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Small interfering RNAs (siRNAs) acting via RNA interference mechanisms are able to

recognize a homologous mRNA sequence in the cell and induce its degradation. The

main problems in the development of siRNA-based drugs for therapeutic use are the low

efficiency of siRNA delivery to target cells and the degradation of siRNAs by nucleases

in biological fluids. Various approaches have been proposed to solve the problem of

siRNA delivery in vivo (e.g., viruses, cationic lipids, polymers, nanoparticles), but all have

limitations for therapeutic use. One of the most promising approaches to solve the

problem of siRNA delivery to target cells is bioconjugation; i.e., the covalent connection

of siRNAs with biogenic molecules (lipophilic molecules, antibodies, aptamers, ligands,

peptides, or polymers). Bioconjugates are “ideal nanoparticles” since they do not need a

positive charge to form complexes, are less toxic, and are less effectively recognized by

components of the immune system because of their small size. This review is focused

on strategies and principles for constructing siRNA bioconjugates for in vivo use.

Keywords: RNAi, siRNA, bioconjugate, chemical modifications, patterns of chemical modifications

INTRODUCTION

Small interfering RNAs (siRNAs) are the most promising type of RNA-based therapeutic
oligonucleotide drug, since their mechanism of action is catalytic and each siRNA molecule can
inactivate several target RNA molecules in a sequence-specific manner. Since the discovery of
RNA interference (RNAi) and the development of the first oligomeric RNAs that trigger RNAi
in mammalian cells, significant progress has been made in the development of therapeutic siRNAs
(Fire et al., 1998; Crooke et al., 2018). Chemical modifications of RNA have been developed that
modulate their activity and stabilize them in biological fluids (Hoerter and Walter, 2007); some
progress has been made in the development of methods for the delivery of siRNAs to cells (Hassler
et al., 2018). Several siRNA-based drugs are undergoing clinical trials, and one drug patisiran
(Onpattro) is approved for use in the clinic (Garber, 2018). However, the outstanding potential of
siRNAs as therapeutic drugs has not yet been fully implemented. A number of unsolved problems
remain: it is essential to develop an effective means of delivering siRNAs to certain types of cells; it is
also necessary to create modified versions of siRNAs that are stable, effectively silence target RNAs,
and do not cause side effects. These problems are a consequence of the properties of siRNAs, which
are large, polyanionic molecules that are unstable in biological media and are capable of causing
unwanted immune responses when they enter cells.
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RNAi

Induction of RNAi occurs when double-stranded RNA (dsRNA)
enters the cell; e.g., when transfected with dsRNA, infected
with RNA-containing viruses (De Paula et al., 2007), or
when endogenously formed in cells as a result of transposon
or non-coding RNA expression (Khvorova et al., 2003).
Mechanism of RNAi is divided in to two phases: in the
first stage (initiation phase), long dsRNA is cleaved by the
endoribonuclease Dicer into siRNAs, short dsRNAs (21–23 bp)
with two nucleotides protruding at the 3′-ends. In the second
stage (effector phase), the multiprotein RNA-induced silencing
complex (RISC) is formed, which, after activation, performs
recognition and sequence-specific cleavage of the target mRNA

FIGURE 1 | RNA interference (RNAi) mechanism.

(Figure 1). It has been shown that RNAi in mammalian cells
can be induced by chemically or enzymatically synthesized
siRNAs that mimic dsRNA Dicer cleavage products (Nakanishi,
2016); in this case, the RNAi mechanism involves only the
effector phase.

In the first stage of RISC assembly, the R2D2 protein (in
Drosophila) or its analog (in other species), which contains two
dsRNA binding domains and the Dicer binding domain, binds
the siRNA. R2D2 recognizes and binds the thermodynamically
more stable 5′ end of the duplex, which allows further
binding of Dicer (Tomari et al., 2004), whose dsRNA-binding
domain has specificity for 3′-overhangs (Ma et al., 2004).
Thus, the intermediate RISC loading complex (RLC) is formed.
Following formation of the RLC, Dicer interacts with argonaute-2

Frontiers in Pharmacology | www.frontiersin.org 2 April 2019 | Volume 10 | Article 444

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Chernikov et al. Current Development of siRNA Bioconjugates

(Ago2), presumably with the participation of the PAZ domains
(Bernstein et al., 2001).

At the last stage of RISC assembly, Ago2 cuts and causes
dissociation of one of the siRNA strands (“passenger strand”),
resulting in the formation of an activated RISC∗. Ago2 and
the remaining siRNA strand (“guide strand”) are the main
components of activated RISC (Aronin, 2006; Addepalli et al.,
2010); however, a number of other proteins may also be part
of this complex (Rana, 2007; Ohrt et al., 2008). The selection
of the strand that is included in RISC∗ is determined by the
orientation of the Dicer-R2D2 heterodimer relative to the siRNA;
since R2D2 interacts with the thermodynamically more stable
end of the duplex, the most active siRNAs are those with a 5′

end of the sense strand more thermostable than the 5′ end of
the antisense strand. Ago2 cuts both the siRNA passenger strand
and the target mRNA (Liu et al., 2004); however, siRNA strand
dissociation can be carried out without cleavage. Moreover, it
is assumed that human Ago2 causes strand dissociation, mainly
by a mechanism that does not require its cleavage (Muhonen
et al., 2007; Park and Shin, 2015), therefore, the total melting
point of the duplex can contribute to the efficiency of siRNA
interfering activity. Recognition of the mRNA target by RISC∗

occurs in several stages, wherein the “seed” region (the siRNA
region from 2 to 8 nucleotides from the 5′ end of antisense strand)
plays an important role. First, an initial screening of the sequence
for three nucleotides (2–4 nucleotides from the 5′ end of the
siRNA strand) occurs (Chandradoss et al., 2015). After the triplet
is recognized, the fifth nucleotide from the 5′ end of the antisense
strand interacts with the target mRNA, which contributes to
conformational changes, opening nucleotides 6–8 and 13–16 for
interaction (Schirle et al., 2014). The complementary interaction
of the siRNA strand with the mRNA provides an advantageous
conformation to cleave the mRNA between nucleotides 10–
11 relative to the 5′ end of the siRNA, which occurs via
the PIWI domain of Ago2 (Jinek and Doudna, 2009). After
cutting and dissociating from the complex, the target RNA and
passenger strand of the siRNA are degraded by ribonucleases.
Released RISC∗ can participate in subsequent cycles of cleavage
in a catalytic manner (Haley and Zamore, 2004; Aronin, 2006;
Leuschner et al., 2006).

Due to the high affinity of RISC∗ to single-stranded
RNA, binding efficiency of RISC∗ with the target mRNA is
almost an order of magnitude greater than that of antisense
oligodeoxynucleotides (ASOs) with the same sequence in which
binding to the target mRNA occurs only through complementary
interaction (Ameres et al., 2007). Thus, the concentration of
siRNA at which an effective decrease in the expression of the
target gene is observed is two to three orders of magnitude lower
compared to antisense oligonucleotides (Lemaitre et al., 1987;
Subramanian et al., 2015).

BARRIERS FOR siRNA TO THEIR TARGETS

There are a number of biological barriers that impede the
effective action of RNA in mammalian cells. First, since siRNAs
are polyanions, they are unable to penetrate directly through

the hydrophobic cell membrane and can enter the cell only
by endocytosis or pinocytosis. However, in order to implement
the silencing effect, endocytosed siRNA must penetrate the
endosome membrane and exit into the cytoplasm, otherwise it
will undergo cleavage by ribonucleases (Varkouhi et al., 2011), or
will leave the cell via exocytosis (Shukla et al., 2016).When siRNA
enters the cytoplasmic space, it can also be cleaved by cytoplasmic
ribonucleases (Whitehead et al., 2009) or its concentration can
decrease due to the division of target cells.

Despite the high specificity of the action, some siRNA can
cause a number of non-targeted effects that prevent its use in
high concentrations due to the toxicity they cause. The most
significant non-targeted effect of siRNA is unwanted activation of
the system of innate immunity under the action of certain motifs
in the siRNA sequence. When interacting with the membrane
surface or in the endosome, immunostimulating motifs can be
recognized by Toll-like receptors (TLR3/7/8) (Oosenbrug et al.,
2017; Pirher et al., 2017), inducing the production of interferons
(α or β) and inflammatory cytokines that activate immune
response and induce global changes in gene expression pattern
(Mansoori et al., 2016). Other non-target effect of siRNAs is the
displacement of endogenous micro-RNA from RISC, which can
disrupt the natural regulation pathways in the cell. Also, the sense
strand can be introduced in RISC∗ and suppress the expression
of non-target genes, similar effects can be caused by the antisense
strand of siRNA which bind to partially homologous non-target
mRNA. In last case the block of translation does not include the
cleavage of mRNA (Huntzinger and Izaurralde, 2011).

In the transition to the level of the organism, there are
new factors that reduce the effectiveness of the siRNA, such as:
siRNA filtration by the kidneys, siRNA capture by immune cells,
cleavage by serum ribonucleases, the endothelial barrier (Kanasty
et al., 2012, p. 511). Due to the presence of these barriers, siRNA
have reduced bioavailability and unfavorable pharmacokinetics
in vivo, which necessitates the use of high doses of siRNA
and makes it not always possible to achieve the desired effect.
This review examines approaches to solving the above problems
based on chemical modifications of siRNAs; namely, introducing
unnatural nucleotides into the siRNA structure and attaching
molecules to siRNAs, ensuring the interaction of conjugates with
biological structures that increase the efficiency and specificity of
siRNAs as potential drugs.

CHEMICAL MODIFICATIONS OF siRNA

Chemical modifications may affect the properties of siRNA:
sensitivity to ribonucleases, recognition by the RNAi system,
hydrophobicity, toxicity, duplex melting temperature, and
conformation of the RNA helix (Manoharan, 2004; Behlke,
2008; Chen et al., 2018). Modifications can be divided into
modifications of ribose, phosphates, and nucleobases (Table 1;
Figure 2). Each type ofmodification is reviewed separately below.

Ribose Modifications
Among all ribose modifications, substitutions in the 2′-position
most effectively protect siRNAs against the action of serum
nucleases, as the 2′OH group participates in the cleavage of
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TABLE 1 | The effect of chemical modifications on siRNA properties.

Modification Structure 1Tm duplex per

modi-fication

Impact on the efficiency of RNAi Other properties of modification (effect on

ribose conformation, nuclease resistance,

toxicity, etc.)

SUGAR MODIFICATIONS

2′-O-methyl (2′O-Me) +0.5–1.5◦C Two or more consecutive 2′O-Me

inhibits RNAi (Czauderna et al., 2003;

Prakash et al., 2005; Akinc et al.,

2008; Manoharan et al., 2011).

However, siRNAs possessing

biological activity, containing 75–82%

2′O-Me, are described (Ray et al.,

2017; Foster et al., 2018).

Stabilizes 3′ endo ribose conformation.

≥5–30% of 2′O-Me increase nuclease

resistance in vitro (Jackson et al., 2006; Volkov

et al., 2009; Petrova Kruglova et al., 2010;

Takahashi et al., 2012) and in vivo (Liu et al.,

2014; Chernikov et al., 2017).

2′O-Me analogs of A, G and U reduce the

immune response (Judge et al., 2006).

2′-fluoro (2′F) +1.5–4◦C 2′F analogs in all siRNA positions only

slightly reduces the activity of RNAi

(Deleavey et al., 2010).

Stabilizes 3′ endo ribose conformation.

≥50% 2′F increase nuclease resistance in vitro

(Cuellar et al., 2014) and in vivo (Viel et al.,

2008; Manoharan et al., 2011).

2′F analogs of adenine (≥7%) reduce the

immune response in vitro (Fucini et al., 2012).

>50% of the 2′F in siRNA may cause toxicity

(Ohrt and Schwille, 2008; Shen et al., 2015;

Garber, 2016).

2′F-arabinonucleic acid

(2′FANA)

+1.2◦C 100% 2′FANA in the sense chain

reduce the efficiency of RNAi. ≥30%

2′FANA in the antisense chain inhibits

RNAi (Dowler et al., 2006; Deleavey

et al., 2010).

Stabilizes 2′ endo ribose conformation.

≥50% 2′FANA increases nuclease resistance

in vitro (Deleavey et al., 2010); more effectively

than 2′F protect siRNA from the action of

exoribonucleases (Damha et al., 2001).

2′-O-methoxyethyl

(2′O-MOE)

+0.9–1.7◦C 2′-MOE at the flanks of the sense

strand and the central part (6–11) of

the antisense strand are tolerable for

RNAi (Prakash et al., 2005;

Manoharan et al., 2011).

Replacement of 9th or 10th

nucleotides from the 5′ end to

2′O-MOE analogs of nucleotide

increases the probability of entry in

RISC (Song et al., 2017).

Stabilizes 3′ endo ribose conformation.

≥15% 2′O-MOE at the ends of the siRNA

sense chain increases nuclease resistance

in vitro (Lima et al., 2012).

Locked nucleic acid (LNA) +2–8◦C ≥40% LNA in the sense chain inhibit

RNAi by 5–20% (Elmen et al., 2005).

>20% LNA in the antisense chain, or

the first LNA nucleotide at the 5′ end

completely inhibit RNA (Braasch

et al., 2003; Elmen et al., 2005; Mook

et al., 2007; Schyth et al., 2012).

LNA can change thermal asymmetry

of the duplex, increasing the efficiency

of siRNA (Elmen et al., 2005).

Reduces the conformational flexibility of

nucleotides, fixing the C3′ endo conformation

of the ribose (Julien et al., 2008).

≥10–20% LNA in siRNAs increase nuclease

resistance in vitro (Elmen et al., 2005) and

in vivo (Mook et al., 2010).

Unlocked nucleic acid

(UNA)

−5–8◦C >15% UNA inhibit RNAi (Laursen

et al., 2010).

UNA can change thermal asymmetry

of the duplex, increasing the efficiency

of siRNA (Mook et al., 2010; Vaish

et al., 2011; Snead et al., 2013).

Increases conformational flexibility of

nucleotides and reduces the melting point of

the duplex.

UNA at the 3′ends of the duplex protect siRNA

from 3′ exoribonucleases in vitro and in vivo

(Laursen et al., 2010; Mook et al., 2010;

Pasternak and Wengel, 2011).

(Continued)
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TABLE 1 | Continued

Modification Structure 1Tm duplex per

modi-fication

Impact on the efficiency of RNAi Other properties of modification (effect on

ribose conformation, nuclease resistance,

toxicity, etc.)

4′-thioribonucleosides

(4′S)

+1◦C >7–15% 4′S in the antisense strand

inhibit RNAi (Hoshika et al., 2005,

2007; Dande et al., 2006).

>10–15% 4′S at the ends of the strands

increase the nuclease resistance in vitro (Dande

et al., 2006; Takahashi et al., 2012).

4′-C-aminomethyl-2′-O-

methyl

−1◦C >2 analogs in the sense or >1 analog

in the antisense strand inhibit RNAi

(Gore et al., 2012).

≥2 modifications at the 3′ ends increase

nuclease resistance in vitro (Gore et al., 2012).

Deoxyribonucleotide

(dNMP)

−0.5◦C >50% dNMP inhibits RNAi (Parrish

et al., 2000; Elbashir et al., 2001;

Ui-Tei et al., 2008).

dNMP can change thermal

asymmetry of the duplex, increasing

the efficiency of siRNA in vitro (Ui-Tei

et al., 2008).

Protects against exoribonucleases (Parrish

et al., 2000).

Cyclohexenyl nucleic

acids (CeNA)

+1.5◦C 5% CeNA in siRNA are tolerated by

RNAi (Herdewijn and Juliano, 2007;

Nauwelaerts et al., 2007).

CeNA can change thermal asymmetry

of the duplex, increasing the efficiency

of siRNA in vitro (Herdewijn and

Juliano, 2007; Fisher et al., 2009).

Stabilizes 3′ endo ribose conformation (Ovaere

et al., 2011).

≥25% CeNA analogs increase serum nuclease

resistance (Wang et al., 2001).

Hexitol nucleic acids

(HNA)

+0.85◦C 15% HNA in siRNA are tolerated by

RNAi (Fisher et al., 2009).

HNA can change thermal asymmetry

of the duplex, increasing the efficiency

of siRNA in vitro (Herdewijn and

Juliano, 2007).

Slightly increases siRNA resistance to

nucleases in serum (Fisher et al., 2009).

PHOSPHATE BACKBONE MODIFICATIONS

Phosphorothioate (PS) −0.7◦C PS inhibits RNAi when introduced in

the central part of the antisense

strand (Amarzguioui et al., 2003;

Schwarz et al., 2004; Prakash et al.,

2005; Eckstein, 2014).

PS protects siRNAs from the action of

exoribonucleases in vitro and in vivo

(Soutschek et al., 2004).

>50% PS cause toxicity in vitro (Harborth

et al., 2003) and in vivo (Henry et al., 2002;

Iannitti et al., 2014).

(Continued)
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TABLE 1 | Continued

Modification Structure 1Tm duplex per

modi-fication

Impact on the efficiency of RNAi Other properties of modification (effect on

ribose conformation, nuclease resistance,

toxicity, etc.)

Dimethylethylenediamine

(DMEDA)

−0.7–3.4◦C (shown

only for thymidine)

10% DMEDA in the sense strand are

tolerated by RNAi (Vlaho et al., 2017).

The effect on nuclease resistance of siRNA was

not shown.

Tert-butyl-S-acyl-2-

thioethyl

(tBu-SATE)

No data. 25% tBu-SATE are tolerated by RNAi

(Meade et al., 2014).

≥20–40% tBu-SATE in siRNA increase

nuclease resistance in vitro and in vivo (Meade

et al., 2014).

Increases hydrophobicity of siRNA. Cleaved by

thioesterase in the cytoplasm of the cell giving

a phosphodiester bond (Meade et al., 2014).

Boranophosphate (BP) +0.4–1◦C (<50% of

siRNA)

−0.8–2.5◦C (>50%

of siRNA)

>50% PB inhibit RNAi, the central

part of the antisense strand is the

most sensitive to modifications (Hall

et al., 2004).

Approximately two times more effectively

protect against ribonucleases than PS, but do

not cause toxicity in vitro (Hall et al., 2004,

2006).

Amide linker −0.3 to +0.9◦C In some siRNA positions, a single

substitution for an amide linker is

tolerated by RNAi (Mutisya et al.,

2017).

The introduction of two amide linkers from the

3′ ends of the duplex increases the nuclease

resistance of siRNA in serum (Iwase et al.,

2007; Selvam et al., 2011).

5′-PHOSPHATE MODIFICATIONS

5′C-methyl (S-isomer) −3.2◦C One (S) 5′C-methyl at the 5′ end of

the antisense strand is tolerated by

RNAi (Prakash et al., 2015).

(S) 5′C-methyl protect siRNA from

exonucleases two times more efficiently than

PS (Kel’in et al., 2016).

5′ (E)-vinylphosphonate No data. 5′(E)-vinylphosphonate 2-folds

improves siRNA interaction efficiency

with Ago2 (Elkayam et al., 2017).

Does not change the biological

activity of siRNA in vitro (Haraszti

et al., 2017).

Stabilizes 5′ phosphate, protect from the action

of phosphatases and exonucleases.

Improves the pharmacokinetics (Elkayam et al.,

2017; Haraszti et al., 2017).

(Continued)
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TABLE 1 | Continued

Modification Structure 1Tm duplex per

modi-fication

Impact on the efficiency of RNAi Other properties of modification (effect on

ribose conformation, nuclease resistance,

toxicity, etc.)

5′ methylenephosphonate No data. 5′ methylenephosphonate at the 5′

end of the antisense strand reduces

the biological activity of siRNA by

∼10-folds (Lima et al., 2012; Prakash

et al., 2015).

No data.

BASE MODIFICATIONS

2′ thiouridine (s2U) 0–2◦C 7% s2U are tolerated by RNAi (Sipa

et al., 2007).

s2U can change thermal asymmetry

of the duplex, increasing the efficiency

of siRNA in vitro (Sipa et al., 2007;

Peacock et al., 2011).

s2U slightly increases nuclease resistance

in vitro.

Pseudouridine (Ψ ) −1 to +1◦C One 9 is tolerated by RNA(Sipa et al.,

2007).

Stabilizes 3′ endo ribose conformation.

Reduces the PKR-induced interferon response

(Anderson et al., 2010).

FIGURE 2 | Sites of introduction of chemical modifications in siRNAs (marked in red).

RNA by endoribonucleases (Findlay et al., 1962; Breslow and
Chapman, 1996). In this case, the size of the substituent at
the 2′-position of ribose affects the properties of the modified
base. When the hydrogen of the 2′OH group is replaced with a
relatively small methyl residue (2′-O-methyl modification [2′O-
Me]) (Bobst et al., 1969), there is stabilization of the 3′-endo
ribose conformation, which provides the A-type RNA helix
essential for RNAi. The introduction of 2′O-Me modifications

into siRNA promotes its protection against nucleases both
in vitro (Volkov et al., 2009) and in vivo (Liu et al., 2014;
Chernikov et al., 2017). Moreover, the introduction of these
modifications reduces the immune response (Judge et al., 2006).
These properties make 2′O-Me modification of siRNA one of
the most attractive strategies for introducing siRNA-based drugs
into the clinic (Khvorova, 2017; Ray et al., 2017). However,
replacement of each nucleotide in the siRNA with a 2′O-Me
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modified one leads to inhibition of RNAi (Czauderna et al., 2003);
even the replacement of 50% of the nucleotides in siRNAs with
2′O-Me could inhibit this process. The presence of a hydrophobic
residue at the 2′ position alters the overall structure of siRNA
and increases the thermal stability of the duplex, which interferes
with its effective incorporation into RISC and dissociation of the
passenger strand.

Since the size of the modification may contribute to an
increase in the nuclease resistance of siRNA (Cummins et al.,
1995), attempts have been made to introduce more voluminous
substituents into the 2′ position of ribose (2′-O-methoxyethyl
[2′O-MOE] Prakash et al., 2005; Zanardi et al., 2018, 2′O-
allyl Amarzguioui et al., 2003, 2′O-benzyl Kenski et al., 2012,
and other modifications); however, these substitutions more
significantly inhibited RNAi than 2′O-Me.

Among the large number of bulky 2′ substituents, the 2′O-
MOE ribose is one of the few modifications that stabilizes the 3′

endo ribose conformation and increases the melting temperature
of the duplex more effectively than 2′O-Me (Dorn et al., 2004).
The introduction of 2′O-MOE into siRNA without inhibiting
RNAi is possible only along the flanks of the duplex and
the central part of the antisense strand (Prakash et al., 2005).
Availability of 2′O-MOE in the central part of the antisense
strand (9 or 10 nucleotides) was recently shown to increase
the biological activity of siRNA by reducing the probability
of inclusion of the sense strand in RISC (Song et al., 2017),
although direct confirmation of the mechanism of modified
strands selection was not provided. Apparently, the presence
of a bulk modification in this position may sterically affect the
interaction with a Dicer-R2D2 heterodimer or the formation of
RISC (Koller et al., 2006).

Unlike the substitution of hydrogen in the 2′OH group, the
replacement of oxygen by 2′-fluorine (2′F) is more consistent
with the original structure of RNA, effectively stabilizing the 3′

endo ribose conformation (Manoharan et al., 2011). Introduction
of 2′F into all nucleotides of the duplex only slightly reduces
the efficiency of RNAi (Blidner et al., 2007; Deleavey et al.,
2010). This modification protects siRNAs from the action of
nucleases in vitro and in vivo (Manoharan et al., 2011; Fucini
et al., 2012); however, the introduction of modifications in 50%
of the siRNA nucleotides could lead to toxicity (Shen et al.,
2015; Janas et al., 2017). In 2016, the third stage of clinical
trials of the Alnylam conjugate of N-acetylgalactosamine and
siRNA containing 50% 2′F revealed its cardiotoxicity (Garber,
2016). Since these effects were not detected in previous stages
of clinical trials (Zimmermann et al., 2017) and the toxicity of
2′F modified siRNA for the heart was not previously shown,
these results may be occasional and not related to the properties
of the conjugate. On the other hand, it was shown that under
the action of ASO containing 50% 2′F, the expression profiles
of a number of genes in vitro (Shen et al., 2015) and in vivo
(Shen et al., 2018) were altered. In confirmation of the toxicity
hypothesis of siRNAs containing 2′F, another study showed
that the introduction of 2′F at the ends of the duplex alters
the localization of siRNA from cytoplasmic to nuclear (Ohrt
and Schwille, 2008). These results suggested that only a limited
amount (no more than 25%) of 2′F modifications (Ray et al.,

2017) could be introduced for therapeutic applications. However,
a decrease in the proportion of 2′F analogs from 50 to 25% did not
lead to a decrease in hepatotoxicity in rats and mice following
intravenous administration of high doses (100–200 mg/kg) of
siRNA and N-acetylgalactosamine conjugate (Janas et al., 2018).

Although other positions in ribose, such as 4′ carbon, can be
modified [4′S Gore et al., 2012, 4′C-aminomethyl-2′-O-methyl
Takahashi et al., 2012, and 4′C-O-methyl-2′-O-methyl Harp
et al., 2018 (Table 1)] and such modifications protect siRNAs
from nucleases in vitro efficiently, these modifications are not
widely used in biomedical research because they significantly
inhibit RNAi (Deleavey and Damha, 2012).

Ribose modifications are not limited to substitutions in
structure; nucleic acid analogs with a modified structure of
the furanose cycle, such as derivatives containing 6-membered
(hexitol [HNA] Fisher et al., 2009, cyclohexenic [CeNA]
Nauwelaerts et al., 2007, and altritol [ANA] Fisher et al., 2007
nucleic acids) and 7-membered rings (oxepanic nucleic acid
[ONA] Sabatino andDamha, 2007), bicyclic (locked nucleic acids
[LNA] Braasch et al., 2003, 2′-deoxymethanocarbanucleosides
[MCs] Terrazas et al., 2011), tricyclic (tricyclo-DNA [tc-DNA]
Goyenvalle et al., 2015), and acyclic (unlocked nucleic acid
[UNA] Jensen et al., 2008; Langkjaer et al., 2009) derivatives,
can protect siRNAs from the action of nucleases and in some
cases (CeNA, LNA, and UNA) do not inhibit RNAi (Herdewijn
and Juliano, 2007; Deleavey and Damha, 2012). Among the
6-membered nucleic acid derivatives, CeNA is most suitable
for modifying siRNA, since its complementary interaction with
RNA stabilizes the duplex, increasing the melting point by
1.5◦C per modified base and increases the oligoribonucleotide
resistance to degradation in serum (Wang et al., 2001). Bicyclic
derivatives (LNA) can even more significantly increase the
melting temperature of siRNA. In the case of LNA, affinity
for the complementary strand is increased by 2–8◦C per
nucleotide due to the extra cycle between 2′ and 4′ carbon,
which fixes the 3′ endo ribose conformation (Julien et al.,
2008). However, the introduction of this modification into
siRNA strongly affects its interfering activity and the antisense
strand is especially sensitive to this modification; even one LNA
modification of its first nucleotide from the 5′ end completely
inhibits RNAi (Elmen et al., 2005). Conversely, conformationally
more flexible acyclic derivatives, such as UNA or glycolic
nucleic acid (GNA), can destabilize the duplex, reducing the
melting point by 5–8 and 5–18◦C per nucleotide, respectively
(Laursen et al., 2010; Schlegel et al., 2017).

Since thermal asymmetry of the duplex makes a primary
contribution to “guide” strand selection, modifications stabilizing
the duplex formed by the 3′ end of the antisense strand and 5′ end
of the sense strand and, conversely, modifications destabilizing
the duplex formed by the 3′ end of the sense strand and 5′

end of the antisense strand can increase the efficiency of RNAi
by providing favorable duplex thermal asymmetry. Thus, the
introduction of LNA, UNA, or GNA at different ends of the
duplex can lead to an increase in siRNA efficiency by increasing
the probability of incorporation of the antisense strand into
RISC (Vaish et al., 2011). Moreover, due the change in thermal
asymmetry of siRNA, the probability of incorporation of the
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sense strand in RISC and the following suppression of expression
of non-target genes those have regions complementary to the
sense strand of the siRNA decreases.

The antisense strand of siRNA can also block the translation
of non-target mRNA by complementary interaction with the
“seed” region. It has been shown that a decrease in the melting
temperature of this region leads to a decrease in the efficiency of
suppression of non-target genes (Jackson et al., 2006). Therefore,
the introduction of UNA or GNA modifications in the “seed”
region of the antisense strand of siRNAs contributes to an
increase in the specificity of action (Bramsen et al., 2009;
Janas et al., 2017).

An interesting strategy to increase the specificity of the siRNA
is introducing nicks in the middle of the sense strand of the
siRNA (small internally segmented interfering RNA [sisiRNA])
(Bramsen et al., 2007). sisiRNAs have a greater specificity of
biological action because RISC containing sense strand is not
formed. sisiRNAs are less stable compared to siRNAs of the same
sequence; thus, LNA modifications are introduced to stabilize
sisiRNAs. However, it has been shown that such a duplex design
did not contribute to a significant increase in the biological
activity of siRNA in vitro (Hong and Nam, 2016) or in vivo
(Mook et al., 2010).

Phosphate Modifications
Ribose modifications do not interfere with changes in the
phosphate structure, and since that modifications are directly
involved in nuclease cleavage (Frazao et al., 2006), it is reasonable
that such modifications could effectively protect siRNA from
degradation. Replacement of the oxygen of phosphate with
sulfur (phosphorothioate [PS] Eckstein, 1970, 2014) or boron
(boranophosphate [BP] Hall et al., 2006) has been shown
to protect siRNA from the action of ribonucleases in vitro
and in vivo (Soutschek et al., 2004). The introduction of
PS modifications to both strands of the duplex inhibits
RNAi to some extent (Schwarz et al., 2004). However, the
introduction of PS modifications into oligonucleotides facilitates
their penetration into cells in the absence of transfection agents
due to non-specific binding to cell receptors and penetration
by clathrin-dependent endocytosis (Wang et al., 2018). On
the other hand, due to the non-specific interaction of PS
oligonucleotides with serum proteins and cell receptors (Lee
et al., 1999), activation of the complement system and leukocyte
infiltration of the corresponding organs (Iannitti et al., 2014) may
occur. Therefore, for clinical use of siRNA, the number of PS
modifications should be reduced to 5–50%, depending on the
intended dose of siRNA.

Unlike PS, the introduction of BP into the central part of the
antisense strand strongly inhibits the action of RNAi; however, a
partially modified pattern (25–75%) may increase the efficiency
of RNAi and resistance to ribonuclease (Hall et al., 2004, 2006).
At the same time, according to the work of Hall et al. (2004),
where unpublished comparison data of PS and BP modifications
of siRNA is mentioned, BP was shown to exhibit approximately
twice as effective protection of siRNA from nucleases. If so,
this modification could address some of the issues regarding the
biomedical use of siRNA. One of the main limitations of the use

of BP for siRNA modification is the lack of an optimized method
of synthesizing large quantities of BP-modified siRNA; therefore,
novel methods must be developed to assess the therapeutic
potential of BP-modified siRNAs in vivo.

The introduction of modifications replacing the
phosphodiester bond with an amide bond (Selvam et al.,
2011) contributes to the protection of siRNA from the action of
nucleases (Iwase et al., 2007), but their effect on the efficiency
of RNAi is uncertain. The introduction of an amide bond
between 10, 11, and 12 nucleotides, despite the absence of a
phosphodiester bond, has been shown to increase the inhibitory
effect of the modified siRNA, presumably due to the formation of
additional hydrogen bonds between the amide group and Ago2
(Mutisya et al., 2017).

The presence of phosphate at the 5′ end of the “guide”
strand of siRNA is essential for RNAi (Frank et al., 2010),
while siRNA with 5′-hydroxyl possesses biological activity, since
such siRNA is effectively phosphorylated inside cells (Weitzer
and Martinez, 2007). When blocking phosphorylation of the
5′-hydroxyl, siRNA does not exhibit interfering activity (Chen
et al., 2008). Chemical modifications of the first nucleotide
from the 5′ end of the antisense strand can interfere with
intracellular phosphorylation (Allerson et al., 2005; Chen et al.,
2008; Kenski et al., 2012); however, the introduction of
chemically stable phosphate [5′-(S)-C-methyl (Prakash et al.,
2015), 5′-methylphosphonate (Lima et al., 2012), and 5′(E)-
vinylphosphonate (Elkayam et al., 2017)] at the 5′ end of
the antisense strand can restore activity (Lima et al., 2012;
Prakash et al., 2015). The introduction of 5′(E)-vinylphosphonate
solves this problem most efficiently. It has been shown that
such modification of the antisense strand not only improves
binding to Ago2 (Elkayam et al., 2017) 2-fold, but also leads
to an increase in the accumulation and stability of siRNA
conjugates containing cholesterol (Haraszti et al., 2017) or
N-acetylgalactosamine (Elkayam et al., 2017) in the organs
of mice following subcutaneous injection. Therefore, 5′(E)-
vinylphosphonate modification of the antisense strand is a
promising strategy for the development of therapeutic drugs
based on siRNA.

Nucleobase Modifications
Substitutions of nucleobases with various modified analogs
[pseudouridine, 2′thiouridine, dihydrouridine (Sipa et al.,
2007), 2,4-difluorobenzene (Somoza et al., 2006), 4-
methylbenzimidazole (Somoza et al., 2008), hypoxanthine
(Addepalli et al., 2010), 7-deazaguanin (Eberle et al., 2008),
N2-alkyl-8-oxoguanine (Kannan and Burrows, 2011), N2-benzyl-
guanine (Puthenveetil et al., 2006), and 2,6-diaminopurine (Chiu
and Rana, 2003)] are designed to increase the thermal stability
of the duplex by increasing the efficiency of the formation of
hydrogen bonds with complementary nucleotides. However,
such modifications reduce the efficiency of RNAi and do not
contribute to an increase in siRNA resistance to nuclease
action (Peacock et al., 2011). Nucleobase modifications in small
amounts (up to 10%) could reduce immune reactions and
improve the thermodynamic siRNA profile (Sipa et al., 2007;
Anderson et al., 2010). The presence of such modifications in the
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patterns of chemical modification of siRNA can contribute to the
optimization of the therapeutic properties of siRNA; however,
this approach has not yet found wide application as similar
effects can be obtained by introducing other modifications.

PATTERNS OF CHEMICAL
MODIFICATIONS OF siRNAs

siRNA is degraded in vivo as a result of its cleavage by
endonucleases on pyrimidines (Turner et al., 2007) and
exonucleases from both the 3′ and 5′ ends (Hsu and Stevens,
1993; Terrazas et al., 2013); thus, it is essential that siRNAs
contain chemical modifications at cleavage sites to improve
siRNA nuclease resistance to achieve biological activity of
bioconjugates in vivo. However, the introduction of certain
chemical modifications in siRNA is limited by inhibition of
its interfering activity and toxicity. Thus, the introduction of
modifications in siRNA is determined by the balance between
the number of modifications sufficient for siRNA to be non-
toxic, while retaining interfering activity and nuclease resistance.
Introducing the 2′O-Me modification into siRNA can lead
to inhibition of RNAi if the siRNA contains more than two
consecutive 2′O-Me modifications in a row (Czauderna et al.,
2003; Manoharan et al., 2011), while 2′O-Me modification of
every second nucleotide does not block RNAi (Czauderna et al.,
2003). Thus, an important parameter affecting RNAi is not only
the number of introduced modifications, but also their location
in the duplex.

One of the approaches to finding a balance between
interfering activity and nuclease resistance of siRNA with 2′O-
Me modifications is 2′O-Me selective modification of nuclease-
sensitive siRNA sites (Volkov et al., 2009). siRNA is subjected
to serum cleavage at pyrimidines (Turner et al., 2007); however,
replacing all pyrimidines with 2′O-Me analogs completely
inhibits the interfering ability of siRNA (Manoharan et al., 2011).
It has been shown that the main sites of siRNA cleavage in serum
are generally CA, UA, and UG sites. Introduction of 2′O-Me at
these sites will preserve the interfering activity of siRNA, increase
serum nuclease resistance (Volkov et al., 2009), and provide long-
term suppression of target gene expression (Petrova Kruglova
et al., 2010; Chernikov et al., 2017).

The main limitation of the introduction of 2′F modifications
in siRNA is their toxicity, although siRNA conjugates containing
2′F modifications on pyrimidines are protected from the
action of ribonucleases and, unlike 2′O-Me (Manoharan et al.,
2011), possess biological activity (Wolfrum et al., 2007). The
introduction of PS into siRNAs is also limited by the toxicity
of the resulting oligonucleotides, and since PS-modified siRNAs
have been shown to be highly protected against exoribonucleases
(Eckstein, 2014; Kel’in et al., 2016), PS modification is used only
to replace two or three terminal nucleotides in siRNA (Soutschek
et al., 2004). Most of the other chemical siRNA modifications
are primarily introduced along the terminal regions of the
duplex for various reasons; e.g., the effect of RNAi on proteins,
thermal asymmetry, and protection against nucleases (Deleavey
and Damha, 2012). It is important that modifications designed

to change the properties of siRNAs that are significant for its
therapeutic potential can be used together, complementing one
another and ensuring biological activity and siRNA resistance
to nucleases more efficiently than each modification separately
(Deleavey et al., 2010). Recent studies have used combinations of
chemical modifications to achieve maximum effect in vivo.

Since after replacing each second nucleotide with the 2′O-
Me analog, half of the siRNA molecule is unprotected from
the action of nucleases, the introduction of 2′F modifications
into the unmodified portion of the duplex was proposed. It
has been shown that siRNA molecules with alternating 2′O-
Me and 2′F modifications are stable in mouse plasma and
suppress expression of the target gene by several orders of
magnitude more efficiently compared to unmodified siRNA
(Allerson et al., 2005). Successful use of fully modified siRNA
molecules based on alternating 2′O-Me and 2′F modifications
was demonstrated when studying the properties of single-
stranded siRNAs (ssRNAs). ssRNAs with this pattern, with the
addition of several PS, 2′O-MOE, and 5′ (E)-vinylphosphonate
modifications, exhibited biological activity in vitro and in vivo
(Lima et al., 2012; Prakash et al., 2015), and modeling of the
complex of this siRNA with Ago2 showed that the modifications
did not sterically block the interaction of the ssRNA with Ago2
(Schirle et al., 2016).

Despite the fact that duplex cleavage in serum at internal
nuclease sensitive sites makes the greatest contribution to siRNA
degradation, siRNA cleavage can also occur at other sites. A
fully modified siRNA, containing alternating 2′O-Me and 2′F
modifications, was compared with a partially modified siRNA,
containing a combination of 2′O-Me and 2′F modifications
located along the pyrimidines and the ends of the duplex; both
patterns contained PSmodifications on the 3′-overhangs (Hassler
et al., 2018) (Figure 3). A cholesterol conjugate of the fully
modified siRNA more effectively reduced expression of the Htt
gene in HeLa cells compared to a cholesterol conjugate of the
partially modified siRNA; the concentrations of siRNA at which
expression of the target gene was 50% suppressed were 70 and
170 nmol/l, respectively (Hassler et al., 2018).

In contrast to serum siRNA cleavage, siRNA degradation in
lysosomal hepatocyte extracts occurs mainly by 5′-exonucleases;
therefore, siRNA could be further stabilized by PS modifications
of the 5′ ends in the N-acetylgalactosamine conjugate to
increase the duration and efficiency of its inhibitory effect
(Nair et al., 2017). Subcutaneous administration of 10 mg/kg
of conjugate of fully modified at 2′ ribose positions siRNA and
N-acetylgalactosamine was shown to cause a 30% decrease in
target gene expression at the protein level for 10 days, while
addition of the conjugate with modified 5′ ends reduced the
protein level by 80% for 40 days. Conjugates of fully modified
at the 2′ positions and stabilized by PS modifications at both the
3′ and 5′ ends siRNAs with cholesterol and docosahexaenoic acid
were examined in vivo (Hassler et al., 2018). The accumulation of
conjugates in the liver, kidney, and spleen 24 h after intravenous
and subcutaneous injections was studied. Accumulation of all
mentioned above conjugates was two orders of magnitude higher
compared to similar conjugates of partially modified siRNA
(2′O-Me and 2′F modifications located on pyrimidines and
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FIGURE 3 | Evolution of siRNA chemical modification patterns. Chemical modifications are indicated in gray (deoxyribonucleotides), blue (2′O-Me), red (2′F), and

orange (PS) [adapted from Khvorova and Watts (2017)].

duplex ends and PSmodifications on 3′-overhangs). However, no
control experiment was performed to determine the contribution
of the introduction of PS at the 5′ ends to the stability of
siRNA conjugates in this study. Since the contribution of 2′O-Me
modifications to the nuclease resistance of siRNA is greater than
that of 2′F modifications (Cummins et al., 1995; Takahashi et al.,
2009), attempts were made to increase the proportion of 2′O-
Me modifications in siRNAs containing 50% 2′O-Me and 50%
2′F (Khvorova, 2017; Foster et al., 2018). For this purpose, 1,890
different siRNAs were synthesized, aimed at five different genes,
varying in sequence (15 variants) and pattern of 2′O-Me and 2′F
modifications (Foster et al., 2018). The optimal introduction of
2′O-Me or 2′F modifications for each position in the siRNA was
determined via in vitro analysis of primary mouse hepatocytes.
Two modification patterns were selected, containing 23% and
18% 2′F modifications, the biological activities of which were
not less than that of the parent siRNA. Analysis of the biological
activities of three different siRNA sequences in vivo showed that a
lower content of 2′F modifications (18%) was the most effective.
Subcutaneous administration of 1 mg/kg of the siRNA and N-
acetylgalactosamine conjugate to primates showed that the newly
selected siRNA (18% 2′F modifications) reduced the protein level
by ∼70% for 70 days, while the parent siRNA suppressed the
expression of the target gene AT by∼40% for 40 days. It has been
shown that a conjugate of fully modified siRNA (23% 2′F, 73%
2′O-Me, and one dNMP) and N-acetylgalactosamine suppressed
PCSK9 gene expression in the liver of patients following a
single subcutaneous injection of ∼6 mg/kg by ∼70% for
6 months (Ray et al., 2017).

When siRNAs are delivered as part of a bioconjugate,
they are especially sensitive to the action of nucleases, and
the duration of biological action in vivo, and the dose
and frequency of drug administration depends on nuclease
resistance. Therefore, it is important to pay particular attention
to this parameter when creating therapeutic drugs based on
siRNA bioconjugates.

BIOCONJUGATES

The use of bioconjugation as a method of delivering siRNA to
cells involves forming siRNA conjugates with (1) biomolecules
capable of specifically binding receptors on the cell membrane
[folate Thomas et al., 2009, antibodies Song et al., 2005;
Dassie et al., 2009; Xia et al., 2009, aptamers Aronin, 2006;
McNamara et al., 2006, some peptides Cesarone et al., 2007;

FIGURE 4 | A scheme of siRNA bioconjugates.

Lau et al., 2012, and carbohydrates Nair et al., 2014], (2)
molecules able to penetrate the cell by natural transport
mechanisms [cholesterol (Lorenz et al., 2004) and vitamins
Nishina et al., 2008], or (3) molecules capable of interacting
non-specifically with the cell membrane [positive electrostatic
charge and hydrophobicity Kwiatkowska et al., 2013; Meade
et al., 2014] (Supplementary Table 1; Figure 4). In addition
to the nature of the biogenic molecule, the structure of the
linker that binds the siRNA and the biomolecule affects the
efficiency of accumulation and the biological activity of the
siRNA. In particular, the ability of the linker to be cleaved
when the conjugate enters the cells prevents a decrease in
the efficiency of RNAi associated with the inhibition of RISC
assembly. Disulfide (Turner et al., 2005) and thioether bonds
(Meade et al., 2014), pH sensitive bonds [hydrazone (Dovydenko
et al., 2016), carboxymethylmaleic anhydride Rozema et al.,
2007], or photosensitive bonds (β-[bis (4-methoxyphenyl)-
phenylmethoxy]-2-nitrobenzeneethanol linker Yang et al., 2018)
are used as cleavable bonds. Conjugates containing linkers that
are stable under the experimental conditions (Lorenz et al., 2004)
are widely used, and the structure of the conjugate plays a
key role. The most commonly used types of bioconjugates are
reviewed below.
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Lipophilic siRNA Derivatives
Lipids and cholesterol were suggested as the first ligands for
conjugation with siRNAs, since they were supposed to ensure
the interaction of siRNAs with the cell membrane due to
their lipophilic properties and because of endogenous transport
mechanisms (Letsinger et al., 1989). Cholesterol is not only part
of the membrane, but is also transported into cells by low-density
lipoproteins (LDL particles) and high-density lipoproteins (HDL
particles) (Brunzell et al., 2008), which bind to corresponding
receptors. Absorption of all lipoproteins by cells is carried out
through the recognition of protein components of the particles by
clathrin-dependent receptor-mediated endocytosis, using LDL
and scavenger receptor class B member 1 (SR-BI) receptors that
recognize LDL and HDL particles, respectively (Goldstein et al.,
1985; Yvan-Charvet et al., 2008).

It has been shown that siRNA and cholesterol derivatives,
as well as other lipophilic siRNA derivatives, are able to
form complexes with HDL and LDL particles under certain
conditions, which, in turn, can bind to the corresponding
receptors (Wolfrum et al., 2007). It has also been shown that the
hydrophobicity of a lipophilic molecule determines the efficiency
of binding a lipophilic conjugate with lipoproteins (Wolfrum
et al., 2007). Thus, a cholesterol residue introduced into siRNA
provides effective binding to LDL and HDL particles and, as a
result, higher activity compared to other lipophilic derivatives.
However, the assumption of the penetration of lipophilic siRNA
derivatives in the composition of such complexes into cells
by receptor-mediated endocytosis has not been confirmed
(Wolfrum et al., 2007). The transmembrane protein SIDT1
(Wolfrum et al., 2007) participates in the penetration of complex
of lipophilic siRNA derivatives and lipoproteins. SIDT1 facilitates
the penetration of dsRNA into cells, by forming channels for
diffusion or by facilitating the penetration of dsRNA indirectly
via interaction with other proteins (Feinberg and Hunter, 2003;
Wolfrum et al., 2007). On the other hand, SIDT1 has a binding
domain that interacts with steroid molecules and its localization
in the cell depends on the presence or absence of cholesterol
in the membrane (Mendez-Acevedo et al., 2017). It has also
been shown that the SIDT1 homolog SIDT2 is involved in
cellular transport of cholesterol (Mendez-Acevedo et al., 2017)
and dsRNA without lipids (Nguyen et al., 2017; Takahashi et al.,
2017). However, the specific role of SIDT1 in the penetration of
complexes of lipophilic siRNA derivatives with lipoproteins has
not been established.

Penetration of siRNA cholesterol conjugates without a carrier
was studied in HeLa cells (Gilleron et al., 2015). For this purpose,
the expression of genes important for endocytosis (DNM1L,
CLTC, CAV1, CDC42, and RAC1) in cells was suppressed, and
accumulation of the fluorescently labeled cholesterol conjugate
was evaluated. Accumulation of the cholesterol conjugate was
reduced by ∼40% compared to accumulation in untreated cells
only when expression of DNM1L and CLTC, which participate in
clathrin-dependent endocytosis, was inhibited.

In another study (Ly et al., 2017), clathrin-dependent
intracellular transport of cholesterol conjugates was investigated
by determining the colocalization of fluorescently-labeled
endosome proteins and ligands of clathrin-dependent

endocytosis with a fluorescently-labeled cholesterol conjugate. In
this work, clathrin-dependent endocytosis was shown to account
for 25% of the total intracellular transport of the cholesterol
siRNA derivative in the cell. It should be noted that endocytosis
is characterized by the ability to sort absorbed endosomal
contents for recirculation or degradation (Lakadamyali et al.,
2006). Depending on the type of receptor and the content of the
endosome, sorting can occur at different stages of endocytosis;
sorting and recycling of the LDL receptor takes an average of
∼6min (Brown and Goldstein, 1976). Analysis of the kinetics
of accumulation of cholesterol-modified siRNA revealed that
in the first 60min after the addition of cholesterol derivatives
of siRNA to HeLa cells, only 5% of the conjugate was recycled,
and 20% of the conjugate was sorted to the degradation pathway
(Ly et al., 2017). Thus, it can be assumed that with systemic
administration of the cholesterol conjugate, the primary route
of transport is interaction with lipoproteins and penetration
by receptor-mediated endocytosis into cells expressing the
corresponding receptor (LDL or SR-BI receptor). Then, likely
at some stage of intracellular transport, lipoproteins and the
cholesterol-siRNA conjugate dissociate and the siRNA enters the
cytoplasm, where it participates in RNAi. Indeed, many studies
have shown that the addition of cholesterol to the 5′ and 3′ ends
of the sense strand and the 3′ end of the antisense strand provides
manifestation of the biological activity of siRNA upon delivery
without a carrier in vitro (Lorenz et al., 2004; Cesarone et al.,
2007; Moschos et al., 2007; Alterman et al., 2015; Chernikov
et al., 2018) and in vivo (Soutschek et al., 2004; Wolfrum et al.,
2007; Byrne et al., 2013; Khan et al., 2016; Haraszti et al., 2017).
In most cell lines, the cholesterol-siRNA conjugate shows higher
biological activity compared with other conjugates of siRNA and
lipophilic derivatives; e.g., lithocholic acid derivatives, saturated
fatty acids (C12–C22) (Wolfrum et al., 2007; Prakash et al., 2015),
unsaturated fatty acids (Nikan et al., 2016, 2017), or tocopherol
(Nishina et al., 2008).

The biodistribution of various lipophilic siRNA conjugates has
been extensively studied in a recent paper (Biscans et al., 2018).
It was shown that cholesterol conjugates were more effectively
retained in the body (62%) compared with other lipophilic
conjugates (27–62%). Following subcutaneous injection, the
cholesterol conjugates accumulated in almost all organs: liver,
kidney, adrenal glands, spleen, pancreas, heart, muscle, fat,
thymus, lung, injection site, ovaries, and testes. At the same
time, cholesterol conjugates accumulated most effectively in
the liver, adrenal glands, spleen, and in the skin at the site
of administration (Biscans et al., 2018). Cholesterol derivatives
accumulated in other organs with the same or lesser efficiency
than other lipophilic conjugates; e.g., it was shown that a
conjugate of siRNA and saturated fatty acid (docosanoic, C21)
accumulated more efficiently than a cholesterol conjugate and
inhibited expression of the target gene (Htt or Ppib) in muscles
(20 and 30% inhibition of Htt and Ppib, respectively) and fat
(50% and 30% inhibition of Htt and Ppib, respectively) after
subcutaneous injection (20 mg/kg) (Biscans et al., 2018). In
this study, it was shown that the main factor determining the
nature of the biodistribution of conjugates is their lipophilicity.
Conjugates of siRNA with lower lipophilicity; i.e., derivatives
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of retinoic acid, lithocholic acid, and docosahexanoic acid with
greater efficiency than cholesterol conjugates accumulated in the
kidneys, bladder, and lungs of the mouse after subcutaneous
injection (Biscans et al., 2018). This fact is consistent with
previous data that showed that more lipophilic conjugates bind
more efficiently to serum components, and thus are not excreted
by the kidneys (Wolfrum et al., 2007; Osborn et al., 2018).

Lipophilic derivatives after subcutaneous or intravenous
injection do not penetrate the blood-brain barrier (BBB) (Biscans
et al., 2018). Therefore, attempts were made to directly inject
derivatives into the brain of the mouse to suppress gene
expression in the brain (Alterman et al., 2015; Nikan et al.,
2016, 2017). Since docosahexaenoic acid is the most common
polyunsaturated fatty acid in the mammalian brain, conjugation
of siRNA with docosahexaenoic acid more effectively suppressed
the expression of the target gene (Nikan et al., 2016) than other
lipophilic conjugates (Alterman et al., 2015). Injection of the
siRNA-docosahexaenoic acid conjugate into the brain striatum
of the mouse (∼1.25 mg/kg) caused a decrease in the mRNA
level of the target gene (Htt) not only in the striatum (73%)
but also in the cortex (52%) of the corresponding hemisphere
(Nikan et al., 2016). However, no decrease in Htt mRNA
was observed in the striatum and the cortex of the opposite
hemisphere. An assessment of the toxicity of the conjugate in
the brains of animals, at a dose 20 times higher than that in a
study of biological activity, showed that this conjugate does not
elicit an immune response or neuronal death. The therapeutic
significance of suppressing the expression of the Htt gene was
shown in another study in a mouse model of Huntington’s
disease using ASO (Kordasiewicz et al., 2012). It was shown
that suppression of the expression of both alleles (mutant and
wild-type) resulted in restoration of a healthy animal phenotype.
Therefore, the use of docosahexaenoic acid for conjugation with
siRNAmay be a promising approach for the treatment of various
hereditary neurodegenerative diseases, including Huntington’s
disease. Thus, such conjugates can be considered as a universal
platform for siRNA delivery throughout the body since lipophilic
siRNA derivatives can accumulate and exhibit biological activity
in a variety of tissues and organs.

siRNA and Peptide Conjugates
Some proteins and peptides are able to penetrate into the
cell due to endogenous transport mechanisms, as well-transfer
other molecules into the cell. The main mechanisms of peptide
transport include binding to surface proteins, glycoconjugates
[targeted peptides Pooga et al., 1998; Alberici et al., 2013],
or anionic cell lipids, followed by absorption by endocytosis,
membrane penetration (cell penetrating peptides [CPPs] Vives
et al., 1997; Thoren et al., 2000; Console et al., 2003; Heitz et al.,
2009; van den Berg and Dowdy, 2011; Lee et al., 2013; Gagat et al.,
2017), membrane lysing, or pore formation in the membrane
[lytic peptides (Meyer et al., 2009)]. There are two main ways of
obtaining such peptides: using phage display, or using parts of
proteins that perform similar functions in nature. In this section,
the main approaches for siRNA delivery by peptide are reviews.

The ability of peptides to specifically interact with certain
proteins on the cell surface due to specific elements in their

tertiary structure was used for targeted delivery of siRNAs.
Different targeted peptides were conjugated to siRNAs and
such conjugates possessed biological activity in vitro (Cesarone
et al., 2007; Alam et al., 2011; Alberici et al., 2013) and
in vivo (Liu et al., 2014). For example, a conjugate of siRNA
and the peptide “CSKC,” which mimics insulin-like growth
factor 1 (IGF-1), effectively penetrated MCF7 cells expressing
the IGF-1-specific receptor and suppressed expression of the
IRS1 target gene by 60% without the help of transfection
agents (Cesarone et al., 2007).

One of the most successful examples of targeted peptides is
the cyclic RGD (cRGD) peptide. cRGD is part of the iRGD
peptide obtained by selecting a phage library of cyclic peptides
for binding to a xenograft PC-3 tumor (Sugahara et al., 2009).
cRGD binds to αVβ3/5 integrins that are expressed at a high
level in tumor cells and vascular endothelium cells (Dubey et al.,
2004; Weis and Cheresh, 2011). Conjugation of this peptide with
siRNA contributed to the accumulation and manifestation of the
biological activity of siRNA in tumor cells in culture (Alam et al.,
2011) and in vivo following six intravenous injections in animals
with xenograft A549 tumors (reduction of VEGFR2 gene mRNA
by 55%), which was accompanied by a decrease in tumor growth
(Liu et al., 2014) (Supplementary Table 1). Attempts to increase
the number of RGD peptides in the siRNA conjugate were made;
however, the introduction of additional molecules of this peptide
did not have a direct dose-dependent effect on biological activity.
Assessment of biological activity to suppress expression of the
GFP gene in M21+GL3 cells showed that a siRNA conjugate with
two cRGD peptides has negligible activity (20%), a conjugate
with four cRGD peptides showed moderate biological activity
(37%), and a conjugate with three cRGD peptides had the highest
biological activity (73%) (Alam et al., 2011).

Covalent attachment of peptides can not only increase the
efficiency of siRNA accumulation in cells, but also ensure the
specificity of their actions in target cells. A peptide with the
“LEVDG” sequence attached to siRNA blocks RISC (Koehn
et al., 2010) assembly; however, this sequence is specifically
recognized and cleaved by caspase-4, which is expressed in Jeg-3
choriocarcinoma cells. Thus, following the introduction of anti-
STAT3 siRNA conjugated with the “LEVDG” peptide into Jeg-3
cells, effective (up to 70%) suppression of target gene expression
was observed (Supplementary Table 1), whereas in the control
HEK293 cells not expressing caspase-4, suppression of the STAT3
gene was not observed (Koehn et al., 2010).

Due to the presence of positively charged amino acids in its
composition and the secondary structure, CPP peptides, such
as penetratin (Moschos et al., 2007), transportan (Muratovska
and Eccles, 2004) and trans activator of transcription (Tat)
(van den Berg and Dowdy, 2011) are able to penetrate the cell
membrane, as well as deliver covalently attached nucleic acids
into cells (Chiu et al., 2004; Muratovska and Eccles, 2004). It
has been shown in a number of studies (Muratovska and Eccles,
2004; Cesarone et al., 2007) that CPP-siRNA conjugates exhibit
biological activity when added to cells. However, the use of such
conjugates in vivo is limited because they are toxic and can elicit
an immune response (Boeckle et al., 2005; El-Andaloussi et al.,
2007; Moschos et al., 2007).
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Another limitation to the use of CPPs as siRNA delivery agents
is the formation of complexes of positively charged CPP with
siRNA, which prevents the siRNA from interacting with RISC
components. To avoid this, neutralizing or shielding the negative
charge of the siRNA by introducing chemical modifications [tert-
butyl-S-acyl-2-thioethyl phosphotriester (tBu-SATE) (Table 1,
2)] has been proposed (Meade et al., 2014; Hamil and Dowdy,
2016). The introduction of tBu-SATE modifications into the
siRNA conjugate made it possible to obtain siRNA conjugates
with several cationic peptides without inhibiting RNAi. At the
same time, the biological activity of such conjugates directly
depended on the number of CPP molecules of the Tat peptide
present (Meade et al., 2014). Conjugates containing four Tat
peptides more effectively suppressed the expression of a target
gene in cells compared with a conjugate with two or three Tat
peptides. However, despite promising in vitro results (Meade
et al., 2014; Kolosenko et al., 2017), this siRNA conjugate has not
yet been studied in vivo.

Another successful example of the use of CPP as a ligand
for conjugation with siRNA is the skin penetrating and cell
entering (SPACE) peptide, obtained by the phage display method
by selecting peptides that penetrate the epidermis (Hsu and
Mitragotri, 2011). Attachment of the SPACE peptide to siRNA
promoted penetration of the siRNA through the epidermis
and dermis following application on the skin surface. A single
application of∼12mg/kg of the siRNA conjugate with the SPACE
peptide suppressed the expression of IL10 and GAPDH in the
epidermis by 28 and 47%, respectively. The inclusion of such
a conjugate in the composition of lipoplexes enriched with the
SPACE peptide results in a more effective downregulation of the
expression of the target gene (GAPDH).

To solve the problem of effective in vivo accumulation
of siRNA, an interesting approach using siRNA containing a
chemical modification at the 3′ end of the sense strand capable of
forming a covalent bond between siRNA and albumin following
intravenous injection of siRNA was proposed (Lau et al.,
2012). For this purpose, succinimidyl 4-[N-maleimidomethyl]
cyclohexane-1-carboxylic acid was attached to siRNA using the
amino group at the 3′ end of the sense strand; the resulting
molecule (“activated siRNA”) could interact with albumin to form
a disulfide bond. When BALB/c mice were injected with the
“activated siRNA” capable of binding albumin, there was a more
efficient accumulation of siRNA in the myocardium compared
to unmodified siRNA, as well as a decrease in the mRNA level
of the IGF-IR target gene by 35% (Supplementary Table 1).
However, the toxic effect of the “activated siRNA” has not yet
been investigated.

Another approach for the delivery of siRNA to target cells
uses its conjugation with lytic peptides, which facilitate the
release of siRNA from the endosome (Varkouhi et al., 2011). The
main mechanisms that increase the efficiency of the release of
siRNA from the endosome are (1) formation of transmembrane
pores by peptides due to their amphiphilicity and ability to
form complexes [melitin, cytolytic peptide from bee venom
(Meyer et al., 2009), ricin, and ribosome-inactivating protein
from the oil (Sun et al., 2004)]; (2) protonation of the main
groups of peptides with a decrease in the pH of the endosome,
followed by an increase in the osmotic pressure inside and

rupture of its membrane [polyhistidine (Chen et al., 2017)]; or (3)
local membrane destabilization due to the fusogenic properties
of proteins and membrane penetration of the endosome
[glycoprotein H from the herpes virus (Tu and Kim, 2008),
hemagglutinin-2 domain of the influenza virus (Wadia et al.,
2004; Lee et al., 2011), and diphtheria toxin domain (Barati
et al., 2002)]. Despite the efficiency of the action of lytic peptides,
the primary issue is toxicity, since the formation of pores and
increased osmotic pressure inside the endosome implies its
destruction. In this case, the approach in which the membrane is
locally destabilized is less toxic, since it does not lead to significant
damage to the endosome and therefore is the most promising.
However, to date, an effective and non-toxic endosomolytic agent
based on peptides has not been developed.

The use of siRNA and peptide conjugates for siRNA delivery
is a promising approach; however, at present, the efficiency and
specificity of delivery provided by peptides does not reach the
level at which they do not exhibit toxic and immunogenic effects.

siRNA and Receptor Ligand Conjugates
The main factors affecting the efficiency of specific delivery
to target cells are the efficiency of ligand binding to the
receptor and the degree of expression of the receptor on the
membrane surface. Typically, the interaction of the ligand with
the receptor is characterized by high specificity, so introduction
of these molecules contributes to effective targeted delivery
when covalently attached to molecules (Nikam and Gore, 2018).
The most successful example of this strategy is the use of
N-acetylgalactosamine as a ligand for siRNA delivery because
its interaction with the asialoglycoprotein receptor (ASGPR)
occurs with high efficiency (Kd = 2.5 nM) and this receptor
is expressed at a high level in hepatocytes (0.5–1 × 106

molecules per cell) (Spiess, 1990). Conjugation of siRNA with
N-acetylgalactosamine contributes to efficient delivery of siRNA
and the conjugate suppresses expression of the target gene
(PCSK9) by 70% following a single subcutaneous injection of∼6
mg/kg (Ray et al., 2017) (Supplementary Table 1). The level of
ASGPR in hepatocytes is so high that reducing its expression
by 50% does not reduce the biological activity of the siRNA
and N-acetylgalactosamine conjugate; only suppression by 95%
blocks the action of this conjugate (Willoughby et al., 2018). For
these reasons, and due to inexpensive synthesis, siRNA and N-
acetylgalactosamine conjugates are among the most promising
prototypic drugs for introduction in the clinic for the treatment
of liver diseases.

Conjugation with folic acid was proposed for specific
accumulation of siRNA in tumor cells (Thomas et al., 2009).
Folic acid is a precursor of tetrahydrofolate, which is essential
for the synthesis of nucleotides de novo, and thus is essential
for dividing cells. Folic acid penetration into cells occurs via
receptor-mediated endocytosis, via the glycoprotein folic acid
receptor, which binds strongly to folate (Kd = 10−10 M). It
has been shown that expression of folic acid receptor in tumor
cells of different origin is significantly higher compared with
the expression level in normal cells (Parker et al., 2005; Xia
and Low, 2010). Presumably, the penetration of folate-containing
siRNAs also occurs via receptor-mediated endocytosis (Low et al.,
2008); therefore, the penetration efficiency of folate-containing
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siRNAs into tumor cells is significantly higher compared with
the efficiency of conjugate penetration into normal cells. In vivo,
fluorescently-labeled siRNA and folate conjugates were shown
to accumulate more efficiently in a mouse tumor compared to
unmodified siRNA (Thomas et al., 2009). However, the use of
siRNA and folate conjugates is limited to experimental purposes
due to sophisticated synthesis.

siRNA and Aptamer Conjugates
Aptamers are synthetic oligoribonucleotides (molecular weight,
∼6–30 kDa) with a complex tertiary structure, which allows
specific binding to molecules (Zhou and Rossi, 2017). It has been
shown that the attachment of aptamers to siRNAs contributes
to specific accumulation in certain cell types (Catuogno et al.,
2018). For instance, siRNA conjugation with the A10 aptamer
specific to prostate specificmembrane antigen (PSMA) promoted
effective delivery of siRNA to prostate tumor cells, and the
biological activity of the conjugate was comparable to that
observed in the case of siRNAdelivered by lipoplexes (McNamara
et al., 2006). The conjugate silenced PKL1 and Bcl2 genes
with 85 and 90% efficiency, respectively, in the xenographic
prostate LNCaP tumor-bearing mice model after 10 intratumoral
injections; a decrease in tumor growth and regression were
also observed (McNamara et al., 2006) (Supplementary Table 1).
In the same xenograft tumor model, another shRNA (short
hairpin RNA) and aptamer A10-3 to PSMA conjugate also
exhibited biological activity (65% inhibition of the PRKDC
gene), but tumor regression occurred after two intratumoral
injections only in combination with ionizing radiation (Ni et al.,
2011) (Supplementary Table 1).

A conjugate of siRNA and the A-1 aptamer specific for the
gp120 surface protein of human immunodeficiency virus 1 (HIV-
1) capsid was synthesized as an anti-HIV-1 drug (Neff et al.,
2011). In humanized Rag2−/− γc−/− (RAG-hu) mice 3 weeks
after infection with HIV-1, weekly administration (0.38 mg/kg,
intravenous) of this conjugate reduced the concentration of viral
RNA in the plasma of animals by 105 times. However, a few
weeks after treatment, the amount of viral RNA in the plasma
was restored almost to the initial level (Supplementary Table 1).

Another interesting property of some aptamers is their ability
to penetrate the BBB. For instance, it has been shown that the
aptamers Gint4.T and GL21.T, specific to beta-type platelet-
derived growth factor receptor (PDGFRβ), can penetrate the
in vitro model of the BBB (Esposito et al., 2016). This siRNA
conjugate is able to accumulate in xenograft glioblastomas after
several intravenous injections, suppress expression of the target
gene (STAT3) by 60%, and reduce the rate of tumor growth
(Esposito et al., 2018).

In addition to RNA aptamers, DNA aptamers have also
been used for the delivery of siRNAs (Lai et al., 2014).
TheG-quadruplex-formingG-rich deoxyoligonucleotide AS1411
specifically binds nucleolin, an oncogene protein expressed at
a high level in many cancer cell types (Ireson and Kelland,
2006). The AS1411-basedDNA aptamer aptNCL conjugated with
siRNA enables its delivery and biological activity in lung cancer
cells in vitro and in vivo (Lai et al., 2014).

Although siRNA and aptamer conjugates have high biological
efficiency at the experimental level, their use in the clinic has
been limited by such factors as nuclease cleavage, filtration by the
kidneys, polyanion effects, and the immune response. Selection
of a new specific sequence of an aptamer to a specific object
(systematic evolution of ligands by exponential enrichment
[SELEX]) is fast, but the resulting aptamers do not always
have high specificity for the target antigen (Yan and Levy,
2018). Nevertheless, in most cases, conjugation of siRNA with
aptamers provides reproducible specific delivery of siRNA to
target cells, and the possibility of obtaining aptamers directed to
any protein on the surface of the cell membrane suggests this
may be a promising approach. Therefore, the use of a modified
SELEX protocol to search for chemically modified aptamers
and conjugation with fully modified siRNAs can increase the
effectiveness and duration of the therapeutic effect of aptamer-
based conjugates of siRNA and their introduction into clinical
practice (Hori et al., 2018).

Antibody-siRNA Conjugates
Antibody-siRNA conjugates (ARCs) have been successfully used
for targeted delivery of siRNA to specific types of cells expressing
receptor-antigens; however, the effectiveness of ARCs varies
significantly. For example, it has been shown that an ARC with
an antibody against the insulin receptor suppresses expression
of the target gene by 90% in HEK293 cells at a concentration
of 115 nM (Supplementary Table 1) (Xia et al., 2009). Another
ARC with an antibody to the Lewis-Y protein inhibited the
expression of the target gene by 60% at a concentration of 300 nM
only when the cells were treated with chloroquine, an agent that
inhibits endosome maturation (Supplementary Table 1) (Ma
et al., 2011). However, the non-covalent siRNA complex with
the same antibody, formed by electrostatic interaction of oligo-
arginine and siRNA, showed 60% biological activity (300 nM)
in the absence of chloroquine. It is likely that the efficiency of
endosomal escape mediated by chloroquine or oligo-arginine
is an important factor for the biological activity of ARCs. The
biological activity of both covalent and non-covalent siRNA
complexes and antibodies has been shown in vivo in a number
of studies (Song et al., 2005; Xia et al., 2007; Baumer et al., 2015;
Sugo et al., 2016; Ibtehaj and Huda, 2017). However, a systemic
comparison of the effectiveness of the biological activity of ARCs
differing in target antigens was carried out only in one study
(Cuellar et al., 2014), which showed that along with the level
of expression of the receptor-antigen, the type of intracellular
transport of the receptor influences the interfering activity of
the ARC. However, no direct correlation was found between the
type of penetration of the antibody complex with the receptor-
antigen and the biological activity of the ARC. Such a factor
as the presence of a cleavable bond between the siRNA and
antibody did not affect the interfering activity of the ARC. Since
in this study (Cuellar et al., 2014), the efficiency of the binding of
antibodies to the corresponding receptors was not compared, it
is not possible to evaluate the efficiency of their dissociation and
the degree of endosomal escape of the conjugates. However, it is
likely that this is a significant factor in determining the biological
activity of ARCs.
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The mechanism of penetration into cells of an ARC with
the TENB2 antibody exhibiting high biological activity was
studied (Cuellar et al., 2014). It was shown that the silencing
of genes associated with clathrin-dependent receptor-mediated
endocytosis led to a decrease in the efficiency of gene silencing by
ARC. However, the suppression of the expression of RAB5C and
HPS4, which are associated with intracellular transport, increased
the silencing activity of the ARC. The product of the RAB5C gene
likely sorts endosomal contents to the recycling pathway (Chen
et al., 2014), while the product of the HPS4 gene is involved in
regulation of RNAi (Lee et al., 2009). It has been shown that
the product of the HPS4 gene reduces the amount of RLC and
RISC proteins in the cell by increasing the frequency of lysosomes
merging with multivesicular bodies, where, presumably, RNAi
proteins are located (Lee et al., 2009). Thus, the suppression
of HPS4 gene expression leads to an increase in the efficiency
of RNAi in cells and a corresponding increase in the activity
of the conjugate. The effectiveness of PPID gene silencing by
the ARC with the TENB2 antibody after three intravenous
injections of 24 mg/kg in xenograft PC3-TENB2-high tumor-
bearing nude mice was only 33% (Supplementary Table 1)
(Cuellar et al., 2014).

In another study (Sugo et al., 2016), an Fab antibody fragment,
an immunoglobulin molecule segment that binds an antigen
that has lower affinity for the target receptor than antibody, was
used for conjugation with siRNA. After 4 weekly intramuscular
injections (∼3.6 mg/kg) of the conjugate of siRNA and Fab
fragment to the transferrin receptor, the MSTN mRNA level
was decreased by 72%, which increased the average running
distance of mice by 24% in the peripheral arterial disease
model (Sugo et al., 2016). Intramuscular injection of only
∼0.05 mg/kg of the conjugate of siRNA and Fab fragment to
the transferrin receptor resulted in suppression of the HPRT
target gene at the injection site by 55%. High biological activity
of the siRNA and Fab fragment conjugate in muscle cells
following intravenous injection was demonstrated by Avidity
Bioscience. The mRNA level of the target MSTN gene was
decreased by 90% and lasted for 20 days following a single
intravenous injection of this conjugate, while the antigen for
the Fab fragment was also a transferrin receptor. Fab fragments
more efficiently than antibodies escape endosomes into the
cytoplasmic space after being absorbed by cells. This is likely due
to lower receptor binding efficiency and low molecular weight
(55 kDa). Therefore, this approach is promising for the targeted
delivery of siRNA to cells; however, a direct comparison of ARCs
with conjugates of siRNA and Fab fragments has not yet been
carried out.

Conjugation of siRNAs with antibodies to deliver siRNA to
target cells has several advantages compared with the conjugation
of siRNAs with other molecules, such as high ligand binding
efficiency (Kd < 10−9−10) and prolonged presence in blood due
to high molecular weight (∼150 kDa). However, the immune
response and low efficiency of the endosomal yield are the
main disadvantage of this approach. Thus, further optimization,
including the use of humanized antibodies or Fab fragments,
endosomolytic agents, and fully modified siRNAs, is required for
effective use of ARCs in the clinic.

siRNA and CpG Oligonucleotide
Conjugates
As an alternative method of siRNA delivery to target cells,
systems that provide an efficient release of siRNA from
endosomes to the cytoplasm are used. For example, conjugation
of DsiRNA with CpG-containing oligodeoxyribonucleotides
leads to recovery of the interfering activity of DsiRNA in
cells expressing the TLR9 receptor due to endosomal release
mediated by TLR9 (Nechaev et al., 2013). Thus, the conjugate
is biologically active only in cells expressing the TLR9 receptor,
such as cells of the immune system: B-lymphocytes, dendritic
cells, and macrophages, as well as in some types of cancer (Zhang
et al., 2013). The therapeutic effect of the siRNA and CpG
oligonucleotide conjugate has been shown in various tumor-
bearing mouse models following systemic administration of the
conjugate over several weeks (Kortylewski et al., 2009; Zhang
et al., 2013; Hossain et al., 2014). However, since the injection
of CpG oligonucleotides leads to the activation of cytokines
and interleukins, their use is limited. Also, its application
in vivo is limited to local injections due to rapid degradation in
serum. Introduction of chemical modifications to such DsiRNA
conjugates to increase nuclease resistance will likely change the
interaction of the conjugate with Dicer (Nechaev et al., 2013).

Further, to suppress the expression of the target gene (STAT3),
researchers conjugated the CpG oligonucleotide with the DNA
duplex, which is part of the promoter of the STAT3 gene, so
that when it enters the nucleus of the target cell, this duplex
binds to the corresponding transcription factor and blocks
its transcription (Sen et al., 2012). This conjugate showed a
therapeutic effect in a mouse model of acute myeloid leukemia
after several intravenous injections (5mg/kg) (Zhang et al., 2016).
The first stage of clinical trials of this conjugate for the treatment
of B-cell non-Hodgkin’s lymphoma is planned for 2019.

Dynamic Polyconjugates
Dynamic polyconjugates, which contain two types of cleavable
bonds, were developed by Arrowhead Pharmaceuticals to
facilitate the endosomal escape of siRNA (Rozema et al., 2007).
A polyconjugate is an amphiphilic polymer consisting of poly-
(butyl-aminovinyl ether) (PBAVE), to which polyethylene glycol
residues and a targeted ligand molecule (N-acetylgalactosamine)
are attached using an acid-cleavable carboxy dimaleimide
anhydride linker. siRNA molecules are connected to PBAVE
through linkers containing disulfide bonds that can be cleaved
in the cytoplasm of the cell. Thus, following penetration of
the dynamic polyconjugate by receptor-mediated endocytosis
into the cell and entry into the acidic environment of the
endosome, the carboxy-diimide anhydrite bonds are cleaved
and N-acetylgalactosamine and polyethylene glycol dissociate
from the polyconjugate. Following this, the newly formed
amino groups on PBAVE are protonated, which leads to a
decrease in endosomal pH, an increase in osmotic pressure,
and rupture of the endosomal membrane. Conjugates of
PBAVE and siRNA are released into the cytoplasm, followed
by cleavage of the disulfide bond and detachment of the
siRNA from the polymer (Rozema et al., 2007). Due to
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effective endosomal escape, dynamic polyconjugates exhibit
high biological activity: suppression of the target gene F7
was observed in cynomolgus monkeys with 99% efficiency
for 80 days following a single intravenous injection (5
mg/kg) (Rozema et al., 2015). Another drug based on a
dynamic polyconjugate is the PBAVE polymer, conjugated with
polyethylene glycol or N-acetylgalactosamine residues (NAG-
PBAVE), but without covalent attachment of siRNA (Wong et al.,
2012). In this case, NAG-PBAVE is injected with cholesterol-
modified siRNA. Intravenous injection of the cholesterol-siRNA
conjugate results in accumulation of siRNA mainly in the
liver; the NAG-PBAVE component also accumulates in this
organ. This co-administration increases the biological activity
of the cholesterol-siRNA substantially: 75% suppression of
the target gene (ApoB) in the livers of rhesus monkeys was
observed over 30 days following one intravenous injection
of the drug (2 mg/kg siRNA and 15 mg/kg NAG-PBAVE)
(Wong et al., 2012).

Another drug developed by Arrowhead Pharmaceuticals
represents a conjugate of siRNA and cholesterol administered
together with a conjugate of N-acetylgalactosamine and melitin-
like peptide (NAG-MLP) (Wooddell et al., 2013). Melitin-like
protein is an endosomolytic pore-forming peptide capable of
increasing the efficiency of the release of the cholesterol conjugate
from endosomes and, therefore, its biological activity. It has been
shown that after single intravenous injection of the cholesterol-
siRNA conjugate (1 mg/kg) together with NAG-MLP (6 mg/kg),
expression of the F7 target gene in themouse liver was suppressed
with 99% efficiency, while the cholesterol-siRNA conjugate (10
mg/kg) alone, without NAG-MLP, reduced expression of the F7
gene only by 20% (Wooddell et al., 2013). This co-administration
system was used to treat chronic hepatitis B virus in patients
in clinical trials. A 90% decrease of hepatitis B surface antigen
(HBsAg) was observed for 50 days after a single injection of 4
mg/kg of a mixture of two cholesterol-siRNA conjugates (anti-
HBx and anti-preC-C) and NAG-MLP.

However, clinical trials of several drugs based on PBAVE
and melitin for the treatment of liver diseases were halted due
to high toxicity demonstrated in a non-human primate study
(Turner et al., 2018). The company switched to TRiM technology
based on the conjugation of siRNA and N-acetylgalactosamine;
however, the specific structure of the drug has not yet been
disclosed (Wooddell et al., 2017) (see section “siRNA and
receptor ligand conjugates”).

siRNA CONJUGATES IN THE CLINIC

Onpattro (Patisiran), the first commercially available siRNA-
based drug, was released for the treatment of hereditary
transthyretin polyneuropathy in August 2018 by Alnylam
Pharmaceuticals (Adams et al., 2018; Garber, 2018; Solomon
et al., 2019). Onpattro is an anti-TTR siRNA containing
several 2′O-Me modifications in complex with a cationic lipid,
phospholipid, cholesterol, and a conjugate of polyethylene glycol
and lipid. Its administration every 3 weeks for 18 months
contributes to a significant reduction in the symptoms of the
disease compared with patients taking placebo. However, the
fact that its use has to be combined with corticosteroids,

acetaminophen, and antihistamines is evidence of the pro-
inflammatory effect of the lipids used in Onpattro. Moreover,
the side effects of this drug include redness, nausea, headache,
pain in the back and abdomen, and breathing difficulties.
Due to these reasons, subsequent drugs developed by Alnylam
Pharmaceuticals do not use lipids for delivery and are presented
as conjugates of siRNA andN-acetylgalactosamine. Currently, six
drugs based on this platform are at the most advanced steps of
development in Alnylam pipline; three are in the third stage, and
three are in the second and first stages of clinical trials (Huang,
2017). Moreover, these conjugates all have the same structure and
chemical modifications (2′O-Me, 2′F, and PS) and differ only in
siRNA sequences and chemical modification patterns.

Advanced products under development by other companies
(Dicerna Pharmaceuticals, Arrowhead Pharmaceuticals,
and Silence Therapeutics) that suppress gene expression in
hepatocytes are based on covalent conjugates of siRNA and
N-acetylgalactosamine (Crooke et al., 2018; Nikam and Gore,
2018; Springer and Dowdy, 2018). Thus, significant success was
achieved in the delivery of siRNA to liver cells; the search for new
targets for siRNA and the determination of the dose required for
a therapeutic effect will expand the range of drugs aimed at the
liver (Zatsepin et al., 2016; Shen and Corey, 2017). The design of
systems for delivery to organs is a fast developing area, however,
currently such drugs are only at the preclinical stage (Benizri
et al., 2019), successful delivery to such organs as the kidneys
may be the next step (Khvorova and Watts, 2017).

CHALLENGES AND LIMITATIONS OF
USING siRNA BIOCONJUGATES IN
CLINICS

The use of chemical modifications in siRNA conjugates
significantly improved their bioperformance allowed to solve
such problems as: some of non-target effects—the cellular
immune response is reduced by the presence of 2′O-Me siRNA
modifications (Judge et al., 2006); the probability of RISC∗

binding to non-target mRNA molecules can be reduced by
decreasing the melting temperature of the seed region of the
siRNA by introducing UNA or GNA modifications (Janas et al.,
2017); the use of a fully modified siRNA molecules increases
the time of inhibition of the target gene up to half of the year
(Ray et al., 2017). Bioconjugation strategies described above
can improve the ability of conjugates to accumulate in certain
organs and penetrate certain types of target cells without the
help of transfection agents or other means of delivery have
been developed. However, there are still a number of unsolved
problems that limit the possibility of transfer of drugs from
the laboratory bench to the clinic. The main problem of
this kind is the low bioavailability of siRNA conjugates and
unfavorable pharmacokinetics, which, together with the rather
high cost of obtaining such drugs in quantities necessary to
achieve a therapeutic effect, impedes their use in the clinic.
The low bioavailability of siRNA conjugates is primarily due
to the fact that in order for siRNA to enter the cytoplasm of
a target cell after systemic administration, it has to overcome
numerous barriers—the endothelial barrier when leaving the

Frontiers in Pharmacology | www.frontiersin.org 17 April 2019 | Volume 10 | Article 444

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Chernikov et al. Current Development of siRNA Bioconjugates

bloodstream to the tissue, as well as to escape siRNA from the
endosome to the cytoplasm. The overcoming of these barriers
is complicated by the unfavorable pharmacokinetics of such
drugs, associated with their relatively low molecular weight,
which lies below the filtration limit, due to which the drugs are
rapidly removed from the bloodstream by renal filtration. In this
regard, the development of alternative routes of administration,
such as subcutaneous or local in which there is a deposit
and the gradual release of the drug is promising, as well as
approaches aimed at increasing the duration of the circulation
of the drug in the bloodstream (Nair et al., 2017). Another
option—the targeted delivery, which can be implemented only
for some organs and tissues with sufficient efficiency, moreover,
using the advantage of specific binding to target cells does not
cancel the dependence of this process on the concentration
of drug in the blood or interstitial fluid and the duration
of maintenance of an effective concentration. The necessity
to administer high doses of drugs to achieve a therapeutic
effect raises the problem of specificity and possible side effects,
the severity of which increases at high concentrations. It can
be expected, that along with non-specific effects associated
with the suppression of partially homologous targets, which
can be eliminated by sequence selection and conjugate design,
immunostimulation, the metabolic effects of unnatural analogs,
including cumulative and long-term ones, as well as the
intervention of exogenous siRNA into cellular regulatory systems
of miRNA in competition for RISC, can become the main
non-specific effects important for the safety of clinical use. In
this regard, the main challengers of biomedical research are
increasing the bioavailability, biological activity and targeting of
delivery, which will reduce the therapeutic doses of drugs based
on siRNA conjugates.

CONCLUSIONS

The introduction of molecules of natural origin into the
composition of siRNA is a promising approach for non-
viral delivery and has clear advantages over other approaches

(physical methods, delivery using cationic lipids, and polymers):

specificity of penetration into target cells and absence of
toxic effects (Lee et al., 2016; Benizri et al., 2019). The
primary difficulty in designing bioconjugates is the necessity
of selecting specific ligands for individual applications due
to the specificity of ligand-receptor interactions. From this
point of view, the use of lipophilic siRNA conjugates is
less specific, since LDL receptors are expressed at a high
level by various cell types; however, it could be beneficial
if high selectivity of delivery to certain cell types is not
required and accumulation of the drug into non-target cells
does not cause undesirable effects (Turanov et al., 2018).
The latest patterns of chemical modifications can reduce the
ID50 and increase the duration of the biological effect of
siRNA conjugates. As a result, the application of siRNA-
based drugs in clinical practice in the next few years may
significantly increase.
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