers (Doi et al., 2012; Roizen, 2012). The B-
cell lymphoma-2 (Bcl-2) family is composed of pro- and anti-apoptotic proteins, plays pivotal
role in the mitochondrial pathway of apoptosis by promoting the release of cytochrome c and
Smac (Second mitochondrial-derived activator of caspases) into the cytosol, resulting in caspase-
dependent cell death (Day et al., 2008; Bai and Wang, 2013). The pro-apoptotic proteins of
Bcl-2 family include Bak and Bax, the multi-domain proteins, and Bim, Bid, Puma, and Noxa,
the BH3 domain only proteins (Fulda, 2013). The most prominent anti-apoptotic proteins
contain Bcl-xl, Bcl-2, and Mcl-1 (Oltersdorf et al., 2005). The BH3-only proteins stimulate
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apoptosis either by interacting with Bak and Bax or by binding
to the anti-apoptotic proteins to release Bax and Bak (Martin
and Dowsett, 2013). Therefore, the cell survival or death is
largely determined by the ratio of Bcl-2 family anti- and pro-
apoptotic proteins. In most tumor tissues and cancer cell lines,
the anti-apoptotic Bcl-2 proteins are frequently highly expressed
(Roberts and Huang, 2017). For example, Bcl-2 is overexpressed
in prostate cancer, breast cancer, B-cell lymphomas, colorectal
cancer (Buolamwini, 1999; Tóthová et al., 2002; Kirkin et al.,
2004). The overexpression of anti-apoptotic proteins of Bcl-
2 family promote cell proliferation and survival, and lead to
therapy resistance due to the evasion of apoptosis (Buolamwini,
1999; Green and Evan, 2002). Therefore, they are well-validated
drug targets for cancer treatment. The development of Bcl-
2 anti-apoptotic proteins inhibitors has broad prospects in
clinical application. Recently, a number of compounds have been
demonstrated to inhibit anti-apoptotic Bcl-2 proteins, and some
of them have entered clinical trials as potential cancer treatments.
ABT-737 was designed using a fragment-based strategy and
has a high affinity with Bcl-2 and Bcl-xl. Preclinical researches
have demonstrated that ABT-737 and ABT-263, an ABT-737
derivative, have significant cytotoxicity against a variety of
hematologic malignancies. However, the study presented that
ABT-737 or ABT-263 can cause thrombocytopenia in vivo,
which limits the dosage and may impair the full antitumor
effect (Schoenwaelder et al., 2011). Structure-guided reverse
engineering of ABT-263 led to the discovery of ABT-199, a novel
selective inhibitor of Bcl-2 (Souers et al., 2013). In phase I trials,
ABT-199 showed greater activity than ABT-263 in patients with
lymphoma, and had no significant effects on platelet counts, but
tumor lysis syndrome was caused by ABT-199 in patients with
chronic lymphocytic leukemia (Seymour et al., 2013; Vandenberg
and Cory, 2013). AT-101 is an oral pan Bcl-2 inhibitor, which
exhibits affinity for Bcl-2, Mcl-1, and Bcl-xl at submicromolar
concentrations. AT-101 was well-tolerated in patients (Liu et al.,
2009). However, early phase II trials show that AT-101 failed
to exert significant clinical activity either used as monotherapy
or in combination with conventional chemotherapies in lung
and prostate cancers (Ready et al., 2011). Therefore, it is urgent
to develop novel Bcl-2 anti-apoptotic proteins inhibitors with
excellent anti-tumor activity and little side effects.

In the present study, we design a ligand-based screening
workflow for identification of new Bcl-2 inhibitors using a
virtual screening that includes a series of QSAR classification and
regressionmodels (Figure 1). In the virtual screening framework,
both classification and regression models based on random forest
were firstly constructed and strictly evaluated, and then used for
step-by-step screening the SPECS database filtered by Lipinski’s
rule of five. The molecules obtained were subsequently subjected
to ADMET evaluation, and finally several compounds were
manually selected by scaffold analysis from self-organizing map.
A series of experimental validation and investigation of their
anti-cancer effect on human breast cancer cells were performed.
Finally, compound M1 was identified as a novel Bcl-2 inhibitor,
which interacts with Bcl-2 and downregulates its expression. M1
exerts significant anti-cancer effects, and induces apoptosis by
mitochondrial pathway in breast cancer cells.

MATERIALS AND METHODS

Data Set
To obtain a comprehensive and diverse dataset, we collected
the Bcl-2 data from three public chemogenomics resources:
ChEMBL, BindingDB, and PubChem databases (Liu et al.,
2007; Gaulton et al., 2012; Kim et al., 2016). Combined with
these data sets, a Bcl-2 dataset with various active values was
obtained. In order to further improve the reliability and quality
of data, several preprocessing steps are adopted: (1) removing
compounds without explicit description for Bcl-2 and explicit
molecular structures, and only retaining compounds with IC50,
Ki, KD, and EC50 values; (2) if we have two or more active
data for the same molecule, we will take their arithmetic average
to reduce the random error. All molecules were preprocessed
by “wash” function in MOE software (Molecular Operating
Environment software) (MOE, 2016) to disconnect group metals
in simple salts, remove minor components, deprotonate strong
acids, protonate strong bases, and add explicit hydrogens.
After that, the structure of all molecules were optimized to
structure of minimize energy by Merck Molecular Force Field
94 (Halgren, 2015), and the gradient-threshold of potential
energy was set to 0.001 kcal−1·mol−1. After above-mentioned
pretreatments, we finally obtained a Bcl-2 data set consisting
of 1,259 compounds for further study. For the identification
of more active compounds, all compounds were divided into
“highly active” or “lowly active” sets based on the activity
value threshold of 100 nM in our study. Thus, the dataset
used for classification consists of 766 positive samples and 493
negative samples. For regression task, all 1,259 compounds with
their activity values are subjected to construct the regression
prediction model. It should be noted that the activity values
in regression should be converted to their logarithmic form.
Moreover, the molecules used for virtual screening were obtained
from SPECS database, consisting of 230,673 compounds. These
molecules are prepared and processed by MOE software in the
similar way.

According to the principles of the Organization for Economic

Co-operation and Development (OECD), in the process of

validating the reliability and predictive capabilities of the model,

not only internal validation but also external validation is

needed (Roy, 2007; Tropsha, 2010; Ojha et al., 2011; Wang

et al., 2016). In this study, Bcl-2 bioactivity data containing

1,259 compounds were divided into a training set and a test

set according to the distribution of their chemical space by
MOE. And then, we obtained a training set containing 1,007
compounds (80%) and a test set containing 252 compounds
(20%). For training set, their activity values range from 0.001
to 9,900 nM, with an average value of 800.82 nM. For test
set, their activity values range from 0.01 to 9,490 nM, with
an average value of 906.73 nM. We used training set to
build prediction models, while test set was used to further
evaluate the predictive ability of the model. Additionally,
to further validate the prediction ability of our constructed
regression model, we additionally collected 128 compounds
with Bcl-2 bioactivity values as external validation set from the
ChEMBL database.
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FIGURE 1 | Flowchart of the virtual screening strategy.

Molecular Representation
In the process of establishing a robust and convincing SAR/QSAR
model, the informative descriptors are very important. Different
types of descriptors represent different molecular structural
contents, and thus help to capture diverse molecular scaffolds
for screening Bcl-2 inhibitors. In this study, three kinds of
molecular descriptors were used for molecular representation,
including 206 two-dimensional (MOE2D) molecular properties
calculated from MOE software, 166 MACCS fragments, 210
chemically advanced template search (CATS) pharmacophore
descriptors calculated by ChemDes (Jie et al., 2015), ChemPy
(Cao et al., 2013), and PyBioMed (Dong et al., 2018b), developed
by our group. The CATS topological pharmacophore descriptor,
it contains six atom types, namely, hydrogen-bond donor (D),
hydrogen-bond acceptor (A), positively charged (+), negatively
charged (–), Hydrophobe (H), and Aromatic atom (R). The
numbers of all 21 possible pairs of generalized atom types are
determined; distances of up to ten bonds were considered which
led to a 210-dimensional vector representation of a molecular
compound. The MACCS fingerprint uses a dictionary of MDL
keys, which contains a set of 166 mostly common substructure
features. 206 MOE two-dimensional molecular descriptors,
including 20 physical properties, 14 Hückel theory descriptors,
18 subdivided surface areas, 42 atom counts and bond counts,
16 Kier & Hall connectivity and Kappa shape indices, 33
adjacency and distance matrix descriptors, 13 pharmacophore
feature descriptors, and 50 partial charge descriptors. For
classification tasks, three types of representations were all used
to individually build classification models. For regression tasks,
MOE2D molecular descriptors covering different molecular
structural contents were applied to build regression models.

Drug-Likeness Filtering
Lipinski’s five rules were used to remove chemical structures that
have too many undesired properties in the screening database

(Lipinski et al., 2012). The parameters of Lipinski’s rule are
calculated byMOE program andADMETlab (Dong et al., 2018a).
In this work, we have removed compounds that violated more
than two criteria. The 212,749 compounds filtered with Lipinski’s
rule of five were subjected to the subsequent virtual screening by
SAR/QSAR models.

RF Model Generation and Validation
As a more flexible modeling technology, Random Forest
(RF) algorithms can naturally deal with the classification and
regression of complex non-linear systems (Breiman, 2001;
Svetnik et al., 2003). Compared to some traditional approaches,
RF offers several advantages, including simplicity, excellent
prediction accuracy, and high ability to handle large or severely
unbalanced datasets (Breiman, 2001; Cao et al., 2010). Several
reports have introduced the effective prediction ability of RF
in a wide range of classification and regression problems for
SAR/QSAR studies (Wang et al., 2017; Ye et al., 2019). RF
was chosen for constructing the screening model in our study.
Herein, we intended to construct different models represented by
three kinds of descriptors to screened more diverse compounds.
We made full use of known Bcl-2 bioactivity data and combined
RF classification and regression models. Firstly, the database was
pre-screened by RF classification model, and then the screening
results are further screened by RF regression model. Finally,
the potential Bcl-2 inhibitors were obtained for experimental
validation. The combined application of RF classification and
regression methods could be considered as reliable strategy in
the exploration of the activity of Bcl-2 inhibitors. This strategy
has been generally performed in other activity prediction studies
(Dong et al., 2009). All above-mentioned models are constructed
by RF node in KNIME1 analytics platform.

1KNIME. Availabile online at: https://www.knime.com/ (accessed May 18, 2018).
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To ensure the established SAR/QSAR model has good
generalization ability, independent test sets, and 5-fold cross-
validation were applied for this purpose. For classification tasks,
the statistical parameters of these models such as specificity (SP),
sensitivity (SE), accuracy (Q) are calculated as follows:

SE =
TP

TP + FN
(1)

SP =
TN

TN + FP
(2)

Q =
TP + TN

TP + TN + FP + FN
(3)

where TP, FN, TN, and FP denote the number of true positives,
false negatives, true negatives and false positives, respectively.
In addition, the receiver operating characteristic (ROC) curve
that shows the separation ability of a binary classifier was also
plotted. The ROC curve was used to graphically present the
model behavior in a visual way.

For the regression model, we used six main statistic
parameters to evaluate the predictive models: the square
correlation coefficients of training (RF 2 ); the root mean squared
error of training (RMSEF); the square correlation coefficients of
test (RT 2 ); the root mean squared error of test (RMSET); the
square correlation coefficients of cross-validation (Q2); the root
mean squared error of cross validation (RMSEcv); the square
correlation coefficients of external dataset (REx 2 ); the root mean
squared error of external dataset (RMSEEx). They are calculated
as follows:

RF
2
= 1 −

∑
(

ŷi − yi
)2

∑

(yi − y)2
(4)

RMSEF =

√

√

√

√

1

N

N
∑

i=1

(yi − ŷi)
2 (5)

Q2
= 1 −

∑
(

ŷ(v)i − yi
)2

∑

(yi − y)2
(6)

RMSECV =

√

√

√

√

1

N

N
∑

i=1

(yi − ŷ(v)i)
2 (7)

where ŷi and yi are the predicted and experimental values of
the ith sample in the training set; y is the mean value of all the
experimental values in the training set; ŷ(ν)i is the predicted value
of ith sample for cross validation; N is the number of samples in
the training set. When independent test set and external dataset
are applied, RT 2 , RMSET, REx 2 , and RMSEEx are calculated in the
similar way.

ADMET Evaluation
As we know, the failure of many drug candidates in clinical
trials may be due to poor ADMET (Absorption, Distribution,
Metabolism, Excretion, and Toxicity) properties (Prentis et al.,
1988; Kennedy, 1997). However, it is time-consuming and
laborious to evaluate the pharmacokinetics and toxicological
properties of compounds by experimental methods. Therefore,

during the early stages of drug discovery, computational
techniques that can predict pharmacokinetics and toxicity
profiles have become alternatives (Wishart, 2007; Cheng et al.,
2013). Nowadays, researchers can use computational approaches
to evaluate the ADMET properties of screened compounds
to filter the compounds with undesired properties. Here, we
evaluated five ADMET properties for hit compounds including
octanol/water partition coefficient (logP), aqueous solubility
(logS), Caco-2 cell permeability (Caco-2), percent human oral
absorption (PHOA), and IC50 value for blockage of HERG K+

channels (HERG) by QikProp module of Schrödinder (Quick
Prop, version 3.5, Schrödinger, LLC, New York, NY, 2016).
QikProp provided 95% of known drug’s ADMET properties
distribution as reference values.

Surface Plasmon Resonance Assay
The interaction between virtual screening candidates and Bcl-
2 was determined using a PlexArray HT biological molecular
interaction analyzer (PLEXERA LLC, USA). Candidates were
covalently immobilized to the surface of sensor chip following
the standard coupling reaction guide. Candidates were dissolved
in DMSO to a final concentration of 10µM. To analyze binding
signal, a set of concentration gradient (700, 350, 175, 87.5 nM)
of Bcl-2 protein were, respectively, diluted with PBST (1x PBS
+ 0.1% Tween-20, pH 7.4). PBST was also used as running buffer
and samples were injected into the flow cell chamber of the sensor
chip one by another with rate of 2 µL/s for 300 s. After the
injection stage, running buffer was flowed over the chip surface
for 300 s at 2 µL/s to allow the bound analytes to dissociate
from the Bcl-2. The response unit (RU) of sample dots on the
chip surface was recorded by the interaction analyzer during the
whole process. In this way, dissociation curves obtained. HBS-
P buffer was used as vehicle controls. Lastly, the changes in RU
and the binding curve were measured by the PlexeraDE software
(PLEXERA LLC, USA).

Cell Lines and Culture
The human breast cancer cell line MDA-MB-231, T47D, and
BT549, were purchased from Cell Bank of Chinese Academy
of Sciences. MDA-MB-231 were cultured in L-15 medium with
10% FBS at 37◦C with 100% air, and T47D were cultured in
DMEM/High glucose medium with 10% FBS at 37◦C with 5%
CO2. BT549 was cultured in 1,640mediumwith 10% FBS at 37◦C
with 5% CO2.

Reagents and Antibodies
Compound M1 were purchased from SPECS database. Anti-Bcl-
2, anti-Cyt c, anti-COX-IV, anti-PARP, and anti-cleaved caspase-
3 were purchased from Cell Signaling Technology (Danvers,
MA, USA). Anti-β-actin was purchased from Proteintech.
Mitochondria Isolation Kit for Cultured Cells (CAT. NO. 89874)
was purchased from Thermo. JC-1 Assay Kit (CAT. NO. C2006)
and Reactive Oxygen Species Assay Kit (CAT. NO. S0033) were
purchased from Beyotime. The enhanced chemiluminescence
(ECL) kit was purchased from Beijing Com Win Biotech Co,
Ltd (Cwbio, China). CCK-8 reagent was purchased from Bimake
(shanghai, China).
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Cell Viability Assay
Cell viability was measured by Cell Counting Kit-8 (CCK-8)
assay following the manufacturer’s protocol. Cells were plated
at 5 × 103 cells per well in 96-well plates. After compound
M1 treatment, cells were incubated with 10 µL CCK-8 for 2 h
at 37◦C with 5% CO2. The results were determined at 450 nm
wave length.

EdU Assay
Cell Proliferation was measured by Cell Light EdU DNA Cell
Proliferation Kit. Cells were plated in 96-well culture plates. Cells
were treated with 4 or 8µM compound M1 for 48 h. At the
end of treatment, cells were incubated with EdU reagent for 2 h
at 37◦C. Four percent of paraformaldehyde was used to fix the
cells for 15min. Then, cells were incubated with 0.5% Triton X-
100 for 30min. Washed cells with PBS three times. After that,
cells were dyed with reaction cocktail for 30min, and stained cell
nucleus with 5µg/mL of Hoechst 33,342 for 30min. Images were
observed by fluorescent microscope.

Clonogenic Assays
The cells were plated at 200 cells per well in six-well culture plates
followed by compound M1 for 48 h. At the end of treatment, the
cells were cultured with fresh medium, and were grown at 37◦C
for 10 days. After colony formation, the cells were washed with
PBS and immobilized by 4% formaldehyde at room temperature
for 30min. Finally, the cells were dyed with 0.5% crystal violet.

Western Blot Analysis
After compoundM1 treatment, cells were lysed with RIPA buffer
supplemented with protease inhibitor (Selleck) on ice for 30min
following by centrifugation at 14,000 × g for 15min. Protein
concentrations of the lysates were determined by BCA assay kit.
Equivalent amounts of cellular protein were separated by SDS-
PAGE and transferred to polyvinylidene difluoride membranes.
And then, the membranes were blocked with 5% skim milk in
TBST. The membranes were incubated with primary antibodies
and peroxidase-conjugated secondary antibodies. Finally, the
membranes were visualized with an enhanced chemiluminescent
detection kit.

Assessment of Mitochondrial Membrane
Potential
The MMP was measured using JC-1 assay kit according to
the manufacturer’s protocol. Cells were treated with 2 or 4µM
compound M1 for 48 h. The cells were cultured with JC-1
staining reagent (1x) at 37◦C for 20min. Cells were washed twice
by JC-1 staining buffer. Next, the fluorescence intensity of JC-1
aggregate or monomer was observed by fluorescent microscopic.
The ratio of aggregates to monomers was estimated as a symbol
of mitochondrial membrane potential.

Detection of Reactive Oxygen Species
Cells were treated with 2 or 4µM compound M1 for 48 h.
After that, cells were rinsed twice with PBS and incubated with
DCFH-DA (10µmol/L) at 37◦C in a darkroom. The fluorescence

intensity of DCF was detected at an emission wavelength of
525 nm and excitation wavelength of 488 nm.

Apoptosis Assay
Cell apoptosis was measured by Annexin V-FITC/PI double-
staining Kit following the manufacturer’s protocol. After
treatment with 8 or 16µM compound M1 for 48 h, cells were
washed twice with cold phosphate buffer saline and then,
suspended in 100 µL binding buffer (BD CAT. NO.556547) with
5 µL Annexin-V (BD CAT. NO.556420) and 5 µL PI (BD CAT.
NO.556463). And cells were gently vortexed and incubated at
room temperature for 15min in darkness for flow cytometric
(Becton Dickison) analysis.

Data Analysis
The differences between the samples with compound M1
treatment and control, were analyzed by t-test. Differences
between groups were considered statistically significant at P <

0.05. The RF classification and regression models are constructed
by the Konstanz InformationMiner (KNIME) software (KNIME,
version 3.4.1). The molecular preparation and processing are
finished by MOE software. The ADMET evaluation and SOM
are performed by the Qikprop module and Canvas module of
Schrodinger software, and scaffold analysis are performed by
RDKit2 cheminformatics package (RDKit, version 2016).

RESULTS AND DISCUSSION

RF Classification and Regression Models
In the present study, we adopted a ligand-based virtual screening
strategy to screen the potential Bcl-2 inhibitors. The ligand-based
screening strategy combined the classification and regression
RF models. The combined use of both classification and
regression models has been performed as useful strategy in the
exploration of various activities (Dong et al., 2009; Michielan
et al., 2009). Before applying these models, we strictly evaluated
the model performance for classification and regression tasks.
Firstly, the RF classification models were generated with three
different molecular representations, which were CATS, MACCS
and MOE2D, respectively. Table 1 lists the prediction statistics
of RF classification models with three representations for
distinguishing the Bcl-2 highly active inhibitors and lowly active
inhibitors. Clearly, three models with different representations
all yield high prediction accuracy, and the best performance
was achieved by MACCS-RF classification model, with values
of prediction accuracy of 91.3 ± 1.6, sensitivity of 93.1 ±

2.1, and specificity of 88.4 ± 3.2, respectively. However, from
the statistical point of view, three models had no statistically
significant difference, indicating that three models constructed
by three different representations could all be used for the
subsequent screening process. As shown in Table 1, the AUC
values of MOE2D-RF, MACCS-RF, and CATS-RF models was
96.5± 1.0, 96.5± 1.1, and 96.5± 0.9, respectively. The ROC plot
of three models constructed by three different representations

2RDKit: Open-Source Cheminformatics. Availabile online at: http://www.rdkit.org

(accessed November 28, 2016).
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TABLE 1 | Performance of the RF classification models by using different molecular descriptors.

Models TPa FPb TNc FNd SE (%)e SP (%)f Q (%)g AUC (%)h

MOE2D-RF 141.2 ± 8.3 10.5 ± 2.6 87.6 ± 8.4 12.7 ± 3.6 91.7 ± 2.3 89.1 ± 2.6 90.8 ± 1.5 96.5 ± 1.0

MACCS-RF 144.6 ± 6.9 11.2 ± 3.0 85.5 ± 7.4 10.7 ± 3.3 93.1 ± 2.1 88.4 ± 3.2 91.3 ± 1.6 96.5 ± 1.1

CATS-RF 140.6 ± 5.7 12.6 ± 3.1 87.4 ± 5.3 11.5 ± 3.4 92.5 ± 2.2 87.4 ± 2.9 90.5 ± 1.5 96.5 ± 0.9

aTP, true positives.
bFP, false positives.
cTN, true negatives.
dFN, false negatives.
eSE, sensitivity, SE = TP/(TP + FN).
fSP, specificity, SP = TN/(TN + FP).
gQ, accuracy, Q = (TP + TN)/(TP + FP + TN + FN).
hAUC, the area of under the receiver operating characteristic curve.

FIGURE 2 | The performance of different models. (A) Receiver operating characteristic (ROC) plot of RF classification models based on CATS, MACCS, and MOE2D

descriptors for the test set. (B) Correlations between experimental and predicted activities of the training set (blue) and test set (red) of the RF regression model.

is shown in Figure 2A. AUC scores from three models further
indicated that there is no statistically significant difference in
model performances. Overall, the three kinds of RF classification
models were found to perform well and capable to accurately
predict the Bcl-2 inhibitors.

As described above, the collected Bcl-2 bioactivity molecules
represented by the MOE2D descriptor was used to construct
a predictive model using an RF regression algorithm. In the
modeling stage, the feature selection was carried out by recursive
feature elimination method of random forest. The influence of
the number of descriptors to the performance of model (Q2)
can be seen from Figure 3. Clearly, when the number of features
reaches 50, the model can achieve the highest accuracy, and
the Q2 reached 0.852. Thus, we applied 50 informative MOE2D
descriptors to construct the RF regression model. We used 5-
fold cross-validation and independent test set to evaluate the
predictive ability of regression model. For the training set, R2

F =

0.980 and RMSEF = 0.238; for the cross-validation, Q2 = 0.852
and RMSEcv= 0.690. For the test set, R2

T = 0.847 and RMSET =

0.695. From the statistic results, we can see that the regression
models have good performance. The relationship between the
experimental values and predicted values in training set and test
set for the model was shown in Figure 2B. From this point,
we can conclude that the model has good predictive ability for

FIGURE 3 | The plot of −Q2 vs. the number of descriptors”.

most compounds in training and test sets. At the same time, the
regressionmodel was evaluated using the external dataset. For the
external dataset, the R2

Ex = 0.803 and RMSEEx = 0.684. Although
the R2 value of the external dataset were a little smaller than
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those for the training set, test set and cross-validation, we still
deemed that the predictive ability of this model is satisfactory
due to the decline is within acceptable range. These prediction
results of external validation process proved the validity and
reliability of final model again. Furthermore, we used the tool
of applicability domain by standardization approach developed
by Kunal Roy’s group to evaluate the applicability domain of
our QSAR model (Kunal and Supratik, 2015; Roy et al., 2015).
From the result, we found that about two-thirds of the test set
molecules fall within the applicability domain. Thus, we can use
it to evaluate the reliability of the RF regression model for the
prediction of compounds.

QSAR-Based Virtual Screening
In this research, QSAR-based methods were adopted to screening
potent Bcl-2 inhibitors from the SPECS database. After the
validation of RF classification and regression models, we
constructed a virtual screening process. SPECS database was
used to screening new Bcl-2 inhibitors. In the RF-classification
stage, three RF models with different kinds of descriptors were
used to screen the entire database. Combining the results of
three models screened resulted in 10,530 unique hits. After that,
358 compounds were further screened by RF-regression model
represented by MOE2D descriptors in the RF-regression stage.

Selection of Hit Compounds Based on
Scaffold Analysis and SOM
To assess the diversity of the molecular structure of the hit
compounds, we first performed a scaffold analysis for them. The
RDKit package is used to calculate and analyze the scaffold of
358 hit molecules. The RDKit package decomposes the molecules
into scaffolds and carbon skeletons according to their two-
dimensional structure. The definition of scaffold decomposition
was proposed and established by Bemis and murcko, and it is
the most widely used scaffold definition (Bemis and Murcko,
1996). In this definition, the scaffold is defined by removing all
R-groups of compounds but retaining the linkers between the

ring systems in the compounds. On the basis of scaffold, Xu
and Johnson defined the carbon skeleton in 2002 (Xu, 2002).
The carbon skeleton is derived from scaffolds by converting each
heteroatom into a carbon atom and converting all bond orders
into single bonds. Therefore, different carbon skeletons represent
topologically distinct scaffolds. From 358 screened molecules, we
obtained 177 unique scaffolds. There are five scaffolds containing
more than ten molecules, and most of the other scaffolds contain
only one molecule. The scaffold analysis indicated that the hit
compounds screened by ligand-based screening strategy have
diverse molecular structures to a certain extent. Subsequently,
the prediction results are mapped to the SOM space along with
the Bcl-2 highly active molecules mentioned above, by using

TABLE 2 | Assessment of ADMET properties of the hits by Qikprop.

ID KD(M)a logPo/wb logSc Caco-2d PHOAe logHERGf

M1 3.17 × 10−7 7.03 −7.78 2099.01 100.00 −5.94

M2 4.06 × 10−7 6.19 −6.14 766.34 88.91 −6.15

M3 8.56 × 10−7 6.54 −7.44 256.59 82.44 −9.36

M4 4.76 × 10−6 8.80 −11.76 2729.26 100.00 −9.08

M5 5.70 × 10−7 5.06 −6.61 373.92 76.73 −7.30

M6 6.85 × 10−8 7.60 −8.45 2672.14 100.00 −6.98

M7 1.59 × 10−6 8.99 −9.42 4460.15 100.00 −6.08

M8 1.08 × 10−5 7.92 −7.61 6557.40 100.00 −5.50

M9 – 8.70 −9.02 2320.00 100.00 −6.93

M10 – 7.31 −10.35 571.15 93.16 −8.19

M11 – 7.51 −9.78 1057.80 100.00 −7.75

M12 – 8.49 −11.00 1300.25 100.00 −7.84

aKD, dissociation equilibrium constant. KD = Kd/Ka. Ka, Kd values are association- and

dissociation-rate constants, respectively.
bPredicted octanol/water partition coefficient, logP (recommended range: −2.0 to 6.5).
cPredicted aqueous solubility, logS (recommended range: −6.5 to 0.5).
dPredicted apparent Caco-2 cell permeability (<25 is poor and >500 is great).
ePercentage of human oral absorption (<25% is poor and >80% is high).
fPredicted IC50 value for blockage of HERG K+ channels (concern below −5).

FIGURE 4 | (A) SOM projection of positive set and screened compounds. Black shading indicates compound density. Compounds were represented by CATS

descriptors. The number in the grid represents the number of compounds. The position of red number in grid represents the source of the hit compounds we finally

selected. In this research, the SOM technique can be used to identify preferred hit compounds. (B) The scaffold structure of selected molecules. Scaffold 1, 3, and 5

are located in cluster (1/4), scaffold 2 is located in cluster (1/1), scaffold 4, 6 are located in cluster (2/1), scaffold 7 is located in cluster (2/5), scaffold 8 is located in

cluster (1/3), scaffold 9 is located in cluster (3/5), scaffold 10 is located in cluster (3/2), scaffold 11 is located in cluster (2/4).
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FIGURE 5 | The interaction between the compounds and Bcl-2 was determined by SPR assay. (A) The binding curves for the eight hit compounds are represented

by a series of colored lines. (B) the binding curves for the different concentration gradients of the compounds M1 are represented by four colored lines.

FIGURE 6 | Chemical structures of the compound M1-M8.

SOM method based on CATS descriptors (Robinson et al., 1999;
Schneider et al., 2009). Figure 4 shows the distribution of positive
set and screened compounds in the SOM space. Black shading
indicates compound density. The number in the grid represents
the number of compounds. Then the representative molecules
that are distributed together with highly active molecules in the
different grid were selected as the final screening hits. At the
same time, we considered the structural diversity of hit molecules
and to select molecules with different scaffolds as far as possible.
Finally, we selected 12 Bcl-2 potential hits from the grid where
the red numbers are located.

Evaluation of ADMET Properties
In this study, the Qikprop module of Schrodinger software
was used to calculate the pharmacokinetic properties of twelve

TABLE 3 | The IC50 of eight small molecule compounds on breast cancer cells.

ID IC50(µM)

M1 5

M2 >50

M3 >50

M4 >50

M5 >50

M6 >50

M7 >50

M8 >50

MDA-MB-231 cells were treated with eight small molecule compounds for 48 h. At the

end of treatment, cell viability was measured by CCK-8 reagent. And then the IC50 of each

compound was calculated according to the CCK-8 assay results.
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FIGURE 7 | Compound M1 inhibits cell proliferation in breast cancer cells. (A) MDA-MB-231, T47D, and BT549 cells were treated with a series of doses of

compound M1 for 72 h. (B) MDA-MB-231, T47D, or BT549 cells were treated with 5, 2, or 3µM compound M1 for difference time periods. After treatment, cell

viability was estimated by CCK-8 assay. Compound M1 vs. control, *p < 0.05, **p < 0.01, student t-test, n = 3, means ± SD. (C) MDA-MB-231 cells were treated

with 4 or 8 µM compound M1 for 48 h. The EdU-marked replicating cells were observed by fluorescent microscope. Compound M1 vs. control, *p < 0.05, **p <

0.01, student t-test, n = 3, means ± SE. (D) MDA-MB-231 cells were treated with 4 or 8 µM compound M1 for 48 h, and the cell colonies were fixed and stained for

camerawork. Compound M1 vs. control, *p < 0.05, **p < 0.01, student t-test, n = 3, means ± SE.

Frontiers in Pharmacology | www.frontiersin.org 9 April 2019 | Volume 10 | Article 391

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Wen et al. Identification of a Novel Bcl-2 Inhibitor

FIGURE 8 | Compound M1 downregulations Bcl-2 expression and induces mitochondrial dysfunction in breast cancer cells. MDA-MB-231, T47D, and BT549 cells

were treated with different doses of compound M1 for 48 h (A), or were treated with 8µM M1 for difference time periods (B), and the expressions of Bcl-2 were

(Continued)
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FIGURE 8 | estimated by western blotting. β-actin was shown as a loading control. Compound M1 vs. control, *p < 0.05, **p < 0.01, student t-test, n = 3, means ±

SE. (C) MDA-MB-231 cells were treated with 2 or 4µM compound M1 for 48 h. The MMP was observed by JC-1 staining by fluorescent microscopic. (D)

MDA-MB-231 cells were treated with 2 or 4µM compound M1 for 48 h. The levels of ROS were measured by staining with DCF-DA and the fluorescent intensity

observed by fluorescent microscopic. The levels of ROS were measured by TECAN SPARK 10M. Compound M1 vs. control, *p < 0.05, **p < 0.01, student t-test, n

= 3, means ± SD. (E) T47D cells were treated with 4 or 8µM compound M1 for 48 h. The levels of Cytochrome c in mitochondrial or cytosol fraction were measured

by western blotting. COX-IV and β-actin were shown as loading controls for the mitochondria and cytosol, respectively. Compound M1 vs. control, *p < 0.05, **p <

0.01, ##p < 0.01 student t-test, n = 3, means ± SE.

FIGURE 9 | Compound M1 induces apoptosis in breast cancer cells. (A) T47D cells were treated with different concentrations of compound M1 for 48 h, and

apoptosis was measured by Annexin V-FITC and PI staining. Compound M1 vs. control, *p < 0.05, **p < 0.01, student t-test, n = 3, means ± SE. (B) T47D and

BT549 cells were treated with different doses of compound M1 for 48 h, and the levels of cleaved caspase-3 and cleaved PARP were measured by western blotting.

β-actin was shown as a loading control. Compound M1 vs. control, *p < 0.05, **p < 0.01, #p < 0.05 student t-test, n = 3, means ± SE.

potential inhibitors. This would be extremely beneficial if
information on the ADMET properties of the studied molecules
could be obtained at an early stage of the drug discovery process,
which might help chemists improve the pharmacokinetic profile
of these compounds (Wang et al., 2015). Once obtained, this
information is expected to help chemists to ameliorate the
pharmacokinetic profile of the compounds.

The ADMET evaluation results are show in Table 2. The
predicted logPo/w ranges from 5.06 to 8.99, logS ranges from
−11.76 to −6.14, logHERG ranges from −9.36 to −5.5, Caco-
2 ranges from 256.59 to 6557.4, and PHOA ranges from 76.73
to 100 in this study. The predictions suggest that candidates may
have good Caco-2 cell permeability, and have highly human oral
absorption, the HERG was performed well. The properties of
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most hit compounds are within acceptable range available for
human use, which indicates that they have potential as drug-
like molecules.

Measurement of Direct Binding Between
Screened Compounds With Bcl-2 by
SPR Assay
To verify the interactions between Bcl-2 and the screened
twelve hit compounds, we performed SPR-based binding assays.
We found that eight compounds (M1-8) could directly bind
to the recombinant human Bcl-2 protein (Figure 5A). The
structures of eight compounds were shown in Figure 6. When
the concentration of Bcl-2 is 700 nM, they achieved the strongest
binding with each other. The average equilibrium dissociation
constants (KD) for eight candidates at a concentration of 700 nM
are range from 10−8 to 10−5 M, and compound M1 have the
lowest KD (370 nM) among these compounds. The binding signal
of M1 became stronger as the concentration increased, and the
KOn and KOff value of M1 are 4.48 × 103/M−1 s−1 and 1.42 ×

10−3/s−1 respectively (Figure 5B).

M1 Shows Significant Cytotoxic Effects in
Breast Cancer Cells
We further measured the effects of eight small molecule
compounds on breast cancer cell viability by the CCK-8 assay
(Figure S1). We found compound M1 showed significant
cytotoxicity, IC50 value (48 h) of M1 in MDA-MB-231
cells is 5µM, whereas the IC50 (48 h) of the other seven
compounds were more than 50µM (Table 3). Furthermore,
we found that compound M1 inhibits cell proliferation in
concentration- and time- dependent in three breast cancer
cell lines (Figures 7A,B). The EdU incorporation assay further
demonstrated that compound M1 has an inhibitory effect on
the proliferation of breast cancer cells, as evidenced by the
reduced number of EdU-positive cells treated with compound
M1 (Figure 7C). Next, we performed clonogenic assay to
measure the long-term anti-proliferative activity of compound
M1. After treatment with compound M1, the clonogenicity of
breast cancer cells was reduced in a dose-dependent manner
(Figure 7D). And then, we measured that the compound
M1 were negative in tests for known pain assay interference
(PAINS) substructures (Baell and Holloway, 2010) at the
FAF-Drugs4 webserver (Lagorce et al., 2015). These results
demonstrate that compound M1 has significant cytotoxic
effects in breast cancer cells and has passed current PAINS
removal filters.

Compound M1 Downregulates Bcl-2
Expression and Induces Mitochondrial
Dysfunction in Breast Cancer Cells
Next, we want to investigate the relationship between the
compound M1 and the level of Bcl-2 in breast cancer cells.
Compound M1 decreased the protein expression of Bcl-
2 in breast cancer cells in a dose- and time-dependent
manner (Figures 8A,B). The downregulation of Bcl-2 can cause
mitochondrial dysfunction. Therefore, we explored whether

mitochondrial function can be damaged by this compound in
breast cancer cells. As shown in Figure 8C, compoundM1 caused
the disturbance of MMP (mitochondrial membrane potential),
as determined by the shift of JC-1-produced fluorescence
from red to green. Reactive oxygen species (ROS) are mainly
produced in mitochondria, when the cells are stimulated by
external stimuli, the increased level of ROS will cause further
mitochondrial damage (Chong et al., 2014). We found that
there was an elevation in the level of generated ROS in the
M1-treated breast cancer cells compared to untreated cells
(Figure 8D). We further found that compound M1 increased
the release of cytochrome c from mitochondria to cytosol
in a concentration-dependent manner in breast cancer cells
(Figure 8E). These results confirmed that compound M1
could induce mitochondrial dysfunction by downregulating the
expression of Bcl-2.

Compound M1 Induces Apoptosis in
Breast Cancer Cells
The loss of MMP is an early but critical step in the mitochondrial
pathways of apoptosis. Mitochondrial pro-apoptotic proteins
such as cytochrome c release from mitochondria to cytoplasm
are one of the crucial events in the intrinsic apoptosis
pathway. Therefore, we further measured the effect of M1 on
apoptosis induction, and found that this compound caused
a dose-dependent increase in apoptosis, as indicated by an
increase in Annexin V staining (Figure 9A), and in cleaved
PARP and cleaved caspase-3 (Figure 9B). These results show
that apoptosis can be induced by compound M1 in breast
cancer cells.

CONCLUSIONS

In this study, a virtual screening process including RF
classification and regression models was applied to identify
the novel Bcl-2 inhibitors. We finally screened out the
compound M1 as a novel Bcl-2 small molecule inhibitor,
which binds to and down-regulates Bcl-2, has significant
cytotoxic effect by inducing mitochondria-mediated apoptosis.
Compound M1 could be a novel and promising hit or
lead compound for further structural optimization in
drug discovery.
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