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Alzheimer’s disease (AD) is the most frequent type of dementia in older people. The 
complex nature of AD calls for the development of multitarget agents addressing 
key pathogenic processes. Donepezil, an acetylcholinesterase inhibitor, is a first-line 
acetylcholinesterase inhibitor used for the treatment of AD. Although several studies 
have demonstrated the symptomatic efficacy of donepezil treatment in AD patients, the 
possible effects of donepezil on the AD process are not yet known. In this study, a novel 
feruloyl–donepezil hybrid compound (PQM130) was synthesized and evaluated as a 
multitarget drug candidate against the neurotoxicity induced by Aβ1-42 oligomer (AβO) 
injection in mice. Interestingly, PQM130 had already shown anti-inflammatory activity 
in different in vivo models and neuroprotective activity in human neuronal cells. The 
intracerebroventricular (i.c.v.) injection of AβO in mice caused the increase of memory 
impairment, oxidative stress, neurodegeneration, and neuroinflammation. Instead, 
PQM130 (0.5–1 mg/kg) treatment after the i.c.v. AβO injection reduced oxidative damage 
and neuroinflammation and induced cell survival and protein synthesis through the 
modulation of glycogen synthase kinase 3β (GSK3β) and extracellular signal–regulated 
kinases (ERK1/2). Moreover, PQM130 increased brain plasticity and protected mice 
against the decline in spatial cognition. Even more interesting is that PQM130 modulated 
different pathways compared to donepezil, and it is much more effective in counteracting 
AβO damage. Therefore, our findings highlighted that PQM130 is a potent multi-functional 
agent against AD and could act as a promising neuroprotective compound for anti-AD 
drug development.
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INTRODUCTION

The World Health Organization estimated the presence of 47.5 
million people worldwide with dementia in 2015 and predicted 
that the number of patients will be almost tripled by 2050 
(https://www.who.int/mental_health/neurology/dementia/
en/). Mainly owing to significant increases in lifespan, dementia 
represents one of the major global health crises of the 21st 
century. The most widespread form of dementia is Alzheimer’s 
disease (AD). AD is a lethal neurodegenerative illness that begins 
with brain alterations more than 20 years before the clinical 
symptoms (Mori et al., 2019). This multifaceted and progressive 
neurodegenerative disease is pathologically characterized by 
the amyloid-β (Aβ) accumulation in amyloid plaques and 
the hyperphosphorylation of tau in neurofibrillary tangles, 
followed by a consistent neuronal loss leading to brain atrophy 
and dementia. Although scientific research has changed course 
from fibrillar Aβ, implicated in plaque formation, to soluble Aβ, 
whose accumulation is probably the cause of the early synaptic 
dysfunction (Selkoe, 2002), the protein is still considered the 
keystone of AD. Levels of soluble Aβ oligomers (AβO) have 
been shown in several experimental models to potently inhibit 
hippocampal long-term potentiation (LTP), increase dendritic 
spine loss, and impair cognition in mice (Walsh et al., 2002; 
Lacor et al., 2007; Morroni et al., 2016; Herline et al., 2018). 
Although AD progression is tightly connected to Aβ aggregation, 
the scientific consensus is quite firm in suggesting that several 
other factors likely contribute to the development of AD. Such 
factors include loss of cholinergic transmission, mitochondrial 
dysfunction, progressive oxidative damage, excitotoxicity, and 
neuroinflammatory processes, which may trigger a “domino” 
cascade of events leading to manifestation of AD (Macchi et al., 
2014; Hampel et al., 2018; Pérez et al., 2018). It is likely that AD 
begins as a synaptic disorder and decreased synaptic activity is 
one of the best pathological signal of cognitive decline in AD 
(Coleman and Yao, 2003). Brain-derived neurotrophic factor 
(BDNF) is a pleiotropic growth factor in the brain, and it plays 
a crucial role in the survival and neuronal function (Hu et al., 
2019). Indeed, not only can it modulate synapse formation and 
neurogenesis, but it can also reduce oxidative stress and cell 
death. In the early stage of AD, the levels of the precursor form 
of BDNF, mature BDNF, or its mRNA are reduced in the parietal 
cortex and hippocampus (Phillips et al., 1991; Peng et al., 2005; 
Song et al., 2015).

There is currently no cure for AD. Unfortunately, the AD 
clinical trials targeting Aβ to date have been unsuccessful, 
demonstrating the need to investigate innovative therapeutic 

approaches beyond Aβ, and trying to focus attention on other early 
key events, in particular synaptic dysfunction, oxidative stress, or 
the early events of neuroinflammation (Marttinen et al., 2018). 
Thus, it is likely reasonable to argue that multifactorial diseases, 
such as AD, cannot be successfully treated by modulating a single 
target, but they will require multitarget drug treatment to address 
the different pathological facets of these diseases.

Acetylcholinesterase (AChE) inhibitors and N-methyl-d-
aspartate antagonists are the current therapies for AD-related 
symptoms with poor efficacy and no evidence of disease 
modification (Lanctôt et al., 2009). Donepezil is a highly centrally 
selective, reversible, and non-competitive AChE inhibitor and 
currently the most frequently prescribed drug for the treatment 
of AD. Clinical trials with donepezil have highlighted slight but 
reproducible improvements in cognitive function of the treated 
patients as compared to placebo. However, these effects were 
transient because cognitive function continued to decline over 
time in patients (Doody et al., 2007).

As a consequence of the failure of one target–one ligand 
approach to provide promising results in AD treatment, new 
findings suggested that one molecule hitting multiple targets 
could represent the winning strategy to treat complex diseases 
(Schmitt et al., 2004). Thus, “the multi-target-directed ligand 
(MTDL) approach is based on the design of new scaffolds 
with different pharmacophoric subunits connected in a single 
molecule, which could modulate multiple molecular targets 
at the same time” (Dias et al., 2017). Considering the MTDL 
approach, we studied here the activity of the multitarget ligand 
PQM130 (Figure 1), which is the most promising compound 
of a new series of molecular hybrids synthesized by the 
combination of two subunits, the N-benzylpiperidine group 
present in donepezil and responsible for its AchE selectivity, 
linked to the feruloyl group present in ferulic acid (Dias et al., 
2017). Ferulic acid is one of the degradation products of 
curcumin, which has already shown neuroprotective activities 
probably due to its ability to modify the kinetics of Aβ fibril 
formation, as well as to its anti-oxidative and anti-inflammatory 
activities (Hamaguchi et al., 2010; Sgarbossa et al., 2015). 
The multitarget ligand PQM130 has already been investigated 
for its in vitro anticholinesterase, metal-chelating, antioxidant, 
neuroprotective, and anti-inflammatory properties, in 
different in vivo models (Dias et al., 2017). Moreover, PQM130 
also highlighted an interesting pharmacokinetic profile 
from the in  silico evaluation of the absorption, distribution, 
metabolism, elimination (ADME) parameters, using the 
software QikProp 3.1 (Schrödinger, LLC, New York, NY, USA; 

FIGURE 1 | Chemical structure of PQM130.

Abbreviation: Aβ, amyloid-β; AβO, amyloid-β oligomers; AChE, acetylcholinesterase; 
ACTB, actin; AD, Alzheimer’s disease; ADME, absorption, distribution, metabolism, 
elimination; BDNF, brain-derived neurotrophic factor; DCF, 2′7′-dichlorofluorescein; 
DCFH-DA, 2′7′-dichlorodihydrofluorescein diacetate; DON, donepezil; ECL, 
enhanced chemiluminescence; GFAP, glial fibrillary acidic protein; GSH, glutathione; 
GR, glutathione reductase; H&E, hematoxylin/eosin; i.c.v., intracerebroventricular; 
i.p., intraperitoneal; LTP, long-term potentiation; MWM, Morris water maze; MTDL, 
multi-target-directed ligand; Nrf2, nuclear factor (erythroid-derived 2)-like 2; OD, 
optical density; pNA, p-nitroaniline; ROS, reactive oxygen species; TBS, Tris-buffered 
saline; TP53, tumor protein 53; UF, fluorescence intensity arbitrary units; VH, vehicle.
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see Supplementary Material 1) (Dias Viegas et al., 2018). 
Interestingly, ADME data of PQM130 showed a good human 
absorption and blood–brain barrier penetration in accordance 
with the software reference parameters (Dias Viegas et al., 
2018). A similar in silico approach was adopted to evaluate 
the PQM130 safety, using the VEGA platform (https://www.
vegahub.eu/; Mario Negri Institute for Pharmacological 
Research, Milan, Italy), which includes various QSAR 
models. In particular, mutagenicity (CONSENSUS) and 
carcinogenicity (IRFMN/ANTARES) models reported the 
absence of mutagenic and carcinogen effects of PQM130 (see 
Supplementary Material 2 and 3).

In the current study, we have further examined the 
neuroprotective effects of the multitarget ligand PQM130 in 
comparison also to donepezil in a mouse AD model generated 
by intracerebroventricular (i.c.v.) injection of Aβ1-42 oligomers 
(Aβ1-42O) and discussed the molecular mechanisms with 
particular attention to its nootropic, neuroprotective, and 
neurotrophic activities.

MATERIALS AND METHODS

Reagents
Aβ1–42 peptides were purchased by AnaSpec (Fremont, CA, 
USA). Aprotinin, bovine serum albumin (BSA), CHAPS, 
2’7’-dichlorodihydrofluorescein diacetate (DCFH-DA), dimethyl 
sulfoxide, 5,5′-dithiobis (2-nitrobenzoic acid), dithiothreitol, 
donepezil hydrochloride, EDTA, eosin, ethanol, glycerol, 
hematoxylin, Hepes pH 7.4, hexafluoroisopropanol, leupeptin, 
β-mercaptoethanol, sodium chloride, sodium fluoride, sodium 
orthovanadate, sucrose, sulfosalicylic acid, Triton-X 100, tris 
pH 7.5, xylen, and primary antibodies anti-synaptophysin and 
anti-β-actin were provided by Sigma-Aldrich (St Louis, MO, 
USA). Paraformaldehyde solution (4%) was provided by Santa 
Cruz Biotechnology (Dallas, TX, USA) and NP-40 was from 
Roche Diagnostic (Risch, Switzerland). Caspase substrates 
were purchased from Alexis Biochemicals (San Diego, CA, 
USA). Primary antibodies phospho-GSK3α/β (Ser21/9) and 
GSK3α/β, phospho-p44/42 MAPK (ERK1/2, Thr202/Tyr204) 
and p44/42 MAPK, and anti-GFAP were provided by Cell 
Signaling Technologies Inc. (Danvers, MA, USA). Secondary 
anti-mouse and anti-rabbit antibodies were purchased from 
GE Healthcare (Piscataway, NJ, USA) and fluorescein was 
from Life Technologies (Carlsbad, CA, USA). Bradford assay 
solution, enhanced chemiluminescence (ECL) solution, Tris-
buffered saline (TBS), and Tween 20 were purchased from 
Bio-Rad Laboratories S.r.L. (Hercules, CA, USA). Normal goat 
serum (NGS) was provided by Wako Pure Chemical Industries 
(Osaka, Japan). All experiment reagents were reagent grade and 
commercially available.

Animals
Adult male C57Bl/6 mice (9 weeks old, 25–30 g body weight; 
Harlan, Milan, Italy) were utilized. The mice were housed in a 
temperature-controlled room (23–24°C) with free access to 

food and water and presented with 12 h light/12 h dark cycles. 
Briefly, procedures on the mice were carried out according to 
the European Communities Council Directive 2010/63/EU and 
the current Italian Law on the welfare of the laboratory animal 
(D.Lgs. n.26/2014). The animal protocol was approved by the 
Italian Ministry of Health (Authorization No. 291/2017-PR) and 
by the corresponding committee at the University of Bologna. 
The number of experimental animals was minimized and care 
was taken to limit mice suffering.

Experimental Design
The animals were randomized into five groups (n = 10/group): 
Sham/VH, Aβ/VH, Aβ/DON, Aβ/PQM130 0.5 mg/kg, and Aβ/
PQM130 1.0 mg/kg. Four groups were treated with Aβ1-42O by 
a unilateral i.c.v. injection, while the other received a unilateral 
i.c.v. injection of saline solution (sham group). One hour after 
the brain lesion, mice received intraperitoneal (i.p.) treatment 
of 1 mg/kg of donepezil hydrochloride (DON, Sigma-Aldrich), 
0.5 or 1 mg/kg of PQM130, or vehicle (VH, saline). The dose 
injected was selected according to the literature (Furukawa-
Hibi et al., 2011; Dias et al., 2017). We treated the mice daily 
for 10 days. At the conclusion of the treatment period, the 
mice underwent behavioral assessment. After the behavioral 
analysis, the animals were deeply anesthetized before being 
sacrificed by cervical dislocation to collect the samples for 
immunohistochemical and neurochemical analysis (for 
experimental design, see Figure 2).

Aβ1-42 Oligomers Preparation and Injection
Aβ1–42 peptides (AnaSpec) were solubilized to 1 mg/ml in 
hexafluoroisopropanol before being sonicated and lyophilized at 
room temperature. The unaggregated Aβ1–42 film obtained was 
dissolved to a final concentration of 1 mM with sterile dimethyl 
sulfoxide and stored at −20°C until use. The Aβ1–42O were prepared 
according to the protocol of Tarozzi et al. (2008). Briefly, to enhance 
oligomer formation, the Aβ1-42 stock was diluted in saline buffer at 
40 μM and incubated for 48 h at 4°C (Hong et al., 2007; Maezawa 
et al., 2008). Six microliters of Aβ1-42O (40 μM) were injected 
i.c.v., using a stereotaxic mouse frame (myNeuroLab, Leica-
Microsystems Co., St. Louis, MO, USA) and a 10-µL Hamilton 
syringe, at a rate of 0.5 ml/min. After the injection, the needle was 
left in place for a few minutes before being retracted slowly and 
the wound was cleaned and sutured. The sham mice received the 
corresponding volume of saline. The following coordinates were 
used: anteroposterior: +0.22, mediolateral: +1.0, dorsoventral: 
−2.5, with a flat skull position.

Donepezil Hydrochloride and PQM130 Preparations
Donepezil hydrochloride was purchased from Sigma-Aldrich and 
PQM130 (purity 98% by HPLC) was synthesized and provided 
by Professor Claudio Viegas Jr from the PeQuiM-Laboratory of 
Research in Medicinal Chemistry, Institute of Chemistry, Federal 
University of Alfenas (Alfenas, MG, Brazil). Briefly, the powders 
were solubilized and aliquoted in sterilized saline (donepezil) or in 
dimethyl sulfoxide (PQM130). The work solutions were prepared 
at a concentration of 0.1 mg/ml (donepezil and PQM130) and 
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0.05 mg/ml (PQM130) in sterilized saline. Animals were daily 
i.p. injected with 1 mg/kg solution (donepezil and PQM130) or 
0.5 mg/kg (PQM130) for 10 days.

Behavioral Analysis
All the tests were performed between 9.30 a.m. and 3.30 p.m. All 
scores were attributed by a blinded observer.

Morris Water Maze (MWM)
The test was performed as described previously (Morroni et al., 
2018a). Briefly, the apparatus was a circular plastic tank (1.0 m 
diameter, 50 cm height) filled with water and milk (22°C), and a 
submerged platform (1.5 cm under the water surface) positioned 
in the center of one of the four quadrants of the maze. A camera was 
placed to register mice’s movements and send data to an automated 
tracking system (EthoVision, Noldus, The Netherlands). For each 
training trial, animals were placed into the pool at one of the four 
positions selected randomly, and the latency to find the hidden 
platform was recorded. Mice that could not reach the platform 
within 60 s were guided to it by the experimenter. After the trial, 
each mouse was placed under a warming lamp in a holding cage 
for 25 s until the next trial. Training trials were conducted four 
times a day for 5 days. On day 6, the platform was removed and 
animals were allowed to swim freely for 60 s. The parameters 
measured during the probe trial were escape latency, frequency in 
the platform zone, and time spent in the opposite quadrant to the 
platform zone.

Y-Maze Test
The spatial working memory was evaluated by recording 
spontaneous alternation behavior in the Y-maze as described earlier 
(Sarter et al., 1988). Briefly, each arm of the maze [Ugo Basile® 
S.r.L., Gemonio (VA), Italy] was 35 cm long, 15 cm high, and 5 cm 
wide and converged to a 120° angle. The mice were positioned at 
the end of the A arm and allowed to move freely through the maze 
for 5 min. The entry in all three arms consecutively was counted 
as an alternation. Thus, the number of maximum alternations was 

calculated as the total number of arm entries minus two and the 
percentage of alternation was calculated as (actual alternations/
maximum alternations) × 100 (Lopes et al., 2018).

Tissue Preparation for 
Immunohistochemistry and 
Neurochemical Analysis
At the end of behavioral tests, the mice were deeply anesthetized 
and sacrificed by cervical dislocation. The brains were quickly 
removed and one hemisphere of each mouse was fixed in 4% 
paraformaldehyde (Santa Cruz Biotechnology) for 48 h. The other 
hemispheres were immediately removed, and the hippocampi 
were isolated on ice and transferred to liquid nitrogen.

For the protein extraction, the tissues were homogenized 
in lysis buffer and the cytoplasmic protein concentration was 
determined by the Bradford method (Bradford, 1976).

Determination of Caspase-9 and -3 Activations
Caspase-9 and -3 enzyme activities were measured according 
to Movsesyan et al. (2002). Briefly, the tissue lysates were 
incubated with the assay buffer and a 50 mmol/L concentration 
of chromogenic p-nitroaniline (pNA) substrate (caspase-9, 
Ac-Leu-Glu-His-Asp-pNA; caspase-3, Z-Asp-Glu-Val-Asp-pNa; 
Alexis Biochemicals). Each sample was incubated for 3 h at 37°C 
and the amount of pNA released was measured with a microplate 
reader (GENios, TECAN®, Mannedorf, Switzerland) at 405 nm. 
The values were expressed as the mean ± SEM of optical density 
(OD) of each experimental group.

Determination of Cellular Redox Status
The redox status, in terms of reactive oxygen species (ROS) 
formation, was evaluated by measuring the oxidation of 
DCFH-DA to 2′7′-dichlorofluorescein (DCF) (Morroni et al., 
2014). The samples (60 μl) were incubated for 30 min with 2 mg/
ml of DCFH-DA, and the conversion into the fluorescent product 
DCF was measured (excitation at 485 nm, emission at 535 nm) 
using a microplate reader (GENios, TECAN®). The values were 

FIGURE 2 | Experimental protocol and treatment schedule. The mice received i.p. injections of DON (1 mg/kg) or PQM130 (0.5 or 1.0 mg/kg) or VH solution for 
10 days. The animals were sacrificed 20 days after Aβ1-42 oligomer injection.
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normalized to protein content and expressed as the mean ± SEM 
of fluorescence intensity arbitrary units (UF) of each experimental 
group.

Determination of Glutathione Content
Glutathione (GSH) content was assessed using the protocol 
described earlier (Morroni et al., 2018b). Briefly, samples were 
deproteinized with 4% sulfosalicylic acid, and the supernatants 
were added to 5,5′-dithiobis (2-nitrobenzoic acid) (4 mg/ml). 
The developed coloration was read quickly at 412 nm (GENios, 
TECAN®) and the results were calculated using a standard 
calibration curve. The values were normalized to protein content 
and expressed as the mean ±SEM of GSH mmol/mg protein of 
each experimental group.

Western Blotting
The samples (30 μg proteins) were run on 4–15% SDS polyacrylamide 
gels (Bio-Rad Laboratories S.r.L.) and electroblotted onto 0.45 μm 
nitrocellulose membranes. The membranes were incubated at 4°C 
overnight with primary antibody recognizing phospho-GSK3α/β 
(Ser21/9), phospho-p44/42 MAPK (ERK1/2, Thr202/Tyr204) 
(1:1,000; Cell Signaling Technology Inc), or anti-synaptophysin 
(1:1,000; Sigma-Aldrich). After washing with TBS-T (TBS + 
0.05% Tween20), the membranes were incubated with secondary 
antibodies (1:2,000; GE Healthcare). ECL was used to visualize the 
bands (Bio-Rad Laboratories). The membranes were then reprobed 
with GSK3α/β, p44-42 MAPK (1:1,000; Cell Signaling Technology 
Inc.), or anti-β-actin (1:1,000; Sigma-Aldrich). The data were 
analyzed by densitometry, using Quantity One software (Bio-Rad 
Laboratories® S.r.L.). The values were normalized and expressed as 
the mean ± SEM of the densitometry in each experimental group.

Immunohistochemistry
The fixed brains were sliced on a vibratome (Leica Microsystems, 
Milan, Italy) at 40 μm thickness, and the slices were stained as 
described earlier (Morroni et al., 2016).

Hematoxylin/Eosin Staining
Hematoxylin/eosin (H&E) staining was assessed as previously 
illustrated (Fischer et al., 2008). Briefly, the selected sections 
were rehydrated by a graded series of alcohols (Sigma-Aldrich). 
Then, the slices were counterstained in hematoxylin for 8 min and 
then rinsed for 10 min in tap water. Subsequently, the slices were 
immersed in distilled water and then in 80% ethanol before being 
stained in 25% eosin solution (in ethanol 80%) for 1 min. Finally, 
the slices were dehydrated with graded alcohol before being fixed 
in xylen.

Anti-Glial Fibrillary Acidic Protein (GFAP) Staining
The immunofluorescence staining was assessed according to 
our previous study (Morroni et al., 2018a). Selected slices were 
rinsed in phosphate buffer and then incubated in TBS-A (TBS 
0.1% Triton-X 100) and TBS-B (TBS-A 2% BSA) to reduce a 
specific absorption. The sections were then incubated with anti-
GFAP primary antibody (1:300; Cell Signaling Technology Inc.) 
in TBS-B with 3% NGS (Wako Pure Chemical Industries) at 4°C 

overnight. After 24 h, the slices were washed with TBS-A and 
TBS-B before being incubated with secondary antibody (1:200; 
Fluorescein, Life Technologies) in TBS-B with 3% NGS. To verify 
the binding specificity, some sections were incubated with only 
primary or secondary antibody. In these conditions, we did not 
find any positive staining.

Quantitative Images Analysis
Image analysis was conducted by an investigator unaware of the 
treatment groups, using a microscope (AxioImager M1, Carl 
Zeiss, Oberkochen, Germany) and an image analysis system 
(AxioCam MRc5, Carl Zeiss) equipped with dedicated software 
(AxioVision Rel 4.8, Carl Zeiss). The hippocampal region was 
defined at low magnification (2.5× objective), and the H&E or 
GFAP staining was evaluated by densitometry of five different 
sections for each sample analyzed at a higher magnification 
(10×, 20×, or 40× objective). Quantification and morphological 
analysis were assessed with the ImageJ software.

RNA Preparation and Gene Expression 
Analysis
Total RNA was isolated from hippocampus using the Pure link 
RNA mini kit (Ambion, Thermo Fisher Scientific, Carlsbad, CA, 
USA), as illustrated earlier (Morroni et al., 2018b). Briefly, the 
samples were lysed on ice with 1% β-mercaptoethanol by using a 
homogenizer SHM1 (Stuart, Bibby Scientific LTD, Staffordshire, 
UK). The samples were then added to an equal volume of 70% 
ethanol. The solution was filtered using a cartridge containing 
a clear silica-based membrane to which the RNA binds. RNA 
was finally eluted with RNase-free water and stored at −80°C. 
RNA was quantified by spectrophotometric analysis and reverse-
transcribed using High Capacity cDNA Reverse Transcription 
kit (Applied Biosystems, Thermo Fisher Scientific).

The mRNA encoding for the mouse nuclear factor (erythroid-
derived 2)-like 2 (Nrf2), GSH reductase (GR), tumor protein 53 
(TP53), and the actin (ACTB) as internal reference were quantified 
by Taqman RT-PCR with a 7900HT Fast Real-Time PCR system 
(Applied Biosystems). The samples were run in 96-well format in 
triplicate. The specific Taqman gene expression assays (Applied 
Biosystems) were Nrf2 (Mm0047784_m1), GSTP1 (Mm04213618_
gH), GR (Mm00439154_m1), TP53 (Mm01731290_g1), and 
ACTB (Mm00607939_s1).

To assess mRNA levels of different BDNF transcripts (total 
form, long 3′UTR form, exon IV, exon VI) and synaptophysin, 
samples were processed for RT-PCR reaction and subsequently 
analyzed by qRT-PCR instrument (CFX384 Real-Time system, 
Bio-Rad Laboratories S.r.l.) using the iScript one-step RT-PCR 
kit for probes (Bio-Rad Laboratories S.r.l.). The samples were 
run in 384-well format in triplicate as multiplexed reactions 
with a normalizing internal control (ACTB). The primers and 
probe sequences, respectively, were as follows: total BDNF (Fwd: 
AAGTCTGCATTACATTCCTCGA, Rev: GTTTTCTGAAAGA 
GGGACAGTTTAT, Probe: TGTGGTTTGTTGCCGTTGCCA 
AG), long 3′UTR BDNF (Fwd: GTTGTCATTGCTTTACTGGCG, 
Rev: AATTTTCTCCATCCCTACTCCG, Probe: AATCTACCCC 
TCCCATTCCCCGT), BDNF exon IV (Fwd: AGCTGCCTTGAT 
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GTTTACTTTG, Rev: CGTTTACTTCTTTCATGGGCG, Probe:  
AGGATGGTCATCACTCTTCTCACCTGG), BDNF exon VI 
(Fwd: GGACCAGAAGCGTGACAAC, Rev: ATGCAACCGAAG 
TATGAAATAACC, Probe: ACCAGGTGAGAAGAGTGATGAC 
CATCC), Synaptophysin (Fwd: CCTGTCCGATGTGAAGATGG, 
Rev: AGGTTCAGGAAGCCAAACAC, Probe: ACACATGCAAG 
GAACTGAGGGACC), and ACTB (Fwd: ACCTTCTACAATGA 
GCTGCG, Rev: CTGGATGGCTACGTACATGG, Probe: TCTG 
GGTCATCTTTTCACGGTTGGC).

Each RT-PCR run followed the manufacturer’s conditions: 
an incubation at 50°C for 10 min (RNA retrotranscription), 
followed by a step at 95°C for 5 min (TaqMan polymerase 
activation). Subsequently, 39 cycles of PCR were performed 
(95°C for 10 s, and then 30 s at 60°C). A comparative cycle 
threshold (Ct) method was used to determine the relative 
target gene expression versus the sham group (Rossetti et al., 
2016). Specifically, a fold change for each target gene relative 
to ACTB was determined by the 2−Δ(ΔCt) method, where ΔCt = 
Ct, target – Ct, β-actin; Δ(ΔCt) = Ct, exp. group – Ct, control 
group and Ct is the threshold cycle. For graphical clarity, the 
obtained data were then expressed as percentage versus the 
Sham/VH, which has been set at 100%.

Statistical Analysis
The data were analyzed with the PRISM 5 software (GraphPad 
Software, La Jolla, CA, USA) and expressed as mean ± SEM of 
each experimental group. The difference between the groups was 
analyzed by one-way ANOVA with Bonferroni post hoc test. The 
results were considered statistically significant when a p value 
was less than 0.05.

RESULTS

PQM130 Ameliorated Aβ1-42O-Induced 
Cognitive Deficits in Mice
The i.c.v. injection of Aβ1-42O induced cognitive impairment 
as shown in the MWM and Y-maze tests. During the MWM 
training phase, all the mice learned the platform location, as 
clearly highlighted by the decreased latency and the distance 
traveled to find the platform. However, the Aβ/VH mice needed 
more time and traveled a longer distance to locate the platform 
than the sham mice, which undoubtedly highlighted a short-
term memory impairment in these mice. From the fourth day 
of training, the treated groups (Aβ/DON and Aβ/PQM130) 

FIGURE 3 | Effects of donepezil and PQM130 treatments (0.5 or 1.0 mg/kg) on the performance in the training (A) and probe trials (B–D) of the MWM test in the 
Aβ1-42O-injected mice. The training trials were carried out for 5 days (four per day); the probe trial was performed on day 6. The escape latency (B), the frequency in 
the platform zone (C), and the time spent in the opposite quadrant to the platform zone (D) were recorded in the probe test. The values are expressed as mean ± 
SEM (n = 10) (A: *p < 0.05 vs. Aβ/VH group; D: *p < 0.05 and **p < 0.01 vs. Aβ/VH; ANOVA, post hoc test Bonferroni).
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showed a significantly lower escape latency than those in the 
Aβ/VH group (p < 0.05; Figure 3A). The swimming speed was 
not significantly different among the groups during the training 
(data not shown). In the probe trial, the mice in the Aβ/VH 
group revealed difficulties in locating the original position of 
the removed platform (longer latency to first enter the target 
zone, less frequency crossing the platform, and more time spent 
swimming in the opposite quadrant; Figure 3B–D). Interestingly, 
the Aβ/DON and Aβ/PQM130 mice performed better than the 
Aβ/VH, even though significantly only with regard to time spent 
in the opposite quadrant (donepezil p < 0.01; PQM130 p < 0.05 
and p < 0.01, respectively). In the Y-maze test, which assesses 
spatial working memory, the spontaneous alternation behavior 
of Aβ/VH group was significantly lower than the sham group 
(p < 0.05, Figure 4), confirming the difficulty in remembering 
which arm has already been visited. This behavioral impairment 
was significantly improved in the Aβ/DON and Aβ/PQM130 
groups (donepezil p < 0.001; PQM130 p < 0.05 and p < 0.001, 
respectively), demonstrating that DON and PQM130 could 
effectively increase spatial working memory in the early stage of 
AD development.

PQM130 Prevented Aβ1-42O-Induced 
Neuronal Death in Mice
We next observed the pathologic changes in different hippocampal 
areas through H&E-stained sections from the sham, the Aβ/VH 
group, and the mice under different treatments (DON and PQM130 
treatment groups: 1 and 0.5  mg/kg). In the Aβ/VH mice, H&E 
staining exhibited irregular and sparse neuronal arrangements 
in the CA1, CA3, and DG regions of the hippocampus. We also 
observed many unhealthy neurons (Figure 5A). Interestingly, 

PQM130 treatment but not donepezil ameliorated neuronal injury 
compared with the saline-treated Aβ group (p < 0.01, Figure 5B). 
In AD, increased p53 level was detected in various parts of patient 
brains (Cenini et al., 2008) when compared to the brains of healthy 
individuals. Likewise, data from animal AD models showed an 
increase in p53 level in affected neurons (Ohyagi et al., 2005). As 
could be expected, the Aβ treatment induced the up-regulation 
of p53 at gene level. On the contrary, PQM130 but not donepezil 
significantly down-regulated p53 expression (p < 0.05, Figure 6A). 
Subsequently, to elucidate the underlying mechanisms of 
the PQM130 improvement on Aβ-induced neuronal damage, the 
activations of caspase-9 and -3 were detected. Once activated, the 
caspase-9 cleaves and activates the effector procaspase-3 triggering 
the apoptotic pathway. As shown in Figure 6B and C, the caspase-9 
and -3 were markedly activated in the hippocampal samples of 
the Aβ1-42O-treated group, when compared to the sham group 
(p < 0.05). However, PQM130 treatment was able to inhibit the 
activation of both caspases induced by Aβ1-42O, especially at the 
highest dose (p < 0.05 and p < 0.01, respectively), while donepezil 
was effective to counteract the activation of the caspase-3 but not 
caspase-9 (p < 0.05).

PQM130 Antagonized Aβ1-42O-Induced 
Oxidative Stress in Mice
As shown in Figure 7A and B, the Aβ1-42O injection induced a 
predictable oxidative stress to the mice brain, as underlined by 
significant increased ROS formation (p < 0.001) and decreased 
GSH levels in the hippocampal samples compared to the 
sham group. However, the administration of PQM130, but not 
donepezil, resulted in the significant decrease of ROS compared 
with the Aβ/VH group (p < 0.001 and p < 0.01, respectively). 
Moreover, PQM130 treatment increased GSH levels in the 
hippocampi of the Aβ/VH mice close to the sham group levels, 
particularly with the 0.5 mg/kg dose group (p < 0.01). In addition, 
we carried out gene expression profiling as an effective biomarker 
to detect cellular stress. In this study, the gene expression analysis 
for GR enzyme and Nrf2 demonstrated that Aβ treatment 
decreased GR mRNA expression levels, while donepezil and 
PQM130 (0.5 mg/kg) significantly increased GR mRNA levels 
(p < 0.01 and p < 0.05, respectively; Figure 7C). As expected, the 
expression of Nrf2 was found to be significantly decreased in the 
hippocampi of the Aβ/VH mice (p < 0.001); conversely, PQM130 
(1 mg/kg) treatment markedly up-regulated the mRNA levels of 
Nrf2, compared to the Aβ/VH mice (p < 0.001).

PQM130 Regulated GSK3β and ERK1/2 
Protein Expressions in Mice
Because glycogen synthase kinase 3β (GSK3β) played a pivotal 
role in the pathogenesis of AD (Llorens-Martín et al., 2014), 
we examined the phosphorylation levels of GSK3β (Ser9) to 
investigate its potential involvement in the PQM130 mechanism 
of neuroprotection (Figure 8A). As shown in Figure 8A, the 
levels of phosphorylated GSK3β was decreased, although not 
significantly, in the Aβ/VH group. However, the treatment with 
PQM130 at a dose of 0.5 mg/kg significantly increased the levels 

FIGURE 4 | Effects of donepezil and PQM130 treatments (0.5 or 1.0 mg/kg) 
on the performance in the Y-maze test in the Aβ1-42O-injected mice. The 
spontaneous alternation percentage was recorded in a 5 min trial. The values 
are expressed as mean ± SEM (n = 10) (#p < 0.05 vs. Sham/VH, *p < 0.05 
and ***p < 0.001 vs. Aβ/VH; ANOVA, post hoc test Bonferroni).
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of phosphorylated GSK3β protein (p < 0.05). In addition, the 
phosphorylation of ERK1/2 was also detected in our model, 
since the MAPK/ERK1/2 signaling pathway is involved in the 
modulation of neuronal apoptosis and may contribute to AD 
pathogenesis (Morroni et al., 2016). Results found the Aβ1-42O 
injection increased the phosphorylation of ERK1/2 compared 
with the sham group (p < 0.001). However, treatment with 
PQM130 and donepezil markedly repressed the phosphorylation 
of ERK1/2 induced by Aβ1-42O (p < 0.05, Figure 8B), indicating 
that the dephosphorylation of ERK1/2 concurred to the anti-
apoptotic effect of PQM130.

PQM130 Reduced Aβ1-42O-Induced 
Astrocytic Activation in Mice
To examine the effects of PQM130 on neuroinflammation 
induced by Aβ1-42O, we performed immunohistochemical 
staining for the astrocyte marker GFAP. The quantitative analysis 
showed that the percentages of the GFAP-stained hippocampal 
areas were markedly increased in the Aβ/VH group compared 
with the Sham/VH group (p < 0.01). However, in the PQM130-
treated mice (1 mg/kg), GFAP-positive areas decreased (p < 0.01, 
Figure 9B) compared to those in the vehicle-treated Aβ1-42O 
mice. These results suggested that PQM130 treatment alleviated 
the neuroinflammation induced by Aβ1-42O in the AD brain.

PQM130 Modulated Synaptic Plasticity 
in Mice
Firstly, we analyzed the total BDNF gene expression in our 
samples and the results did not show any significant difference 
among the different experimental groups (Figure 10A). In order 
to clarify the different responsiveness to PQM130, the expression 
profile of some neurotrophin transcripts, namely, long 3′UTR 
BDNF and exons IV and VI, were investigated (Figure 10B–D). In 
deep, PQM130 (1 mg/kg) increased significantly the expression 
of long 3′UTR BDNF (p < 0.05, Figure 10B) and isoform 
IV  (p < 0.05, Figure 10C), whereas no changes were found 
in the other experimental groups. Classic effects of BDNF 
consist of promoting differentiation, migration, and dendritic 
arborization, and enhancing neuronal viability. In addition to 
these recognized actions, recent findings highlighted that BDNF 
affects development, function, and plasticity in the synapse 
(Kuczewski et al., 2009). Thus, we next investigated the effect of 
PQM130 on the pre-synaptic protein synaptophysin. As shown 
in Figure 11A, there is a slight decrease in synaptophysin mRNA 
levels in the Aβ/VH and Aβ/DON groups, while the values of 
the PQM130 groups were maintained at the sham group levels. 
Even more interesting, the Western blot analysis (Figure 11B) 
revealed a more pronounced reduction of synaptophysin 
expression in the Aβ/VH and Aβ/DON hippocampal samples. 

FIGURE 5 | Effects of donepezil and PQM130 treatments (0.5 or 1.0 mg/kg) on neuronal cell death in the Aβ1-42O-injected mice. Representative H&E staining 
of coronal sections containing the hippocampus. Magnification, 20× and 40×; scale bar, 100 μm (A). Quantitative analysis of H&E staining (B). The values are 
expressed as mean of % of increment ± SEM (n = 10) of the density of each experimental group compared to the Sham/VH group (B: **p < 0.01 vs. Aβ/VH; 
ANOVA, post hoc test Bonferroni).
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However, after PQM130 treatment (1 mg/kg), the expression of 
synaptophysin was significantly increased as compared to the 
Aβ/VH group (p < 0.05).

DISCUSSION

The inhibition of AChE activity is the most realistic approach in the 
symptomatic treatment of mild to moderately severe AD. Patients 
are currently treated with AChE inhibitors, and among these, 
the first-line symptomatic drug is donepezil. In the light of the 
increasingly accepted conception of AD as a complex pathological 
network, intensive efforts are being made in the search of new 
drugs that can simultaneously hit several key biological targets of 
the network, including AChE. Moreover, AD has decades-long 

preclinical period (Jack and Holtzman, 2013), which suggests the 
need to find early therapeutic agents with efficacy at initial stages 
of the AD pathology. Taking into account all these considerations, 
the present study aimed to assess the efficacy of the feruloyl–
donepezil hybrid PQM130 on AD neurodegenerative processes 
and on cognitive outcomes, trying to make also a comparison with 
donepezil activity. In our previous study, PQM130 had already 
shown an interesting in vivo anti-inflammatory activity and in vitro 
metal chelator activity, as well as neuroprotective activity against 
oxidative damage (Dias et al., 2017). Here, we have elucidated the 
multifaceted activities of PQM130, like decreasing neuronal death 
and oxidative stress, improved neurotrophic effect, counteracted 
inflammation, and ameliorated spatial memory functions as 
compared to the Aβ1-42O lesioned group. It is clear that a successful 
neuroprotective and neurotrophic strategy could not only delay the 

FIGURE 6 | Effects of donepezil and PQM130 treatments (0.5 or 1.0 mg/kg) on tp53 mRNA relative expression (A) and caspase-9 (B) and caspase-3 (C) activations 
in the Aβ1-42O-injected mice. The tp53 mRNA relative expression was determined in hippocampal samples through the 2−ΔΔCt method and represented as 
percentage vs. the Sham/VH group. ACTB was used as control housekeeping gene. Caspase-9 and -3 activations were determined using a specific chromogenic 
substrate in the hippocampal samples. The values are expressed as mean ± SEM (n = 10) of optical density (OD) of each experimental group (A: *p < 0.05 vs. Aβ/
VH, §§p < 0.01 vs. Aβ/DON; B: #p < 0.05 vs. Sham/VH, *p < 0.05 vs. Aβ/VH; C: #p < 0.05 vs. Sham/VH, *p < 0.05 and **p < 0.01 vs. Aβ/VH; ANOVA, post hoc test 
Bonferroni).
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progression of neurodegeneration but also provide improvements 
in the disease condition.

In the MWM test, two main parameters are necessary to locate 
the hidden platform. Firstly, the mice should develop skills needed 
to handle the stressful condition, like swimming and recognizing 
the hidden platform as the only escape route. The second 
parameter is the spatial learning component, which implies that 
the mice have to learn exactly the platform’s position and reach it 
within a minute from the different starting position (Broadbent 
et al., 2004; Ghumatkar et al., 2015). Here, we found a progressive 
improvement in the spatial memory as shown by the significant 
reduction in escape latency time in the PQM130-treated mice 
as compared to the Aβ/VH mice when evaluated on the 4th and 
5th days. This improvement may be ascribed to PQM130’s ability 

to reduce oxidative stress and AChE activity to finally enhance 
cholinergic neuronal transmission. The Aβ/DON group showed a 
swimming performance comparable to the mice treated with the 
same dose of PQM130. This effect of donepezil may be related to 
its AChE inhibition (Ghumatkar et al., 2015). However, the probe 
trial was not implemented significantly in this study, only the time 
spent in the opposite quadrant markedly decreased after PQM130 
and donepezil treatments. Thus, the reduced escape latency time 
in the PQM130-treated group demonstrates its interesting effect 
on spatial learning ability. Working memory has been previously 
reported to be negatively involved in the early stages of AD (Kim 
et al., 2014; Okamoto et al., 2018), and spontaneous alternation 
behavior in the Y-maze test may be considered as a reflection of 
this kind of short-term memory. The continuous spontaneous 

FIGURE 7 | Effects of donepezil and PQM130 treatments (0.5 or 1.0 mg/kg) on cellular redox status in the Aβ1-42O-injected mice. Redox status was evaluated 
in the hippocampal samples based on DCF’s fluorescence emission at 535 nm after excitation at 485 nm. The values are expressed as mean ± SEM (n = 10) of 
fluorescence intensity arbitrary units (UF) of each experimental group (A). GSH content was measured using a colorimetric assay in the hippocampal samples. 
The values are calculated using a standard calibration curve and expressed as mean ± SEM (n = 10) of mmol GSH/mg protein (B). GR and Nrf2 mRNA relative 
expressions (C and D) were determined through the 2−ΔΔCt method and presented as percentage vs. the Sham/VH group. ACTB was used as control housekeeping 
gene. (A: ###p < 0.001 vs. Sham/VH, **p < 0.01 and ***p < 0.001 vs. Aβ/VH; B: **p < 0.01 vs. Aβ/VH group; C: *p < 0.05 and **p < 0.01 vs. Aβ/VH group; D: ###p < 
0.001 vs. Sham/VH group, ***p < 0.001 vs. Aβ/VH group, §§p < 0.01 vs. Aβ/DON group; ANOVA, post hoc test Bonferroni).
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FIGURE 8 | Effects of donepezil and PQM130 treatments (0.5 or 1.0 mg/kg) on GSK3 (A) and ERK1/2 (B) phosphorylations (pGSK3β Ser21/9 residue and 
pERK1/2) in the Aβ1-42O-injected mice. pGSK3β and pERK1/2 were determined by Western blotting in the hippocampal samples at 46 and 42/44 kDa, respectively, 
and using total GSK3, total ERK1/2, and β-actin (42 kDa) as loading control. Top: representative images of pGSK3β, GSK3, and β-actin (A) and pERK1/2, ERK1/2, 
and β-actin (B) expressions in hippocampus. Bottom: quantitative analysis of the Western blotting results for the pGSK3β (A) and pERK1/2 (B) levels. The graphs 
show densitometry analysis of the bands appertaining to the protein of interest. The values are expressed as mean ± SEM (n = 10) of each group. (A: *p < 0.05 vs. 
Aβ/VH group; B: ###p < 0.001 vs. Sham/VH, *p < 0.05 vs. Aβ/VH group; ANOVA, post hoc test Bonferroni).

FIGURE 9 | Effects of donepezil and PQM130 treatments (0.5 or 1.0 mg/kg) on astrocyte activation in the Aβ1-42O-injected mice. Representative photomicrographs 
(A) of immunostaining for GFAP in brain coronal sections containing hippocampal structure of each experimental group. Magnification, 10× and 40×; scale bar, 
100 μm. Quantitative analysis of GFAP immunostaining (B). The values are expressed as mean of % of increment ± SEM (n = 10) of the fluorescent intensity of each 
experimental group compared to the Sham/VH group (B: ##p < 0.01 vs. Sham/VH, **p < 0.01 vs. Aβ/VH; ANOVA, post hoc test Bonferroni).
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alternation in the Y-maze test can both elude stressful handling 
of animals and provide memory and locomotor evaluation 
(Kirshenbaum et al., 2015). Interestingly, we showed that PQM130 
counteracted the negative effect of Aβ1-42O on working memory in 
a dose-dependent manner. This was highlighted by the significant 
enhancement in percent of alternation behavior in the Y-maze, 
and the effects of the highest dose of PQM130 are comparable 
to those of donepezil. Our data are in agreement with previous 
studies showing that donepezil significantly improves alternation 
deficits in this test (Meunier et al., 2006; Hu et al., 2012) in the 
Aβ-injected mice.

Although it is not clearly known how Aβ injection can induce 
memory impairment in mice, we previously established that 
Aβ directly caused apoptosis leading to neuronal cell loss and, 
ultimately, neurodegeneration (Yao et al., 2005; Morroni et al., 
2016). The memory and cognitive decline in AD are strongly 
related to the apoptotic pathway (Obulesu and Lakshmi, 2014; Xu 
et al., 2017), which involves mitochondrial dysfunction, caspase 

activation, and DNA fragmentation (Ramalho et al., 2008). Our 
data showed that the hippocampal damage and caspase-9 and -3 
activations in lesioned mice were markedly reversed by PQM130. 
Meanwhile, donepezil did not show the same effectiveness 
in counteracting apoptosis and neuronal damage. Moreover, 
increased p53 level is infallibly detectable in brain areas attained 
by AD, in the corresponding brain areas of animal models, and in 
neuronal cells isolated from AD brains (Szybińska and Leśniak, 
2017). Interestingly, PQM130 substantially reduced the expression 
of p53, which corroborated its antiapoptotic activity. It is known 
that p53 directly binds to and increases the activity of GSK3β 
while inhibition of nuclear GSK3β attenuated p53-dependent 
transcription (Watcharasit et al., 2002). The link between p53 and 
GSK3β (i.e., between p53 and tau phosphorylation) may be more 
complex; however, in this study, we found that the decrease in p53 
expression levels after PQM130 treatment is most likely reflected 
in a phosphorylation (and thus deactivation) of GSK3β, leading to 
protection against neuronal death induced by Aβ1-42O.

FIGURE 10 | Effects of donepezil and PQM130 treatments (0.5 or 1.0 mg/kg) on the total BDNF (A), long 3′UTR BDNF (B), BDNF exon IV (C), and BDNF exon 
VI (D) mRNA relative expressions in the Aβ1-42O-injected mice. The mRNA relative expressions were determined in the hippocampal samples through the 2−ΔΔCt 
method and represented as percentage vs. the Sham/VH group. ACTB was used as control housekeeping gene. (B: §p < 0.05 vs. Aβ/DON; C: *p < 0.05 vs. Aβ/VH; 
ANOVA, post hoc test Bonferroni).
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Several studies demonstrated that oxidative stress precedes the 
rise of senile plaques and neurofibrillary tangles, therefore leading 
to dementia’s symptoms (Wang et al., 2014; Tian et al., 2019). 
Indeed, the increase of Aβ and oxidative stress, causing neuronal 
cell death, are common mechanisms in the progression of AD 
(Lee et al., 2011). Here, we found that PQM130 and not donepezil 
significantly ameliorates oxidative damage as demonstrated by 
the increase of GSH levels and GR and Nrf2 expressions in the 
Aβ1-42O-treated mice, confirming the similar evidences recorded 
by PQM130 in neuronal SH-SY5Y cells (Dias et al., 2017). The 
role of Nrf2 in Aβ-induced oxidative stress is controversial 
(Rong et al., 2018). Ramsey and colleagues described that in 
AD brains, Nrf2 is mostly found in the cytoplasm in its inactive 
form, which means that Nrf2 does not trigger the expression of 
antioxidant enzymes (Ramsey et al., 2007). Sarkar and colleagues 
demonstrated that Aβ25-35 increased oxidative stress and 
suppressed Nrf2 activation (Sarkar et al., 2017). Moreover, Branca 
et al. showed that reducing Nrf2 levels exacerbated cognitive 
impairments in a transgenic model of AD. They also speculated 
that “Nrf2 might act as a molecular link between brain aging and 
AD” (Branca et al., 2017). Numerous laboratories supported this 
hypothesis showing that Nrf2 activity decreased with aging (Suh 
et al., 2004; Zhang et al., 2015; Li et al., 2018). Moreover, Nrf2 
activity is strictly related to tau pathology, enhancing the link 
between Nrf2 and AD (Lastres-Becker et al., 2014). In our model, 
exposure to Aβ1-42O caused a marked decrease in Nrf2 activation, 
and only PQM130 significantly increased its expression, probably 
due to the presence of ferulic acid in this hybrid molecule. In 
this regard, the presence of α, β-unsaturated carbonyl system in 
PQM130 suggests the ability of this molecule to activate Nrf2 

through a Michael addition reaction (de Freitas Silva et al., 2018). 
Thus, the effect of PQM130 on Aβ1-42O-induced oxidative injury 
could explain the ability of PQM130 to counteract apoptotic cell 
death and cognitive impairment observed in our model.

Activity of ERK1/2 is modulated by ROS, and several studies 
demonstrated its activation in different AD models (Zhu et al., 
2002; Chong et al., 2006; Gan et al., 2014; Chang et al., 2018). 
Moreover, inhibition of ROS formation decreased ERK1/2 
activation in an AD model (Kim et al., 2009). The ERK pathway is 
fundamental to memory consolidation and synaptic plasticity in 
the hippocampus. Moreover, the fine regulation of ERK is crucial 
for the hippocampal functions (Goedert and Spillantini, 2006). 
Notably, in our model, Aβ1-42O contributed to the abnormal 
activation of ERK1/2 and there was an obvious decrease of 
p‐ERK1/2 levels by PQM130 administration.

ERK activation is also found in reactive astrocytes, affecting 
Aβ production through ROS formation (Kim and Wong, 2009). 
Therefore, compounds inactivating astrocytes and MAPK 
pathways could reduce Aβ formation and thus prevent or 
counteract neuronal injury in the AD brain (Butterfield, 2002; 
Lee et al., 2011). Additionally, glial cells and their resident protein 
GFAP are able to combine neuronal input, control synaptic activity, 
and translate signals tightly linked to learning and memory 
by the formation of cytoskeletal filaments (Konar et al., 2011; 
Ghumatkar et al., 2015). Our results showed that PQM130 and not 
donepezil might alleviate reactive gliosis, by reason of the ability of 
this treatment to reduce levels of GFAP in the hippocampus of the 
Aβ1-42O-lesioned mice.

BDNF belongs to the neurotrophin family of survival-
promoting molecules. It exerts significant protective effects on 

FIGURE 11 | Effects of donepezil and PQM130 treatments (0.5 or 1.0 mg/kg) on sinaptophysin levels in the Aβ1-42O-injected mice. Synaptophysin mRNA relative 
expressions in the hippocampal samples (A). The mRNA relative expressions were determined through the 2−ΔΔCt method and represented as percentage vs. the 
Sham/VH group. ACTB was used as control housekeeping gene. Synaptophysin activation was determined by Western Blotting in hippocampal samples at 33 kDa 
using β-actin (42 kDa) as loading control (B). Top: representative images of synaptophysin and β-actin expressions in hippocampus. Bottom: quantitative analysis of 
the Western blotting results for the synaptophysin levels. The values are expressed as mean ± SEM (n = 10) of each experimental group. (B: *p < 0.05 vs. Aβ/VH; 
ANOVA, post hoc test Bonferroni).
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fundamental neuronal pathways altered in AD (Nagahara et al., 
2009). The transcription of the BDNF gene is very elaborated. At 
least eight promoters encode to different mRNA transcripts, each 
containing a 5′ exon spliced to a common 3′ coding exon, and all of 
which generate the same BDNF protein (Aid et al., 2007; Chapman 
et al., 2012). We examined the expression of total BDNF mRNA, 
two 5′ exon-specific transcripts (IV and VI), and BDNF mRNA 
transcripts with a long 3′ untranslated region (3′UTR) in the 
hippocampal samples. BDNF mRNA transcripts with long 3′UTRs 
play essential roles in dendritic spine morphology and long-lasting 
synaptic plasticity (An et al., 2008; Chapman et al., 2012). In our 
model, the expression of these transcripts was not reduced by 
Aβ1-42O injection; however, PQM130 markedly increased long 
3′UTR and exon IV. Intriguingly, the increased level of BDNF in 
the hippocampus was accompanied by an up-regulated expression 
of synaptophysin. Therefore, these neurochemical results lead us to 
assume that PQM130 may activate the BDNF signaling pathway 
and thus control the expression of its downstream signaling 
components and the structural proteins associated to synaptic 
plasticity in the hippocampus, improving cognitive deficits in mice.

In conclusion, the results of this study demonstrated the 
nootropic, neuroprotective, and neurotrophic activities of the 
multi-target drug PQM130 in our AD experimental model. 
The nootropic effect could be related to the inhibition of AChE 
activity and the modulation of neuronal survival pathways, 
and consequently ameliorating the spatial memory formation. 
Neuroprotection might be attributed to its high potential as 
antioxidant, and to its ability to counteract apoptotic death and 
inflammation. Neurotrophicity might be ascribed to its increased 
BDNF and synaptophysin levels in the hippocampus. Compared 
to the first-line treatment donepezil, PQM130 appears a more 
attractive multipotent therapeutic molecule. Thus, our research 
findings prospect PQM130 as a promising candidate to be further 
investigated in AD therapy.
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