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Acute myocardial infarction refers to a sudden death of cardiomyocytes, which leads to 
a large mortality worldwide. To attenuate acute myocardial infarction, strategies should 
be made to increase cardiomyocyte survival, improve postinfarcted cardiac function, and 
reverse the process of cardiac remodeling. Autophagy, a pivotal cellular response, has 
been widely studied and is known to be involved in various kinds of diseases. In the recent 
few years, the role of autophagy in diseases has been drawn increasing attention to by 
researchers. Here in this review, we mainly focus on the discussion of the effect of 
autophagy on the pathogenesis and progression of acute myocardial infarction under 
ischemic and ischemia/reperfusion injuries. Furthermore, several popular therapeutic 
agents and strategies taking advantage of autophagy will be described.
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INTRODUCTION

Acute myocardial infarction, also well known as acute heart attack, is induced by the sudden 
blockade or occlusion of a major branch of a coronary artery, thus leading to the ischemia 
or infarct of cardiomyocytes (Stanley, 2001; Klopsch et  al., 2019; Musher et  al., 2019). So far, 
it is generally acknowledged that at 12  h or a little later after the onset of irreversible ischemia, 
the earliest change is observed morphologically as pallor of the myocardium, referring to the 
ischemia of cardiomyocytes (Burke and Virmani, 2007; Li et  al., 2019; Shoji et  al., 2019). 
The disturbance of blood flow leads to the deprivation of energy supply, which results in the 
dysfunction and death of cardiomyocytes (Burke and Virmani, 2007). The cardiac damage of 
acute myocardial infarction is widely acknowledged via the ischemic and ischemia/reperfusion 
injuries, thus resulting in the detrimental effect on cardiomyocytes as well as cardiac functions. 
The mechanisms of myocardial injury under irreversible ischemic stress included increased 
cytosolic Ca2+ induced by the inhibition of Na+, K+-ATPase and disturbance of mitochondria, 
leading to the activation of various kinds of proteases, cleavage of anchoring cytoskeletal 
proteins, and progressive increases in cell membrane permeability (Jennings and Ganote, 1974; 
Jennings et  al., 1995; Stanley, 2001; Buja, 2005; Burke and Virmani, 2007). Consequently, 
protecting cardiomyocytes against ischemic injury serves as a vital strategy for the treatment 
of acute myocardial infarction. Furthermore, the infiltration of inflammatory cells such as 
macrophages and neutrophils has been observed in the border areas on the occurrence of 
acute myocardial infarction, indicating that suppression of inflammatory reaction in cardiac 
ischemic regions also provides a potential and effective pathway (Crea and Libby, 2017; Loyer 
et  al., 2018; Ong et  al., 2018; Zhang et  al., 2018a; Peng et  al., 2019). So far, although increasing 
knowledge has been gained on acute myocardial infarction and various kinds of interventions 
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have been developed, the gross mortality of acute myocardial 
infarction patients remains high, and more effective therapeutic 
strategies are still demanded.

Autophagy is a vital metabolic process for the degradation 
of senescent or damaged proteins and organelles into amino 
acids and fatty acids for energy production and recycling 
(Catana et  al., 2018; Wang et  al., 2018c). It is activated in 
response to nutrient starvation or metabolic stress for the 
maintenance of tissue functions and homeostasis (Dong et  al., 
2018). It has been demonstrated that basal autophagy is vital 
for the maintenance of normal cardiac functions (Zhang et  al., 
2018b). Under the ischemic stress, autophagy is activated to 
protect cardiomyocytes against ischemic or ischemia/reperfusion 
injury (Sciarretta et al., 2014; Wang et al., 2018b). Furthermore, 
autophagy can act as an inflammatory suppressor, thus 
contributing to the alleviation of progress of cardiac injury 
(Mohajeri and Sahebkar, 2018; Ryter et  al., 2018; Li et  al., 
2018c). However, excessive activation of autophagy may lead 
to a detrimental effect on the heart in the reperfusion damage 
as well as other stress conditions, indicating the controversial 
effect of autophagy in cardiac ischemia (Ma et  al., 2011; Bai 
et  al., 2018). Here in this paper, we  will discuss the role of 
autophagy in acute myocardial infarction in the alleviation of 
myocardial infarction under the ischemic and ischemia/
reperfusion injuries. Furthermore, several potential and effective 
therapeutic strategies taking advantage of autophagy will 
be  discussed, aiming to provide insights in the development 
of new drugs or therapies against acute myocardial infarction.

BIOLOGY OF AUTOPHAGY

The word “autophagy,” derived from Greek roots “auto” (self) 
and “phagy” (eat), was initially created by Dr. Christian de 
Duve in 1960s, referring to a cellular catabolic process in 
which intracellular substances were degraded by itself (Klionsky 
et  al., 2016; Ktistakis, 2017). Recently, Dr. Yoshinori Ohsumi 
was awarded the 2016 Nobel Prize in Medicine or Physiology 
for his discovery of cellular autophagy processes, which made 
a big step in the development of novel therapies for various 
kinds of diseases taking advantage of autophagy (Van Noorden 
and Ledford, 2016; Harnett et  al., 2017). So far, it has been 
widely acknowledged that autophagy is a vital catabolic 
mechanism relying on lysosomes (Hewitt and Korolchuk, 2017). 
During the autophagy process, some long-lived or misfolded 
proteins as well as damaged organelles are transferred into 
lysosomes for degradation into fundamental nutrient substance 
such as amino acids for recycling and further use (Boya et  al., 
2018; Li et  al., 2018b). According to the patterns of cargo 
delivery to the lysosomal lumen and physiological functions, 
autophagy has been mainly classified into three types, namely 
macroautophagy, microautophagy, and chaperone-mediated 
autophagy (Zhang et al., 2018c). Macroautophagy is a catabolic 
process characterized by sequestration of cytoplasmic material 
in double membrane vacuoles called autophagosomes, which 
are then delivered to the lysosome for degradation 
(Wang et al., 2018c). Microautophagy is a non-selective lysosomal 

degradative process referring to the engulfment of cytoplasmic 
constituents through invagination of the lysosomal/vacuolar 
membranes (Kalachev and Yurchenko, 2017). Chaperone-
mediated autophagy is a type of autophagy that allows the 
degradation of cytosolic proteins depending on chaperones. It 
is recognized as the only autophagy process that allows selective 
degradation of soluble cytosolic proteins in lysosomes (Alfaro 
et al., 2018). In addition to those three kinds of classic autophagy, 
some special forms of autophagy (selective autophagy) have 
been described, including mitophagy, pexophagy, ribophagy, 
xenophagy, and secretory autophagy (Ponpuak et  al., 2015; 
Mao and Klionsky, 2017; An and Harper, 2018; Broda et  al., 
2018; Tsuchiya et  al., 2018). Since macroautophagy is the most 
extensively studied form of autophagy, here in this review, the 
role of macroautophagy in acute myocardial infarction will 
be  discussed (hereafter referred to as “autophagy”).

Autophagy process is an evolutionarily conserved process 
from yeast to mammals (Schultz et  al., 2017). So far, more 
than 30 kinds of autophagy-related genes (Atgs) proteins are 
recognized to be  involved in the process of autophagy (Diaz 
et  al., 2017; Wildenberg et  al., 2017). Generally speaking, 
autophagy is performed in two major steps (Bento et al., 2016; 
Shao et al., 2016; Zachari and Ganley, 2017; Wang et al., 2018c). 
In the first step, the Unc-51-like kinase 1 (ULK1), focal adhesion 
kinase family interacting protein of 200 kD (FIP200), Atg13, 
and Atg101 are combined to form the Atg1 complex, which 
subsequently triggers the assembly of Beclin-1, Atg14, VSP15, 
and VSP34 comprising the Class III phosphatidylinositol 
3-hydroxy kinase (PI3K) complex. The Class III PI3K complex 
leads to the membrane nucleation process and formation of 
the cup-shaped, lipid bilayer membrane-structured phagophore. 
Further membrane expansion and fusion together with the 
Atg5-Atg12-Atg16L1 and light chain 3 (LC3) result in the 
occurrence of the intracellular, spherical double-membraned 
autophagosomes enclosing proteins and organelles. In the second 
step, with the disposal of “coat proteins” (LC3-II) on the surface, 
autophagosomes integrate with lysosomes to form the single 
membrane-structured autolysosomes, the functional units of 
autophagy for degradation and recycling.

So far, among the whole complicated signaling network of 
autophagy, two classical signaling pathways have been described 
for the inhibitory and promoted regulation of autophagy (Inoki 
et  al., 2012; Shao et  al., 2016). The Class I  PI3K-mammalian 
target of rapamycin (mTOR) signaling pathway, a classical 
inhibitory pathway, is triggered in the presence of nutrient 
enrichment, to stimulate the activation of mTOR and the mTOR 
complex (mTORC1) via protein kinase B (Akt) pathway, thus 
inhibiting the formation of the Atg1 complex (Kaur and Sharma, 
2017; Perez-Alvarez et  al., 2018). The other classical signaling 
pathway of autophagy is induced by AMP-activated protein 
kinase (AMPK), a sensor of stress and nutrient input, which 
promotes the occurrence of autophagy process through activating 
the ULK1 kinase complex by inactivating mTORC1 or 
phosphorylating ULK1 at various serine residues (Dodson et al., 
2013; Zhao et  al., 2018a). So far, several kinds of agents have 
been developed for the blockade or induction of autophagy 
in different mechanisms, such as rapamycin, chloroquine, 
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bafilomycin A1, and 3-methyladenine (3-MA), thus largely 
facilitating the fundamental study of autophagy (Germic et  al., 
2017; Bhat et  al., 2018; Zhao et  al., 2018b).

It has been widely reported that the induction of autophagy 
in a moderate extent plays a protective role in organisms. For 
instance, autophagy has been demonstrated to inhibit apoptosis 
in various kinds of cells (Pott et  al., 2018; Wang et  al., 2018a). 
It has also been reported that autophagy contributes to the 
suppression of inflammatory and immune reaction in many 
kinds of inflammation-related disorders (Burger et  al., 2018; 
Pankratz et  al., 2018; Chen et  al., 2019; Gogiraju et  al., 2019). 
Autophagy has been shown to be  vital in the inhibition of 
the pathogenesis and progression of various kinds of diseases 
in the central nervous system (ischemic stroke, multiple sclerosis, 
Alzheimer’s disease), cardiovascular system (myocardial 
infarction, heart failure, atherosclerosis), endocrine system 
(diabetes, obesity), digestive system (inflammatory bowel disease), 
and so on (Crino, 2016; Cosin-Roger et  al., 2017; Schwerd 
et  al., 2017; Zhao et  al., 2017; Lambelet et  al., 2018; Liu et  al., 
2018c; Sciarretta et  al., 2018). However, it has also been noted 
that overinduction of the autophagy process might lead to the 
detrimental effect of cells, the so-called “autophagic cellular 
death” in organisms, indicating the importance of controlling 
the extent of autophagy induction in the treatment of diseases 
(Lambelet et  al., 2018; Wang et  al., 2018c).

AUTOPHAGY IN ACUTE  
MYOCARDIAL INFARCTION

From our previous description, the acute myocardial infarction 
leads to the infarct or death of cardiomyocytes under the 
stress of ischemic or ischemia/reperfusion injury. As a result, 
to fight against acute myocardial infarction, strategies should 
be  developed to protect cardiomyocytes against such injuries. 
In this section, the role of autophagy in cardioprotection will 
be discussed in the challenge of ischemic or ischemia/reperfusion 
injury. However, it has been demonstrated that overactivation 
of cardiac autophagy leads to a detrimental effect of acute 
myocardial infarction, which will also be  discussed in the 
following contents.

Cardiac Autophagy in Ischemic Injury
Beneficial Effect of Cardiac Autophagy in 
Ischemic Injury
As we  discussed above, autophagy is vital for the maintenance 
of cellular function and homeostasis for its degradation of 
long-lived proteins and damaged organelles to prevent protein 
aggregate accumulation to cytotoxic levels. Baseline autophagy 
or “adaptive” induction of autophagy produced a protective 
and alleviative role in ischemic injury.

Baseline autophagy is necessary in maintaining cardiac 
structure and function since impaired autophagy has been 
reported to contribute to the pathogenesis and progression of 
heart failure (Pattison and Robbins, 2008; Bhuiyan et al., 2013). 
For instance, it was demonstrated that depletion of Atg7 

significantly increased the pathology in cardiomyocytes (Pattison 
et  al., 2011). Ulk1-deleted mice showed exacerbation of 
lipotoxicity associated with retarded cardiac function and FIP200 
and Atg13 were proven to be necessary for cardiac development 
during embryogenesis (Gan et al., 2006; Kaizuka and Mizushima, 
2016; Ghosh and Pattison, 2018). Furthermore, it was 
demonstrated that genetic variants on chromosome 1p13.3 near 
the damage-regulated autophagy modulator 2 (DRAM2) gene 
were associated with non-ST elevation myocardial infarction 
in a case–control study (Salo et  al., 2015). Those findings 
indicate the importance of autophagy in cardiac tissue. Autophagy 
was previously reported to be  upregulated in patients with 
coronary artery disease or acute myocardial infarction compared 
to the healthy controls (Bullon et  al., 2017; Demircan et  al., 
2018). In addition, it was demonstrated that the declination 
of autophagy and mitochondrial impairment led to impaired 
host response to hypoxic-ischemic injury, thus producing the 
detrimental effect of cardiomyocytes (Ham and Raju, 2017). 
In patients or animals with diabetes, hyperglycemia, or other 
metabolic derangements, cardiac function was detrimental 
because of the dysfunction of cardiac autophagy, indicating a 
future potential and effective therapeutic strategy in preserving 
cellular homeostasis and survival in patients with metabolic 
derangements (Baranyai et  al., 2015; Sciarretta et  al., 2015). 
Furthermore, mitophagy, a special form of autophagy functioning 
in the maintenance of mitochondrial homeostasis, has been 
considered to play as a cardioprotective under ischemic injury, 
indicating the important role of mitophagy in ischemic injury 
(Tahrir et  al., 2019).

So far, autophagy has been widely reported to produce an 
alleviative effect in acute myocardial infarction. Some researchers 
reported that the “adaptive” induction of autophagy functioned 
in attenuation of aggregate/aggresome formation in heart, thus 
suppressing the detrimental effect of protein aggregation 
(Tannous et al., 2008). In addition, Aisa et al. (2017) reported 
that autophagy could reduce the infarct size of acute myocardial 
infarction after left anterior descending ligation in rat models. 
Similar conclusion was drawn by Kanamori et  al. (2011), 
who showed that the administration of autophagy inhibitor, 
bafilomycin A1, significantly increased the infarct size of 
animal acute myocardial infarction models, indicating autophagy 
as an innate and potent process that produced a cardioprotective 
effect against ischemic injury during acute myocardial infarction. 
It was demonstrated that the autophagy process was upregulated 
through the AMPK-mTOR signaling pathway in cardiomyocytes, 
thus leading to the attenuation of acute myocardial infarction 
in animal models (Li et  al., 2016, 2017; Foglio et  al., 2017). 
It was also shown by Sciarretta et  al. (2012) that genetic 
inhibition of AMPK signaling pathway led to the dysfunction 
of autophagy process, which resulted in the increase in infarct 
size in acute myocardial infarction. The phosphatase and tensin 
homolog deleted on chromosome 10 (PTEN)-PI3K-Akt signaling 
pathway was also demonstrated to be involved in the induction 
of cardiac autophagy in in vitro hypoxia (Zhang et  al., 2017). 
Furthermore, Wu et  al. (2014, 2017) demonstrated that 
upregulation of autophagy flux could protect cardiomyocytes 
against ischemia and attenuate adverse cardiac remodeling 
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after acute myocardial infarction in rat models. The 
administration of autophagy inhibitor, 3-MA, contributed to 
adverse cardiac remodeling through the induction of nuclear 
factor-κB (NF-κB) activation in animal acute myocardial 
infarction models (Wu et  al., 2014).

Detrimental Effect of Cardiac Autophagy in 
Ischemic Injury
As discussed above, baseline autophagy or autophagy induced 
in a proper extent produces a protective effect in ischemic 
injury through the maintenance of cellular homeostasis and 
degradation of organelles or misfolded proteins for ATP 
production in cardiomyocytes. However, it has been reported 
that under the condition of severe ischemia, the overwhelming 
induction of cardiac autophagy may promote cell death and 
worsen cardiac performance (Li et  al., 2018a; Liu et  al., 2018a; 
Xiao et  al., 2018).

According to a previous study conducted by Lu et al. (2018), 
extensively induced autophagy was revealed to be  detrimental 
in the severity of acute myocardial infarction in animal models, 
and exercise preconditioning was reported to reduce the high 
level of serum cTnI and severity of myocardial ischemia/
hypoxia through the downregulation of excessive autophagy 
and cardiac KATP channels. In addition, transforming growth 
factor-β receptor I  downregulation induced by loss of Sirt7, 
a kind of factor in response to acute myocardial infarction, 
was blocked by autophagy inhibitor, indicating that Sirt7 could 
maintain transforming growth factor receptor I via modulating 
autophagy in tissue repair process in response to ischemic 
injury (Araki et  al., 2015).

In the occurrence of cardiac ischemia or infarction, hypoxia-
induced injury serves as one of the major factors in cardiac 
damage through the induction of apoptosis and excessive 
autophagy process (Zhang et al., 2016). It has been demonstrated 
that the exosome-transported miRNA-93-5p produced a 
cardioprotective effect in the animal model of acute myocardial 
infarction as well as in an in vitro model of hypoxic H9C2 
cells through the suppression of hypoxia-induced autophagy 
and inflammatory cytokine expression by targeting Atg7, a 
vital autophagy-related gene and Toll-like receptor 4 (Liu et al., 
2018b). In addition, another microRNA, MicroRNA-223, was 
reported to protect neonatal rat cardiomyocytes and H9C2 
cells from hypoxia-induced apoptosis and excessive autophagy 
through the Akt/mTOR pathway by targeting PARP-1 (Liu 
et al., 2018c). Taken together, those previous studies demonstrated 
the detrimental effect of hypoxia-induced excessive autophagy 
in the severity of acute myocardial infarction.

Cardiac Autophagy in Ischemia/
Reperfusion Injury
Beneficial Effect of Cardiac Autophagy in 
Ischemia/Reperfusion Injury
As we  discussed above, the “adaptive” induction of autophagy 
process, which is responsible for the degradation and recycling 
of proteins and organelles, is vital for the maintenance of 
cellular function under certain stress conditions. In myocardial 

ischemia/reperfusion, induction of autophagy in an adaptive 
manner contributes to the alleviation of cardiac damage under 
ischemia/reperfusion injury.

For instance, a positive association between pharmacological 
upregulation of autophagy and increased resistance to myocardial 
ischemia/reperfusion injury was demonstrated by Przyklenk 
et  al. (2011) in an in vivo swine model of acute myocardial 
infarction, despite the fact that the induction of autophagy 
was either protective or detrimental of the severity of acute 
myocardial infarction in patients. Similar to the effect on cardiac 
ischemic injury, baseline autophagy produces a cardioprotective 
effect against ischemia/reperfusion injury. It was demonstrated 
that the impairment of autophagosome clearance mediated in 
part by reactive oxygen species-induced decline in lysosome-
associated membrane protein-2 and upregulation of Beclin-1 
under ischemia/reperfusion injury contributed to the 
enhancement of cardiomyocyte death (Ma et  al., 2012). In 
addition, it was demonstrated that the quality control of 
mitophagy served as an effective pathway in the protective 
cardiomyocytes under ischemia/reperfusion injury via the 
maintenance of mitochondrial homoeostasis (Siasos et al., 2018). 
Those findings indicated that the restoration of baseline autophagy 
could serve as an effective and potential strategy in fighting 
against ischemia/reperfusion injury.

In addition, the protective effect of autophagy in 
cardiomyocytes against ischemia/reperfusion injury was also 
reported by several other researchers, indicating the alleviative 
role of autophagy in acute myocardial infarction (Sala-Mercado 
et  al., 2010; Sengupta et  al., 2011; DuSablon et  al., 2017; Song 
et  al., 2017; Fu et  al., 2018). It was reported that the natural 
compound of visnagin delivered by nanoparticles induced 
cardioprotection, reducing the size of the acute myocardial 
infarction and ameliorating cardiac dysfunction through the 
induction of autophagy and thus leading to the inhibition of 
apoptosis process under ischemia/reperfusion injury (Fu et  al., 
2018). The proper induction of autophagy process could largely 
improve cell viability, contributing to the protection of 
cardiomyocytes (DuSablon et  al., 2017). Taken together, those 
studies demonstrated the cardioprotective effect of autophagy 
induction in the prevention of ischemia/reperfusion damage.

Detrimental Effect of Cardiac Autophagy in 
Ischemia/Reperfusion Injury
As discussed above, baseline autophagy or adaptively induced 
cardiac autophagy plays a cardioprotective role under ischemia/
reperfusion injury. However, attention should be  paid to the 
development of therapeutic strategies against acute myocardial 
infarction taking advantage of upregulation of autophagy against 
ischemia/reperfusion injury. The autophagy process induced 
by several factors has been reported to be  detrimental 
to cardiomyocytes.

For example, it was reported that ischemia/reperfusion-
induced autophagy could lead to the cascade induction of 
apoptosis, necrosis, and inflammatory reaction, which led to 
the damage of cardiac cell viability (Qian et  al., 2009). In 
addition, the NF-κB-induced autophagy was demonstrated to 
exacerbate myocardial injury in acute myocardial infarction, 
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indicating the importance of the source of autophagy induction 
(Zeng et al., 2013, 2016). Furthermore, the excessive autophagy 
process induced by hypoxia was reported to lead to cardiac 
cell viability, which was reported to be  possible to involve the 
PI3K/AKT/mTOR pathway (Qin et  al., 2018).

In some conditions, the role of autophagy in acute myocardial 
infarction in the process of ischemia and reperfusion is 
controversial. For example, it was previously reported that 
mitochondrial aldehyde dehydrogenase (ALDH2), a kind of 
enzyme that catalyzes the oxidation of aldehydes, could 
significantly promote autophagy process during ischemia via 
the activation of AMPK and downregulation of mTOR, thus 
producing a cardioprotective effect. On the contrary, during 
the reperfusion process, ALDH2 could suppress the level of 
the autophagy process through the activation of Akt and mTOR, 
thus protecting cardiomyocytes against cell death in hypoxia 
and reoxygenation (Ma et  al., 2011). Those findings indicated 
that attention should be  paid to the development of therapies 
against acute myocardial infarction particularly for their potential 
controversial effects on ischemic and reperfusion conditions.

Pharmacological Intervention of Autophagy in the 
Treatment of Acute Myocardial Infarction
So far, an increasing number of fundamental and clinical studies 
have been conducted in the development of therapeutic strategies 
taking advantage of autophagy in the treatment of acute 
myocardial infarction. Fortunately, numerous promising 
autophagy inducers have been described, several of which will 
be  briefly described below together with their pharmacological 
mechanisms (summarized in Table 1).

Apoptosis Inhibitors
During acute myocardial infarction, apoptosis is widely 
considered to be  involved in a large number of cardiomyocyte 
death as well as progressive loss of surviving cells in failing 
hearts (Takemura and Fujiwara, 2006). As a result, suppressing 
apoptosis in cardiomyocytes provides a potential and effective 
strategy in the alleviation of acute myocardial infarction. So 
far, several autophagy inducers have been reported to be effective 
in alleviating acute myocardial infarction taking advantage of 
apoptosis inhibition. For example, Liu et al. (2017) demonstrated 
that Apelin, the endogenous ligand for the G-protein-coupled 
APJ receptor, could suppress cardiac apoptosis via enhancement 
of autophagy, thus significantly decreasing myocardial infarction 
size and alleviating myocardial ischemia/reperfusion injury. 
Those effects were associated with the activation of Apelin/
APJ system. It was also shown by Li et al. (2017) that Tongxinluo, 
a traditional Chinese medicine, produced a cardioprotective 
role against acute myocardial infarction via attenuating apoptosis 
in cardiomyocytes by inducing AMPK-mediated autophagy. 
Furthermore, human cellular repressor of E1A-stimulated genes 
(CREG), a secreted glycoprotein that regulated tissue and cell 
homeostasis, was reported to attenuate cardiac fibrosis after 
ischemia/reperfusion injury through the inhibition of apoptosis 
and enhancement of autophagy via regulation of lysosomal 
protein transfer, indicating a potential protective effect of CREG 

in myocardial infarction (Song et  al., 2017). In addition, it 
was demonstrated that atorvastatin was involved in the regulation 
of apoptosis and autophagy process via the AMPK-mTOR 
signaling pathway, thus producing a cardioprotective role during 
acute myocardial infarction (Li et  al., 2016).

MicroRNAs
MicroRNAs refer to small non-coding RNA molecules 
functioning in RNA silencing and post-transcriptional regulation 
of gene expression (Ambros, 2004). In acute myocardial 
infarction, an increasing number of microRNAs have been 
reported to be  useful both as biomarkers for heart injury 
detection and therapeutics to overcome limitations of past 
strategies and treat the lesions (Paiva and Agbulut, 2017). 
Among several of them, their functions in acute myocardial 
infarction are involved in the induction of cardiac autophagy. 
For example, Zhang et al. (2017) demonstrated that knockdown 
of microRNA-122 protected cardiomyocytes against hypoxia 
injury via the induction of chromosome 10 (PTEN)-PI3K-Akt 
signaling-mediated autophagy, indicating that targeting 
microRNA-122 might be a potential therapeutic strategy in 
the treatment of acute myocardial infarction. Another microRNA, 
microRNA-30a, was also reported to be  detrimental in the 
induction of the protective autophagy in cardiomyocytes under 
hypoxia, transferred through the secretion of exosomes in the 

TABLE 1 | Potential mechanisms of autophagy inducers in the treatment of 
acute myocardial infarction.

Autophagy inducer Potential mechanisms Reference

Apoptosis 
inhibitor

Apelin Activation of Apelin/APJ 
system

Liu et al., 2017

Tongxinluo Inducing AMPK-mediated 
autophagy

Li et al., 2017

CREG Regulating lysosomal 
protein transfer

Song et al., 2017

Atorvastatin Activating AMPK-mTOR 
signaling pathway

Li et al., 2016

MicroRNA MicroRNA-122 Its knockdown induces 
PTEN-PI3K-Akt signaling-
mediated autophagy

Zhang et al., 2017

MicroRNA-30a Transferred through 
exosome

Yang et al., 2016

Others Metformin Inducing AMPK-mediated 
autophagy

Paneni et al., 2015

Berberine Activating p38 MAPK 
inhibition and phosphor-
Akt activation

Zhang et al., 2014

Rapamycin Suppressing NF-κB-
mediated inflammatory 
reaction

Chen et al., 2013; 
Wu et al., 2014

Ginkgolide K Enhancing IRE1α/X XBP1 
activity

Increasing ER-associated 
degradation-mediated 
clearance of misfolded 
proteins

Wang et al., 2016

Exercise Reducing mitochondrial 
number/size ratio

Increasing mitochondrial 
bioenergetics

Tao et al., 2015; 
Campos et al., 
2017
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serum of acute myocardial infarction patients, suggesting the 
therapeutic role of inhibiting microRNA-30a in acute myocardial 
infarction (Yang et  al., 2016).

Others
Besides those two classifications described above, several other 
autophagy inducers have opened up in the treatment of acute 
myocardial infarction. It has been reported that metformin, a 
biguanide often used in the treatment of diabetes, produced 
a favorable effect on left ventricular function after acute 
myocardial infarction regardless of glycemic control (Paneni 
et  al., 2015). This cardioprotective effect was investigated to 
be  involved in the induction of AMPK-mediated autophagy 
process (Paneni et al., 2015). In addition, berberine, a quaternary 
ammonium salt from the protoberberine group of 
benzylisoquinoline alkaloids, was shown to attenuate adverse 
left ventricular remodeling and improve cardiac function in 
acute myocardial infarction animal models through autophagy 
induction mediated by the activation of p38 MAPK inhibition 
and phosphor-Akt activation (Zhang et  al., 2014).

Furthermore, rapamycin, a classic autophagy inducer, was 
also reported to contribute to the attenuation of cardiac 
remodeling and dysfunction after acute myocardial infarction 
through the suppression of the overactivated NF-κB-mediated 
inflammatory cascade, since the occurrence of acute myocardial 
infarction was reported to contribute to the overwhelming 

induction of inflammatory reaction (Wu et  al., 2014). This 
cardioprotective effect was further proven by fluorescence 
molecular tomography in acute myocardial infarction patients 
(Chen et  al., 2013). Another autophagy inducer, ginkgolide K, 
was demonstrated to reduce infarct size, rescue heart dysfunction, 
and ameliorate endoplasmic reticulum (ER) dilation through 
the enhancement of inositol-requiring enzyme 1α (IRE1α)/X 
box-binding protein-1 (XBP1) activity and increase of 
ER-associated degradation-mediated clearance of misfolded 
proteins and autophagy (Wang et  al., 2016).

Besides those autophagy inducing agents, it is interesting 
to prove that taking exercise contributed to the attenuation 
of acute myocardial infarction through the improvement of 
cardiac autophagy flux (Campos et  al., 2017). This protective 
effect was led to by reducing the mitochondrial number/size 
ratio as well as increasing mitochondrial bioenergetics and 
better cardiac function (Campos et  al., 2017). As a result, 
taking exercise training was regarded as a potential and effective 
therapy against acute myocardial infarction (Tao et  al., 2015).

CONCLUSION

The past decade has witnessed the increasing understanding of 
the biology of autophagy and its roles in various kinds of 
disorders. Here, we reviewed both the protective and detrimental 

FIGURE 1 | Schematic illustration of the role of autophagy in acute myocardial infarction. On the occurrence of acute myocardial infarction, cardiomyocytes 
suffered from ischemic or ischemia/reperfusion injury. Baseline or adaptively induced autophagy contributes to the alleviation of acute myocardial infarction. 
However, overwhelming induction of autophagy plays a detrimental role in acute myocardial infarction. So far, several clarifications of agents or pathways taking 
advantage of maintaining the function of baseline autophagy or adaptively inducing autophagy have been reported to be effective in the alleviation of acute 
myocardial infarction. Those agents or pathways include several apoptosis inhibitors such as Apelin, Tongxinluo, CREG, and Atorvastatin; microRNAs including 
MicroRNA-122 and MicroRNA-30a; and other agents including metformin, berberine, rapamycin, ginkgolide K, and exercise. Because of the complication of the 
effects and mechanisms of autophagy in acute myocardial infarction, the specific pathways in taking advantage of autophagy to effectively attenuate acute 
myocardial infarction remain unclarified. Further studies are demanded on this issue.
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effects of autophagy in the pathogenesis and progression of acute 
myocardial infarction under ischemic or ischemia/reperfusion 
injuries (illustrated in Figure 1). We  demonstrated that baseline 
autophagy or adaptively induced autophagy contributed to the 
alleviation of ischemic or ischemia/reperfusion damage while 
overwhelmingly induction of autophagy was detrimental during 
acute myocardial infarction. In addition, several agents and 
therapeutics for the treatment of acute myocardial infarction 
taking advantage of autophagy were also summarized. Based 
on the previous studies on the issue of autophagy in acute 
myocardial infarction, so far, several strategies could be  made 
in the regulation of autophagy induction, including controlling 
the doses of autophagy inducers and monitoring cardiac functions 
when applying agents taking advantage of autophagy or elution 
on stents after coronary angioplasty. However, since the mechanisms 
of autophagy in acute myocardial infarction are complicated, so 
far, no specific pathway through which autophagy could 

be properly induced to be protective in acute myocardial infarction 
while getting rid of the detrimental effects of autophagy was 
elucidated. As a result, to ultimately take advantage of autophagy 
in the treatment of autophagy, further studies are demanded.
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