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Dimethylsulfoxide (DMSO) is widely used as a solvent and cryopreservative in
laboratories and considered to have many beneficial health effects in humans. Oxylipins
are a class of biologically active metabolites of polyunsaturated fatty acids (PUFAs) that
have been linked to a number of diseases. In this study, we investigated the effect of
DMSO on oxylipin levels in mouse liver. Liver tissue from male mice (C57Bl6/N) that were
either untreated or injected with 1% DMSO at 18 weeks of age was analyzed for oxylipin
levels using ultrahigh performance liquid chromatography tandem mass spectrometry
(UPLC-MS/MS). A decrease in oxylipin diols from linoleic acid (LA, C18:2n6), alpha-
linolenic acid (ALA, C18:3n3) and docosahexeanoic acid (DHA, C22:6n3) was observed
2 h after injection with DMSO. In contrast, DMSO had no effect on the epoxide
precursors or other oxylipins including those derived from arachidonic acid (C20:4n6) or
eicosapentaenoic acid (EPA, C20:5n3). It also did not significantly affect the diol:epoxide
ratio, suggesting a pathway distinct from, and potentially complementary to, soluble
epoxide hydrolase inhibitors (sEHI). Since oxylipins have been associated with a wide
array of pathological conditions, from arthritis pain to obesity, our results suggest one
potential mechanism underlying the apparent beneficial health effects of DMSO. They
also indicate that caution should be used in the interpretation of results using DMSO as
a vehicle in animal experiments.
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INTRODUCTION

Dimethyl sulfoxide [DMSO, (CH3)2SO] is a polar aprotic compound with a high affinity for water
(Brayton, 1986). It is commonly used as a solvent in biological experiments because it has low
toxicity, can solubilize both polar and non-polar substances and can readily penetrate hydrophobic
barriers such as the plasma membrane. These properties make it an ideal vehicle for both in vivo
and in vitro experiments, especially for pharmacologic compounds that act on an intracellular level
(Brayton, 1986).

Dimethyl sulfoxide has been reported to have therapeutic effects on a number of ailments
including bacterial infections (Guo et al., 2016), dermatologic conditions (Lishner et al.,
1985), chronic prostatitis (Shirley et al., 1978), gastrointestinal disorders (Salim, 1991, 1992a,b),
pulmonary fibrosis and amyloidosis (Pepin and Langner, 1985; Iwasaki et al., 1994) arthritis (Elisia
et al., 2016) and pain (Kingery, 1997; Kelava et al., 2011; Kumar et al., 2011; Rawls et al., 2017).
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Hepatoprotective effects of DMSO under various conditions of
liver injury or hepatotoxicity have also been well documented
(Siegers, 1978; Park et al., 1988; Achudume, 1991; Lind et al.,
2000; Sahin et al., 2004). Although the physiological and
pharmacological mechanisms underlying the beneficial health
effects of DMSO are not fully known, they have been proposed
to include its ability to increase blood flow to organs, decrease
recruitment and activation of inflammatory cells and act as an
antioxidant and free radical scavenger (Brayton, 1986; Beilke
et al., 1987; Massion et al., 1996).

Oxylipins are biologically active, oxidized metabolites of long
chain polyunsaturated fatty acids (PUFAs) that are generated
by three different pathways – COX, LOX and CYP/sEH (Yang
et al., 2009) (Figure 1). The third pathway consists of a two-
step reaction involving the action of cytochrome P450s (CYPs)
and soluble epoxide hydrolase (sEH) enzymes. This pathway first
produces oxylipin epoxides and then diols from linoleic acid (LA,
C18:2 n-6), alpha-linolenic acid (ALA, C18:3 n-3), arachidonic
acid (AA, C20:4 n-6), eicosapentaenoic acid (EPA, C20:5 n-3)
and docosahexaenoic acid (DHA, C22:6 n-3) (Moghaddam et al.,
1997; Zeldin, 2001; Levick et al., 2007). Increased accumulation
of oxylipin diols has been correlated with the pathogenesis of a
number of pathological conditions including obesity, diabetes,
depression, pain and cardiovascular disease (Gouveia-Figueira
et al., 2015; Caligiuri et al., 2017; Deol et al., 2017; Hennebelle
et al., 2017). Compounds that inhibit the formation of these lipid
mediators, such as inhibitors of sEH (sEHI), have been shown to
have therapeutic potential (Imig and Hammock, 2009; Morisseau
et al., 2010; Wagner et al., 2017).

Dimethyl sulfoxide has been shown to attenuate the
accumulation of lipids in the liver as well as free fatty acid-
induced cellular lipotoxicity (Song et al., 2012). However, to
our knowledge, the effect of DMSO on the hepatic levels
of oxygenated fatty acid metabolites such as oxylipins has
not been studied. Here, we investigate the effect of a single
intraperitoneal injection of DMSO on the levels of approximately
60 oxylipin species in mouse liver. Our results show that DMSO
lowers the levels of certain oxylipins, all of which are diols
generated by the metabolism of omega-3 and omega-6 fatty acids
LA, ALA and DHA.

FIGURE 1 | Schematic showing different pathways for metabolizing PUFAs to
oxylipins. Examples of oxylipins generated by each of the three pathways
metabolizing long chain PUFAs. Shaded boxes, enzymes. Pathways affected
(orange, red text) or not affected (gray, black text) by DMSO in this study.

MATERIALS AND METHODS

Animals
Care and treatment of animals were in accordance with
guidelines from and approved by the University of California,
Riverside Institutional Animal Care and Use Committee (AUP
#20140014). All mice had ad libitum access to regular vivarium
chow (Purina Test Diet 5001, Newco Distributors, Rancho
Cucamonga, CA) and water. At the end of the study, mice were
sacrificed by CO2 inhalation followed by cervical dislocation, in
accordance with stated NIH guidelines. C57BL/6N mice (Charles
River Laboratories) were bred in-house and maintained on a
12h:12h light-dark cycle in a specific pathogen-free vivarium
(SPF) with wood-chip bedding [PJ Murphy sani-chips 2.2 CF
# 91100 (MFG 3-002)] and a cotton pad as an environmental
stimulant. Pups were weaned at 3 weeks of age with three to four
animals housed per cage.

DMSO Treatment
Male mice (∼18 weeks old, n = 5 per group) were injected
intraperitoneally with 200 µl of 1% DMSO (Sigma-Aldrich,
catalog # D5879) and sacrificed 2 h later. About 200 mg of freshly
excised liver tissue was rinsed in cold phosphate buffered saline
(PBS), blotted with a Kimwipe and snap-frozen in liquid nitrogen
for subsequent metabolomic analysis. Samples were also collected
from a control group of age-matched mice that were not injected.

Oxylipin Analysis
Non-esterified oxylipins were extracted by solid phase extraction
from liver tissue homogenates (200 mg) and analyzed by
ultrahigh performance liquid chromatography tandem mass
spectrometry (UPLC-MS/MS) (Agilent 1200SL-AB Sciex 4000
QTrap) as described previously (Matyash et al., 2008; Yang
et al., 2009; Deol et al., 2017). Analyst software v.1.4.2 was used
to quantify peaks according to corresponding standard curves
with their corresponding internal standards. Hepatic oxylipin
concentrations are presented as pmol/gm tissue.

Statistical Analysis
Data are presented as mean ± standard error of mean (SEM).
Statistical significance is defined as P≤ 0.05 using Student’s t-test.

RESULTS

Male mice (∼18 weeks old) were injected with 1% DMSO
and sacrificed 2 h later. Livers were removed and analyzed
for oxylipins in the COX, LOX and CYP/sEH pathways
(Figures 1, 2A). The 2-h time point was chosen to examine the
short-term effects of DMSO and avoid potentially confounding
factors that might be introduced by effects on gene expression.
Not unexpectedly, the body weight and liver-to-body weight ratio
at harvest did not differ between the control and injected groups
(Figure 2B). Of the 59 oxylipin species analyzed, the DMSO-
injected mice showed significantly altered levels of five species,
all diols and all of which were decreased: 12,13-DiHODE, 15,16-
DiHODE, 12,13-DiHOME, 16,17-DiHDPE and 19,20-DiHDPE
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FIGURE 2 | Study design and phenotypic data. (A) Workflow for the study
showing the two cohorts of mice used and analyses performed. i.p.,
intraperitoneal. (B) Average body weights and liver weight as percent of body
weight of male C57/BL6N mice at time of sacrifice (N = 5 per group).

FIGURE 3 | Liver oxylipin diol levels are decreased by DMSO. Absolute levels
of diols that are significantly decreased in liver of mice injected with 1% DMSO
(�) compared to uninjected controls ( ). The fatty acid from which the
oxylipin was derived is shown in parentheses. N = 5 mice per group. Data are
presented as ±SEM. ∗Significantly different from uninjected control, P ≤ 0.05.

(Figure 3). In addition, levels of two diols – 14,15-DiHETrE
and 13,14-DiHDPE – were also lower in the DMSO group,
although the decrease did not reach statistical significance
(Supplementary Table 1).

Interestingly, all of the oxylipins decreased by DMSO were in
the CYP/sEH pathway and generated by hydrolysis of epoxides
of LA, ALA and DHA. In contrast, levels of the epoxide
precursors of these diols were not impacted by the DMSO
treatment (Figure 4A). Diol:epoxide ratios, which are a reflection
of sEH activity, were also not significantly different between
DMSO and control, although the ratio for the DHA metabolites
(DiHDPE:EpDPE) was trending toward significance (Figure 4B).

DISCUSSION

Dimethyl sulfoxide is widely used to treat numerous ailments
although the underlying mechanisms remain obscure. Our results
show that a single injection of DMSO can cause an immediate and
pronounced decrease in oxylipin diols generated from certain
omega-3 and omega-6 PUFAs (LA, ALA and DHA) by the
CYP/sEH pathway in mouse liver. It was proposed early on
that one potential mechanism responsible for the physiological
effects of DMSO was its ability to inhibit or activate various
enzymes by reversibly altering their configuration (Rammler and
Zaffaroni, 1967). DMSO has subsequently been shown to have a
stabilizing effect on the RNA transcript levels of CYP enzymes
in rat liver hepatocytes (Su and Waxman, 2004), and varying
effects on CYP enzymatic activity depending on concentration,
substrate and tissue or cell fraction (Chauret et al., 1998; Hickman
et al., 1998; Li et al., 2010). At very high concentrations (28%
v/v) DMSO has been shown to interact with the iron center of
a bacterial cytochrome P450 enzyme (Kuper et al., 2012). We did
not observe an alteration in the level of the precursor epoxides,
suggesting that DMSO is not acting on the CYP enzymes in
our system. Similarly, the diol:epoxide ratio was not significantly
altered, suggesting that sEH activity was not altered. Interestingly,
oxylipin epoxide and diol levels of two other PUFAs, AA and
EPA, were not affected by DMSO. Combined with the relatively
short time period needed to observe these effects (2 h), these
results suggest that DMSO acts directly, and selectively, on LA,
ALA and DHA oxylipin diols (Figure 5). It remains to be
determined whether chronic DMSO treatment would show a
similar selective effect.

Since the decrease in hepatic oxylipin levels in our
experiments does not appear to be due to a decrease in enzyme
action, this suggests that, at least in the short term, DMSO
is either decreasing the stability or somehow preventing the
accumulation of these compounds in the liver. DMSO has
been reported to have antioxidant and free-radical scavenging
properties (Sanmartín-Suárez et al., 2011; Kabeya et al., 2013)
Thus, it is possible that DMSO may be acting as a scavenger
for these oxidized metabolites, converting them into products
that are not present in our oxylipin panel. Indeed, it has been
reported that DMSO, when used as a vehicle, enhances the anti-
inflammatory effects of rosemary and ginger (Justo et al., 2015).
While the authors attributed this increase to better absorption
and distribution of the compounds due to DMSO, it is possible
that DMSO itself could have acted as an antioxidant, as has
been shown previously (Alemón-Medina et al., 2008; Jia et al.,
2010). These observations, along with the current results, indicate
that caution should be employed when using DMSO as a
vehicle to study the pharmacological efficacy of compounds with
antioxidant potential. A direct, non-enzymatic effect of DMSO
also suggests that it may have a similar effect in other tissues, and
hence a broad applicability to numerous pathologies.

There are two other potential explanations for the reduced
levels of the oxylipin diols. The first is that DMSO affects the
level of the substrates, in this case LA, ALA and DHA. However,
these fatty acids are essential (or in the case of DHA, conditionally
essential), meaning that they must be derived from the diet.
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FIGURE 4 | Liver epoxide levels and diol:epoxide ratios are not affected by DMSO. (A) Absolute levels of parent epoxides of diols (shown in Figure 3) in liver of mice
injected with 1% DMSO (�) compared to uninjected controls ( ). The fatty acid from which the oxylipin was derived is shown in parentheses. (B) Ratio of
diol:epoxide as a measure of soluble epoxide hydrolase (sEH) activity. Color coding for parental fatty acid is same as in panel (A) and Figure 3. N = 5 mice per
group. Data are presented as ±SEM. Significance is defined as P ≤ 0.05.

Consequently, the body has robust mechanisms to maintain their
levels (Tove and Smith, 1960; Lin and Conner, 1990; Lin et al.,
1993; Calder, 2016) making it unlikely that within 2 h of injecting
DMSO there would be a large decrease in the steady state levels
of these essential fatty acids. Furthermore, if the levels of the
parental fatty acids were decreased, one would also expect to

FIGURE 5 | Proposed basis for therapeutic effects of DMSO. DMSO directly
reduces oxylipin diol levels in tissues and thus helps mitigate pain and other
symptoms associated with diol accumulation. Solid line, known reaction;
dashed line, proposed causal effect. sEHI, soluble epoxide hydrolase inhibitor.
See text for details.

see decreased levels of the epoxides, which is not the case. The
second possibility is that the diol levels decreased not because of
the DMSO but because of the stress involved with the injection.
However, we did not observe such effects in mock-injected mice
in previous studies (Yang et al., 2009, 2013) and it is not likely
that only certain oxylipins would be so significantly changed in a
general stress response.

Oxylipin diols generated from omega-6 and omega-3 fatty
acids have been associated with a number of pathologies
including obesity, diabetes, and inflammatory and cardiovascular
diseases (Kalupahana et al., 2011; Grapov et al., 2012; Tourdot
et al., 2014; Deol et al., 2017). Thus, it is not surprising that
limiting the production of diols with sEH inhibitors is emerging
as an important therapeutic approach in disease management
(Liu et al., 2012; Bettaieb et al., 2013; Wagner et al., 2017).
Decreasing oxylipin diol levels by DMSO could be used as a
treatment complementary to sEHI: while inhibition of sEH would
help prevent the formation of new diols, DMSO would eliminate
pre-existing diols that may have accumulated prior to sEHI
treatment (Figure 5). For example, DMSO has been shown to
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mitigate inflammation in arthritis (Elisia et al., 2016), a disease
associated with elevated levels of oxylipins (He et al., 2015; de
Visser et al., 2018; Valdes et al., 2018). In one of these studies,
however, a decrease in LA-derived diols was suggested to be
causal for arthritis (He et al., 2015), indicating that additional
investigation is needed (Figure 5).

Another example where DMSO could play a unique
therapeutic role is in reducing extreme obesity. We have shown
previously that all five of the oxylipin diols decreased by DMSO
in this study – 12,13-DiHODE, 15,16-DiHODE, 12,13-DiHOME,
16,17-DiHDPE and 19,20-DiHDPE – correlate positively with
soybean oil-induced obesity in mice (Deol et al., 2017). Soybean
oil is by far the most commonly used cooking oil in the
United States and is used ubiquitously in processed foods and
restaurants (Blasbalg et al., 2011; Ash, 2012). While avoiding
excess soybean oil in the diet is obviously preferable to taking
any sort of medication, it is intriguing to speculate that in cases
of intractable obesity, a compound such as DMSO that decreases
elevated levels of diols might have a therapeutic effect. For such
a treatment to work, however, the DMSO would need to have
more than a transient effect on diol levels. Preliminary data from
our lab suggest that this might be the case for at least one of the
diols (not shown).

In summary, the results reported here provide new insights
into the potential health effects of DMSO, and heightens our
awareness of potential complications when using it as a solvent
for therapeutic compounds.
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