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Mutations in ATP Binding Cassette (ABC)-transporter genes can have major effects
on the bioavailability and toxicity of the drugs that are ABC-transporter substrates.
Consequently, methods to predict if a drug is an ABC-transporter substrate are useful
for drug development. Such methods traditionally relied on literature curated collections
of ABC-transporter dependent membrane transfer assays. Here, we used a single large-
scale dataset of 376 drugs with relative efficacy on an engineered yeast strain with all
ABC-transporter genes deleted (ABC-16), to explore the relationship between a drug’s
chemical structure and ABC-transporter substrate-likeness. We represented a drug’s
chemical structure by an array of substructure keys and explored several machine
learning methods to predict the drug’s efficacy in an ABC-16 yeast strain. Gradient-
Boosted Random Forest models outperformed all other methods with an AUC of 0.723.
We prospectively validated the model using new experimental data and found significant
agreement with predictions. Our analysis expands the previously reported chemical
substructures associated with ABC-transporter substrates and provides an alternative
means to investigate ABC-transporter substrate-likeness.

Keywords: ABC transport protein, cheminformatics, membrane transport, machine learning, drug structure

INTRODUCTION

ATP Binding Cassette (ABC)-transporters are membrane proteins used for the transfer of a variety
of substrates across the cell membranes (Dean et al., 2001; Locher, 2016). These proteins are
intensively studied due to their importance in several diseases (Borst and Elferink, 2002). For
example, mutations in the CFTR chloride channel, which is encoded by ABCC7 gene, result in
abnormal solute transportation in lungs and cause cystic fibrosis in humans (Guggino and Stanton,
2006). Another classic example is P-glycoprotein, encoded by ABCB1, for which mutations causing
overexpression can result in multidrug resistance in cancer cells (Juliano and Ling, 1976).

ATP Binding Cassette-transporters are ubiquitous in all kingdoms of life (Szollosi et al.,
2018). These membrane transporters have an ABC, which induces a structural change for the
channel to open upon ATP hydrolysis (Jones and George, 2004). Small molecules or drugs may
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interact with ABC-transporters in two contexts. First, they may
be ABC-transporter substrates, which are exported from the
cell. If a drug is an ABC-transporter substrate, a mutation
in the ABC-transporter genes may affect the bioavailability
of that drug (Wu and V Ambudkar, 2014). Second, a
drug may be an ABC-transporter inhibitor. These drugs can
modulate the activity of ABC-transporters themselves, altering
the intracellular concentration of compounds that are substrates
of ABC-transporters and frequently cause drug-drug interactions
(Zhou, 2008). For example, when P-glycoprotein inhibitors
are combined with P-glycoprotein substrates, the increased
bioavailability of the substrate may lead to serious side effects
(Montanari and Ecker, 2015). Therefore, understanding both
substrates and inhibitors of ABC-transporters is of extreme
medical importance.

Experimental measurement of ABC-transporter/substrate
relationships requires labor-intensive experiments involving
the transport of a molecule across a monolayer of cells
overexpressing ABC-transporters, rhodamine-123/calcein-AM
fluorescence assays or flow cytometry (Adachi et al., 2001;
Haynes et al., 2018). While such assays have been adopted
as de facto standards in measuring ABC-transporter/substrate
relationship, their cost precludes high-throughput screens.
Previous computational studies on ABC-transporter/substrate
relationship has relied on carefully curated collections of
published data (Wang et al., 2011; Hazai et al., 2013). For
example, a recently published dataset reported 822 ABC-
transporter substrate/non-substrate molecules, curated from 517
published papers (Li et al., 2014). Authors used naive Bayesian
classifiers on this dataset to explore the physicochemical and
structural properties of ABC-transporter substrates. While these
studies pave the way for a better understanding of ABC-
transporters, the aggregated data may lead to inconsistencies
due to different experimental setups in various labs (Montanari
and Ecker, 2015). Transporter annotations are highly dependent
on experimental factors, which may not be fully captured by
database annotations. In addition, the use of aggregated data
complicates the choice of prospective validation experiments
for computational methodologies. Therefore, understanding of
ABC-transporter substrates will benefit from a large-scale dataset
where all the measurements are collected in a coherent fashion
according to a common experimental protocol.

A recent study reported a strategy to delete a large set of
genes in the yeast Saccharomyces cerevisiae and replace each
with a Green Fluorescent Protein-expressing gene (GFP) (Suzuki
et al., 2011). Using this strategy, the authors generated an
“ABC-16 green monster” strain, in which all 16 S. cerevisiae
ABC-transporters implicated in multi-drug resistance have been
replaced with a GFP gene. This ABC-16 strain was tested against
376 drugs from the NIH Clinical Collection, which comprises
compounds previously used in human clinical trials and covers
a wide array of structure and target space. The authors reported
that 31% of the drugs tested were more efficacious against the
ABC-16 strain in comparison with the parental yeast strain
(Suzuki et al., 2011). Such drugs are likely exported from the
cell via ABC-transporters, and now achieve a higher intracellular
concentration when the ABC-transporters are missing.

In our study, we revisited the dataset above to investigate
whether drug efficacy in the clean-slate ABC-16 strain can
be predicted from chemical structure properties of drugs. We
define the compounds that have increased efficacy against the
ABC-16 strain as “ABC-transport substrates.” We used the
information for 376 compounds provided by the aforementioned
screen as training. Our study identifies substructures associated
with ABC-transporter substrates and derives a prediction model
of substrate-likeness based on the presence/absence of these
substructures. In addition, we conducted prospective validation
experiments for 24 additional compounds and demonstrated
success in predicting drug efficacy. Our study provides proof-
of-concept that the yeast ABC-16 strain is a valuable model for
exploring ABC-transport substrate specificity.

RESULTS

Training Data Encapsulates the Presence
of Chemical Substructures and Drug’s
Efficacy Against the ABC-16 Strain
Molecular ACCess System (MACCS) keys define a set of 166
chemical substructures that are often found in small molecule
drugs (Durant et al., 2002). For each of the 376 drugs used in
the “green monster” study by Suzuki et al. (2011), we generated
MACCS-key binary profiles; each entry in the profile indicates if
the corresponding substructure is found in the drug’s chemical
structure. The MACCS-key profiles of all 376 compounds are
shown as a heatmap in Figure 1A, where rows correspond
to MACCS keys and columns to drugs. The heatmap is
hierarchically clustered with leaf-order optimization (Bar-Joseph
et al., 2003) for improved visual clarity. An indicator of whether
a drug is more efficacious against the ABC-16 strain is shown
at the top of the heatmap. To provide additional exploratory
view of the data, we also project raw high-dimensional data into
two 2-D subspaces. We explore a linear projection via Principal
Component Analysis (PCA), as well as a non-linear projection
via Multi-Dimensional Scaling (MDS). These are presented in
Figures 1B,C, respectively.

The data views presented in Figure 1 fall under the umbrella of
unsupervised learning, where the computations do not explicitly
incorporate the efficacy labels. Such views allow for general
exploration of patterns in the data, which we observe do not align
with the resistant/sensitive delineation. This motivates the need
to employ supervised learning methods to explicitly model the
relationship between a drug’s chemical structure and its relative
efficacy against the ABC-16 strain.

Enrichment of Substructures Provides
an Indicator of Efficacy Against the
ABC-16 Strain
We asked whether the presence of molecular fingerprints in a
drug’s chemical structure can be used to make inference about
the effectiveness of that drug against the ABC-16 strain. As
a preliminary step to assess the amount of predictive power
in individual MACCS keys, we composed contingency tables
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FIGURE 1 | Overview of the raw data. (A) Clustered heatmap of 149 substructure features (rows) computed across 376 drugs (columns). Individual entries in the
heatmap denote presence or absence of a particular MACCS fingerprint in the corresponding drug. Orange labels indicate drugs that are more efficacious against
ABC-16 yeast strain than the parental strain. Optimal leaf reordering was applied to both rows and columns in an effort to reveal additional structure in the data that
may not be observed from the default ordering. The six substructures (rows) revisited in more detail in Figure 2 are highlighted in pink. (B) Projection of the raw data
onto the first two principal components. The amount of variance explained by each component is displayed in the axis label. (C) Projection of the raw data onto the
first two components of Multi-Dimensional Scaling. The coloring of points is consistent across all three panels.

quantifying the presence of a given MACCS fingerprint and
whether the corresponding drugs were more efficacious against
the ABC-16 than the parental strain. Fisher’s Exact test was
then applied to each contingency table to assess the relationship
between the two variables. Because we applied Fisher’s Exact test
to each of 166 keys, we adjust our significance estimates for
multiple hypothesis testing. We applied the Benjamini-Hochberg
procedure to estimate False Discovery Rate (FDR) from the set
of p-values obtained from individual tests. Six MACCS keys
had an FDR below 5%. These fingerprints, whose presence or
absence was most closely associated with the corresponding
drug’s relative efficacy in the ABC-16 strain, are highlighted in
Figure 2. Figure 2 suggests that drugs with increased efficacy
against ABC-16 strain are significantly enriched for six-atom ring
structures [MACCS(145)]. This is consistent with an observation
that five of the 15 substructures previously identified as indicators
of P-glycoprotein substrate-likeness also included a six-atom
ring structures (Li et al., 2014). In addition, we observed that
a carbon atom which is bound to two carbons and one oxygen
[MACCS(152)], or two non-rings connected by a ring bond

[MACCS(150)] were also enriched in drugs with relative efficacy
against the ABC-16 strain. Conversely, C-N, N-H, and N-∗
substructures are often absent among drugs with increased
efficacy against ABC-16 strain.

While the above univariate approach of looking at one
MACCS fingerprint at a time provides some evidence of
predictive power, we expect that additional power can
be gained by constructing machine learning models that
incorporate information about the presence of multiple
fingerprints simultaneously.

Cross-Validation Performance Reveals
Gradient-Boosted Machines as the Most
Accurate Method for Predicting Relative
Efficacy in ABC-16 Strain
We considered a panel of linear and non-linear machine learning
methods. This panel included k-nearest neighbors (k-NN),
regularized logistic regression, support vector machines (SVM),
gradient-boosted random forest machines (GBM), and artificial
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FIGURE 2 | Chemical substructures significantly enriched or depleted in
drugs that are effective against ABC-16. 2 × 2 contingency tables relating
relative efficacy against ABC-16 and presence of substructure are given for six
substructures. The number of drugs in each quadrant are represented by
circle size. Also shown are the log-odds ratios (LOR) and the associated
p-values calculated using Fisher’s Exact Test. When adjusted by
Benjamini-Hochberg procedure, the six substructures shown exhibited FDR
<5%.

neural networks (NNet). Each method was used to train a model
that predicted whether a drug was more efficacious in the ABC-16
strain relative to the parental strain using the presence of MACCS
fingerprints as input features.

Ten-fold cross-validation was used to assess performance of
predictors (see section “Materials and Methods”), with results

shown in Figure 3 and Table 1. Figure 3 displays receiver-
operator characteristic (ROC) and precision-recall curves (panels
A and B, respectively) for all five methods, while Table 1
presents summary performance metrics. We observe that
non-linear methods (k-NN, GBM, and NNet) outperformed
linear methods (logistic regression and SVM), with gradient-
boosted machines achieving a slight performance edge (overall
AUC = 0.723, accuracy = 0.729) over NNet (overall AUC = 0.708,
accuracy = 0.723) and k-nearest neighbors (overall AUC = 0.685,
accuracy = 0.713). This is an expected trend as non-linear
methods are able to capture more complex relationships between
the presence and absence of individual MACCS keys than their
linear counterparts. The accuracy values we obtained are slightly
higher than those of previously reported models for predicting
ABC-transporter substrates (∼0.72 compared to∼0.70) (Aniceto
et al., 2016) but lower than accuracy of models that focus
specifically on P-glycoprotein substrates (∼0.72 compared to
∼0.83) (Li et al., 2014). This suggests that the difficulty of the
prediction task may vary from one ABC-transporter to the next.

After assessing the performance of all methods through cross-
validation, we trained a single final model on all drugs in the
training set, using GBM and the best set of its meta-parameter
values. GBM belongs to the class of Random Forest methods,
which are defined as ensembles of simple predictors called
“decision trees” (Natekin and Knoll, 2013). Each decision tree
effectively asks “Is a particular molecular substructure present in
a given drug?” and, depending on the answer to that question,
either assigns a substrate/non-substrate label or routes the
decision to the next question. Classical random forests construct
decision trees by learning which features (i.e., substructures) best
discriminate substrates from non-substrates on a random subset
of data. GBM introduces a key concept called boosting, where
each subsequent tree learns to predict the error of the currently
constructed forest. In other words, the first decision tree learns to
predict the labels directly, the second focuses on the drugs that
were misclassified by the first tree, the third tree places additional
focus on those drugs that were incorrectly classified by the first
two trees, and so on.

Our choice of GBM was guided by its higher overall
performance relative to the other methods, which is in line with
recent studies successfully using GBM for ADMET predictions
(Lei et al., 2017b, 3935–3953; Lei et al., 2017a, 2407–2421). An
important property of GBM is that it tends to be conservative,
as indicated by its higher precision, but lower recall values
compared to other methods (Table 1). While it achieves the
highest overall AUC and accuracy, GBM produces more false
negatives than other methods, suggesting that the threshold for
making substrate calls based on classifier output can be lowered.
We revisit this property when discussing results on prospective
validation data.

The final model was interrogated for feature importance
scores by asking how well the GBM model performs when the
values of a given feature are shuffled (see section “Materials
and Methods”). This allowed us to identify the set of
MACCS fingerprints with the highest predictive power. The
top 20 fingerprints, their corresponding importance scores and
substructure schematics are presented in Figure 3C. We observe
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FIGURE 3 | Performance metrics and analysis of substructure-based prediction of relative efficacy against ABC-16 yeast. (A) ROC curves estimating performance of
five machine learning algorithms evaluated in ten-fold cross-validation. Each algorithm was trained over a grid of meta-parameter values, and the final predictions for
any given test fold were computed by averaging predictions from individual models across this grid. Area under the curve (AUC) values are indicated next to method
annotations. (B) Precision-recall curves for the five machine learning algorithms presented in panel (A). GBM was selected as the top-performing method, based on
AUC and accuracy metrics (Table 1). The method corresponds to the light red line in both panels (A) and (B). (C) Feature importance scores from a Gradient
Boosting Machine model trained on the entire training set using the best set of meta-parameter values (as determined from ten-fold cross-validation). Presented are
the top 20 features and their associated MACCS fingerprints.

that four of the six MACCS keys from Figure 2 were also among
the most important features in the GBM model. The other two
keys [MACCS(158) and MACCS(150)] were not among the 20
most important features in the model. This suggests that, while
being informative in a univariate view, they carry redundant
information when considered in concert with other features.
Conversely, the MACCS(−87) feature—identified by GBM to be
important—had a limited ability to stratify relative efficacy on
the ABC-16 strain (log-odds ratio = 0.28, FDR = 0.13) by itself.
Thus, the machine learning method was able to exploit features
that were only useful in concert with other features.

The orthogonality of information provided by each feature
can be judged by feature importance scores presented in
Figure 3C. Features that get assigned high scores are deemed
by the model to be jointly important for making accurate
predictions. For example, MACCS(145) and MACCS(152) have
univariate predictive power and both receive high importance
scores, suggesting that they provide complementary information.
On the other hand, MACCS(158), while being predictive in
a univariate setting, does not appear among the top-scoring
features in Figure 3C, suggesting that the information captured
by MACCS(158) is redundant. Therefore, features are not
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TABLE 1 | Cross-validation performance metrics for five machine learning
methods trained to predict ABC-16 relative efficacy.

Method TP TN FP FN Precision Recall Accuracy AUC

GBM 42 232 25 77 0.627 0.353 0.729 0.723

NNet 61 211 46 58 0.570 0.513 0.723 0.708

k-NN 40 228 29 79 0.580 0.336 0.713 0.685

Log.Reg. 49 203 54 70 0.476 0.412 0.670 0.669

SVM 62 195 62 57 0.500 0.521 0.684 0.652

TP = True positive, TN = True negative, FP = False positive, FN = False negative.

entirely orthogonal and they add predictive value based on
their importance.

New Data Is Collected in vitro to Assess
ABC-16 Efficacy of 24 Drugs Not
Considered Previously
We next sought to validate our final model on new, previously
unseen data. To do so, we considered 24 drugs that are not
in the training set (Table 2). These 24 compounds were
chosen from available compounds in our laboratory that (i)
inhibit wild-type yeast (antifungal) and (ii) were not among
376 drugs in the training set. Eleven of these drugs were
previously screened for their pairwise interactions (Benomyl,
Bromopyruvate, Calyculin A, Dyclonine, Fenpropimorph,
Latrunculin B, Pentamidine, Rapamycin, Staurosporine,

TABLE 2 | Name, abbreviation, PubChem ID, and top dose for each of the 24
drugs used for the prospective validation experiments.

Drug Abbreviation PubChem ID Top dose (µg/ml)

Beauvericin BEA 3007984 25

Benomyl BEN 28780 28

Bisantrene BIS 5351322 105

Bromopyruvate BRO 70684 15

Calyculin A CAL 5311365 2.1

Camptothecin CAM 24360 175

Cisplatin CIS 441203 700

Colchicine COL 6167 8000

Cycloheximide CYC 6197 0.37

Dyclonine DYC 3180 10

Fenpropimorph FEN 93365 10

Fluconazole FLU 3365 38

Imatinib IMA 5291 1950

Latrunculin B LAT 3892 1.4

Methotrexate MET 4112 220

Miconazole MIC 4189 0.07

Mitoxantrone MIT 4212 270

Pentamidine PEN 4735 3.85

Rapamycin RAP 5284616 0.0013

Staurosporine STA 44259 4.4

Tacrolimus TAC 445643 3.6

Tamoxifen TAM 2733526 23

Tunicamycin TUN 6433557 0.083

Valinomycin VAL 441139 1000

Tacrolimus, and Tunicamycin) (Cokol et al., 2011, 2014).
Six additional antimicrobials (Cycloheximide, Beauvericin,
Colchicine, Fluconazole, Miconazole, and Valinomycin) and
seven anti-cancer drugs (Bisantrene, Camptothecin, Cisplatin,
Imatinib, Methotrexate, Mitoxantron, and Tamoxifen) were
included to provide a large data set with sufficient power to test
our GBM-based ABC-transporter substrate prediction method.
We grew ABC-16 and parental strains treated in three doses
of each drug, in biological duplicates. The top concentration
of each drug was chosen to fully inhibit the growth of one
of the two strains (see section “Materials and Methods”). We
measured the growth in each condition and used the area
under the dose-response curve as the growth metric for each
strain in each experiment. Visual inspection showed that
fluconazole, miconazole, beauvericin, camptothecin, mitomycin,
and tamoxifen were inert against the parental strain at doses
enough to inhibit the growth of the ABC-16 (Figure 4A). In
contrast, ABC-16 strain was resistant to rapamycin, tunicamycin,
and valinomycin.

To make a more quantitative comparison, we defined the
relative efficacy of each drug as −log2( ABC-16 growth/parental
strain growth). This efficacy measure is 0 if the two strains are
equally sensitive to the drug. A positive or negative efficacy
value indicates increased or decreased efficacy against the ABC-
16 strain, respectively (see section “Materials and Methods”
for details). Relative efficacy for drugs significantly correlated
among two replicates (Figure 4B). We used the average of two
measurements as each drug’s ABC-dependent efficacy.

Finally, we considered the difficulty of predicting the newly
collected efficacy measures by computing Tanimoto similarity
between each of the 24 drugs in our validation set and training
data. Figure 4C shows the closest match in the training set for
each validation drug, highlighting the difficulty of the prediction
task: a large number of closest matches have opposite labels. For
example, Methotrexate (MET) has 0.98 Tanimoto similarity to
glutamic acid (PubChem ID: 5746104) but is more efficacious
against the ABC-16 strain, while glutamic acid is more efficacious
against the parental strain. Such label discrepancy among
similar compounds presents a major challenge for machine
learning methods.

We make the raw data collected for prospective validation,
a wrangled copy of the training data, and all code are publicly
available at https://labsyspharm.github.io/ABCmonster/.

Prospective Validation Confirms That the
GBM Model Is Able to Infer Relative
Efficacy of New Drugs Against the
ABC-16 Strain
We asked how well the final GBM model is able to predict efficacy
measured in our validation set of drugs. Using the model, we
generated probability for each drug’s increased relative efficacy
against the ABC-16 yeast strain and matched the predictions
against measured values (Figure 5). Despite the prediction
task difficulty imposed by mismatched labels among highly
similar drugs, we observed a significant Spearman correlation
between predicted and observed efficacy (Spearman rho = 0.54,
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FIGURE 4 | Overview of prospective validation dataset. Three-letter abbreviations for each drug are given in Table 2. (A) For 24 new drugs, dose-response
experiments were carried out for parental and ABC-16 yeast strains, in duplicate. The drug doses in each experiment are two-fold dilutions starting from a top
concentration shown in Table 2. Dose-responses for ABC-16 or parental yeast strains are shown in green and gray, respectively. (B) For each experiment, relative
efficacy against the ABC-16 yeast is calculated by taking the –log2 of the ratio of the area under dose-response for ABC-16 yeast with the area under the
dose-response of the parental strain. This score is zero if ABC-16 and parental yeast strains are equally sensitive. The score is negative or positive if ABC-16 yeast is
more resistant or sensitive, respectively. As shown, the relative efficacy scores for the two replicates are highly concordant. The drugs with less, equal or more
efficacy to ABC-16 compared to wild type yeast are shown in orange, black or blue, respectively. (C) Tanimoto similarity between prospective validation and training
datasets, presented as a bipartite graph. For each drug in the prospective validation set (left nodes), we identified its closest neighbor in the training set (right nodes,
annotated with PubChem IDs). Nodes are colored according to relative efficacy against ABC-16 yeast with Tanimoto similarity scores displayed as edge weights.

permutation test p-value = 0.007) (Figure 5A). The correlation
allows us to compare predictor output to true measurements
without placing a threshold at a fixed probability value. In this
way, we are effectively asking whether the predictor correctly
ranks substrates above non-substrates. This is in direct parallel
to AUC, which is widely regarded as a more robust performance
metric than accuracy, because it does not rely on a fixed threshold
to make predictions (Ling et al., 2003).

Next, we binarized the experimental measurements, treating
drugs that were more efficacious in the ABC-16 strain as
“positive” examples. Likewise, drugs with equal or lower efficacy
in the ABC-16 strain than in the parental strain were assigned
the “negative” label. The binary labels then allowed us to

construct ROC and Precision-Recall curves, which are displayed
in Figure 5, panels B and C, respectively. We observed an AUC
value of 0.74 and very high precision at recall values of over
50%. The high precision in particular demonstrates the value
of the GBM model when only a limited number of substrate
candidates is requested.

Lastly, we considered the question of placing a threshold on
the probabilistic output of GBM to assign substrate/inhibitor
calls to individual predictions. While 0.5 may seem like a natural
choice for such a threshold, it would result in a large number
of false negatives, as Miconazole and Fluconazole would be the
only two drugs to get correctly identified as substrates. This
is consistent with our earlier observation that GBM is overly
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FIGURE 5 | Performance of prospective validation of substructure-based prediction of relative efficacy against ABC-16 yeast. (A) For each drug in test set, the X axis
shows the predicted probability of ABC-16 sensitivity, and the Y axis shows the relative efficacy scores –log2(ABC-16 growth/parental strain growth). These scores
are higher for compounds to which ABC-16 is sensitive. Substructure-based relative efficacy predictions significantly correlated with the mean relative efficacy scores
from two replicates (Spearman rho = 0.54, permutation test p-value = 0.007), accurately capturing ABC-16 yeast’s sensitivity to fluconazole and miconazole, and
ABC-16 yeast’s resistance to tunicamycin, rapamycin and valinomycin. (B) ROC curve showing predictor performance on the validation data, where drugs with
higher efficacy against ABC-16 yeast are treated as “positive” examples, while drugs with lower or equal efficacy are treated as “negative” examples. (C) The
matching precision-recall curve. All points across all panels are colored consistently with Figure 4, with drugs that have less, equal or more efficacy to ABC-16
compared to wild type yeast being shown in orange, black and blue, respectively.

conservative, as highlighted in our discussion of cross-validation
results (Table 1). For this reason and based on our examination of
the validation data results, we suggest lowering the threshold to
0.15 when assigning substrate/inhibitor labels to new drugs. Due
to high precision of the GBM method, lowering the threshold
should be robust with respect to false positives. Under the
threshold of 0.15, GBM will correctly identify 11 out of 18
substrates in the given validation set, with no false positives.

We believe the reason GBM is able to overcome the task
difficulty has to do with which features it deems important
for prediction (Figure 3C). For example, Camptothecin and
Topotecan HCL (PubChem ID: 60700) have Tanimoto similarity
of 0.87 (Figure 4C) but different labels. One of the molecular
fingerprints the two drugs differ in is MACCS(−93), GBM
correctly scores Camptothecin above Topotecan HCL, because it
considers MACCS(−93) to be among its top 20 most-predictive
features (Figure 3C). Likewise, Beauvericin gets scored higher
than Itopride HCL (PubChem ID: 3792) because it contains N-H
substructure, MACCS(151), which is deemed by the GBM model
to be the third most predictive feature.

DISCUSSION

It has been more than 40 years since mutations in P-glycoprotein
were linked to multidrug resistance in cancer. It is now known
that P-glycoprotein is a member of the ABC-transporter family
of proteins, which selectively transport molecules out of the
cell using energy. However, it is also understood that the
same molecule can be transported by more than one ABC-
transporter, and each ABC-transporter can transport more
than one type of molecule. These two factors complicate the
study of ABC-transporter substrate specificity, necessitating
computational models to study this phenomenon. All such
models constructed to date used collections of small scale data

for the learning task. Majority of the studies toward this aim
focused on P-glycoprotein – substrate relationship. Our study
uses a large-scale experimental data set that was published in
a single article, and provides a means to investigate the ABC-
transporter substrate-likeness for a compound when all ABC-
transporters are considered. Using a cheminformatics based
framework, we detected chemical substructures that are over
or under-represented in ABC-transporter substrates. We used
substructure profiles of drugs to train a machine learning
method to predict ABC-transporter substrates. N-∗ substructure
was a particularly good univariate predictor in our model.
A previous study has shown that one of the best predictors for
ABC-transporter relationship was N-branched substructures (Li
et al., 2014). To the best of our understanding, a mechanistic
explanation for the presence of N-∗ and ABC-transporter
substrate-likeness is lacking. Strong univariate predictors like
N-∗ can be starting points for explaining how an ABC-
transporter selectively transports multiple compounds with
different molecular structures. The fact that a linear array of
substructure presence can be used for ABC-transporter substrate-
likeness prediction is promising. Future studies may consider
the long-distance relationships between substructures and shed
light on the scaffolds of chemical structures with high ABC-
transporter substrate-likeness.

Interestingly, all -mycins in the test set (Rapamycin,
Tunicamycin, and Valinomycin) were less efficacious against
the ABC-16 strain. This is fully consistent with the four -
mycins present in the training set (dactinomycin, clarithromycin,
kitasamycin, and oligomycin c), which are also less efficacious
against the ABC-16 strain. Therefore, the poor efficacy
of –mycins against ABC-16 is a reproducible and frequent
phenomenon, which is learned by our framework. These
compounds may provide another departing point for a
mechanistic exploration of the many-to-many relationship
between ABC-transporters and their substrates.
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Chemogenomic interactions are defined as a surprising
change in a drug’s effect in a given genetic background
(Giaever et al., 2004; Jones and Bunnage, 2017). Numerous
previous studies have shown that chemogenomic interactions
between drugs and single gene deletions are rare (Hillenmeyer
et al., 2008; Nichols et al., 2011). This is often explained by
robustness in cellular machinery, where overlapping functions
of genes allow compensations by genes with similar functions.
A corollary of this explanation is that if all genes pertaining
to a certain cellular function are deleted, chemogenomic
interactions will be more frequent. Our observations are
in agreement with this, as chemogenomic interactions were
frequent when all genes that encode “proteins to transport
some chemicals out of the cell using ATP” are deleted.
With the recent advances in genomic editing methods such
as CRISPR, groups of genes can be readily deleted (Cong
et al., 2013; Adli, 2018) - similar to the ABC-16 strain
used in this study, which was painstakingly generated using
rounds of mate selection (Suzuki et al., 2012). The use of
cells in which genes with overlapping functions are deleted
may prove useful for illuminating the cellular mechanisms
targeted by drugs.

We proposed the ABC-16 yeast strain as a clean-slate genetic
model for studying ABC-transport substrate specificity. Using
homogeneous data collected with a consistent experimental
protocol, we trained a machine learning model to predict
drug relative efficacy in this strain, allowing us to identify
which compounds are ABC-transport substrates based
directly on their chemical substructures. The model was
then experimentally validated on a new panel of drugs,
demonstrating its generalizability to previously unseen
data. Being able to correctly identify ABC-transport
substrates is a precursor step toward understanding the
bioavailability of these molecules in polypharmacological
studies and combination therapies. The presented study acts
as a proof-of-concept that such a step can be performed
in silico, potentially alleviating some of the costs associated
with expensive compound screens. The information about
MACCS key fingerprints that we highlighted as being
most predictive can be utilized during early development
in future drug design.

MATERIALS AND METHODS

Generating and Assessing
Predictive Models
The SMILES key representation for each compound was
extracted from PubChem (Kim et al., 2016). SMILES keys
for each compound was processed using the open-source
cheminformatics tool RDKit v2015 (Landrum, 2013) to check
the presence of a predefined set of 166 MACCS structural keys.
In this way, the structure of each compound was converted to
a numeric vector, which we referred as structural compound
fingerprints. These vectors and their associated labels (ABC-16
sensitive or not) were used as the input for the machine learning
experiments detailed below.

Ten-fold cross-validation was used to assess method
performance. Each cross-validation run was repeated 100
times to assess robustness with respect to random number
generation (used for splitting data into folds, bootstrap sampling
in random forests, initializing neural network weights, etc.). In
each run, we iterated through the set of all drugs, withholding
a tenth at a time. At each iteration, a model was trained on
the non-withheld data and subsequently used to score the
withheld subset. The training set has a class imbalance, where
about 1/3 of the samples were ABC-16 Sensitive and 2/3 were
ABC-16 Resistant. We ensured that the class imbalance was
properly captured in each fold while splitting the data for
cross-validation. Since each fold was an accurate representation
of the data as a whole, no additional weighting was imposed.
Performance estimated through cross-validation was further
averaged across a grid of meta-parameter values. These included
the number of neighbors in k-NN, the number and depth of
trees in GBM, the number of hidden units in NNet, and the
L1 (LASSO) and L2 (ridge) penalties for regularized logistic
regression and SVM.

Marginalizing out meta-parameter values by averaging across
performance values is distinct from the more traditional
approach of selecting a single, usually the best-performing,
set of values in each fold. By averaging across a grid of
values instead, we incorporate a measure of robustness when
comparing performance across the five methods. All training and
model evaluation was performed in R using the caret package
(Kuhn, 2008).

To determine variable importance in a GBM model,
we computed out-of-bag prediction accuracy for each tree
(Friedman, 2001). A second accuracy value is computed
after permuting the values of that variable across the entire
training set. The difference between the two performance
measures is then averaged across all trees in the random
forest and normalized by the standard error. Finally, the
importance scores from individual boosting iterations are
summed together.

Strain Growth Measurements
Rich media (YPD) consisted of 1 g yeast extract, 2 g peptone,
5 mL 40% glucose per 100 mL of media. Drug solutions are
prepared in YPD for 4 different dosages. The minimum of (i)
concentration that inhibits the growth of the parental yeast strain
and (ii) concentration that inhibits the growth of ABC-16 strain
was chosen as the Minimum Inhibitory Concentration (MIC) of
each drug. 50 × MIC concentration of each drug was prepared
in DMSO. In four vials, 90 µL of YPD was mixed with (i)
10 µL 50 × MIC, (ii) 5 µL 50 × MIC + 5 µL DMSO, (iii)
2.5 µL 50 × MIC + 7.5 µL DMSO, and (iv) 10 µL DMSO.
20 µL of these drug solutions were transferred to 96-well plates.
Overnight cultures of parental and green monster strains were
grown in 2 mL YPD with 100 µL cells from glycerol stocks,
at 30◦C temperature and 200RPM shaking. These cultures were
diluted to OD600 = 0.01 in YPD and 80 µL of the diluted
culture was added on each well. After the addition of cells, each
well has 2% DMSO and their respective drug dose. Plates were
sealed and shaken at 30◦C for 15 h with OD600 measurements
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at 15 min intervals, using Tecan Infinite F200 plate-readers.
For each drug, we therefore collected growth curves in three
concentrations and one no drug control condition. We used
the area under the growth curve as the growth metric in
each concentration and normalized each growth to no drug
condition to construct the dose-response curves shown in
Figure 4A. The area under each dose-response was used as the
concentration independent growth metric for the compound,
with low and high values indicating sensitivity and resistance,
respectively. Growth of ABC-16 strain was compared with
the growth of wild-type strain to assess relative efficacy.
(Growth ABC-16/growth wild-type) was −log2 transformed
for visual clarity; compounds with 0, negative or positive
have equal, lower or higher relative efficacy against ABC-16
strain, respectively.
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