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Alzheimer disease (AD) is a progressive and deleterious neurodegenerative disorder 
that affects mostly the elderly population. At the moment, no effective treatments are 
available in the market, making the whole situation a compelling challenge for societies 
worldwide. Recently, novel mechanisms have been proposed to explain the etiology of 
this disease leading to the new concept that AD is a multifactor pathology. Among others, 
the function of mitochondria has been considered as one of the intracellular processes 
severely compromised in AD since the early stages and likely represents a common 
feature of many neurodegenerative diseases. Many mitochondrial parameters decline 
already during the aging, reaching an extensive functional failure concomitant with the 
onset of neurodegenerative conditions, although the exact timeline of these events is 
still unclear. Thereby, it is not surprising that mitochondria have been already considered 
as therapeutic targets in neurodegenerative diseases including AD. Together with an 
overview of the role of mitochondrial dysfunction, this review examines the pros and cons 
of the tested therapeutic approaches targeting mitochondria in the context of AD. Since 
mitochondrial therapies in AD have shown different degrees of progress, it is imperative 
to perform a detailed analysis of the significance of mitochondrial deterioration in AD and 
of a pharmacological treatment at this level. This step would be very important for the 
field, as an effective drug treatment in AD is still missing and new therapeutic concepts 
are urgently needed. 

Keywords: Alzheimer disease, therapeutic strategy, mitochondria, mitochondrial dysfunction, mitochondrial 
therapy

INTRODUCTION

Alzheimer disease (AD) is a complex and heterogeneous disorder strongly affecting the cognitive 
functions and the memory of seniors. 

Many risk factors were proposed to be significant contributors for the AD onset such as senescence, 
autophagy defects, genetic factors [i.e., ApolipoproteinaE-allele4 (APOE4), Triggering receptor 
expressed on myeloid cells 2 (Trem2)], microbiota alterations, lifestyle choices, cardiovascular and 
traumatic brain injury, as well as environmental factors (level of education, hypertension, obesity, 
diabetes, smoking, hearing loss, depression, physical inactivity, social isolation) (Livingston et al., 
2017). It is now well accepted that important cellular pathways are compromised in AD. Together 
with intraneuronal neurofibrillary tangles (NFT) made of hyperphosphorylated tau protein and the 
extraneuronal senile plaques (SP) made of beta-amyloid (Aβ) peptides, synaptic failure, vascular 
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damage, increased oxidative stress, neuronal and axonal injury, 
microglia-regulated neuroinflammation, and mitochondrial 
dysfunction are hallmarks of the disease (Figure 1).

Along the past years, Aβ peptides have been considered one of 
the most promising therapeutic targets for AD. However, many 
clinical studies based on the Aβ cascade hypothesis failed, and 
the idea that Aβ pathology is not anymore the leading primary 
cause of AD has risen (Morris et al., 2018). Instead, nowadays the 
belief that AD is a multi-factorial disease is growing steadily, and 
mitochondrial dysfunction is one of the factors that may actively 
contribute to the disease onset and progression (Iturria-Medina 
et al., 2017; Veitch et al., 2019). Despite that, a logical temporal 
order of the events in AD, as well as a valid and effective therapy, 
is still missing. However, our society urgently requires medical 
interventions to counteract this deleterious disease because of 
the severe negative impact on the quality of lives of the afflicted 
patients as well as on the health system as a whole due to a rapidly 
aging population. 

This review focuses on the description of the role of 
mitochondrial dysfunction and the status of mitochondrial 
therapy in AD. The main question addressed here is: could the 
mitochondrial organelle be a valid pharmacologic target to 
prevent or delay the AD onset or to block the AD progression?

MITOCHONDRIA

The mitochondrion is a cellular organelle with a characteristic 
and unique structure formed by two membranes, respectively 
called outer mitochondrial membrane (OMM) and inner 

mitochondrial membrane (IMM) that surround the matrix. 
Mitochondria are defined as the powerhouse of the cell because 
every cell in the human body relies on the energy provided by 
these organelles to sustain their vital functions. Mitochondrial 
energy production via the so-called process of oxidative 
phosphorylation takes place at the IMM through the activity 
of respiratory chain complexes (RCC), generating an inner 
membrane potential (mtΔΨ) that is used by the ATP-synthase 
enzyme complex to synthesize adenosine triphosphate (ATP). 
This process depends on the supply of reducing equivalents by 
the end-oxidation of nutrients via the Krebs cycle or β-oxidation 
in the mitochondrial matrix compartment (Stock et al., 2000). 
Mitochondria contain their own DNA (mtDNA) located in the 
matrix that encodes mainly 13 protein subunits of the RCC. All 
other mitochondrial protein components are encoded in the 
nuclear DNA (nuDNA) and are imported into the organelle after 
the translation at cytosolic ribosomes. Hence, the maintenance 
of an entire and functional mitochondrial proteome requires a 
fine-tuned and well-coordinated sequence of many reactions and 
a close integration of organellar and cellular biogenesis processes 
(Pfanner et al., 2019). 

Neurons are strictly dependent on the presence of mitochondria 
in particular at the synapses where these organelles produce ATP 
and buffer Ca2+-ion concentration, both fundamental processes 
for the implementation of neurotransmission and generation of 
membrane potential along the axon (Li et al., 2004; Verstreken 
et al., 2005; Gazit et al., 2016). This justifies the high amount of 
mitochondria at the synaptic area, higher than any other part of 
the neurons. Linked to that, a correct and efficient transport of 
neuronal mitochondria at the synaptic terminals is fundamental 

FIGURE 1 | The hallmarks that characterized AD are reported in the left side of the figure. On the right side, the mitochondria-related functions that are seriously 
compromised in AD are on focus.
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for their correct function. Both non-synaptic and synaptic 
mitochondria are usually synthesized in the neuronal soma and 
then transported in the other area of the neurons where they 
are required. The transport of mitochondria along the axons is 
guaranteed via microtubules and requires motor proteins such 
as kinesin, dynein, as well as the OMM protein Mitochondrial 
Rho GTPase (Miro). Axonal transport of mitochondria is also 
influenced by the metabolic demand and the Ca2+ status at the 
synaptic level (Yi et al., 2004; Glater et al., 2006; Russo et al., 2009; 
Sheng and Cai, 2012).

The enzymatic activity of the mitochondrial RCC results 
essentially in two “side effects.” First, the generation of the 
mtΔΨ along the IMM is essential also for the execution of 
mitochondrial import of nuclear-encoded proteins and overall it 
is a parameter that reflects the health status of mitochondria and 
cells (Shariff et al., 2004). Second, a leakage of electrons from the 
RCC contributes significantly to the formation of reactive oxygen 
species (ROS). Therefore, ROS are considered a typical by-product 
of bioenergetic pathways (Quinlan et al., 2013). However, 
under normal physiological conditions, ROS production is well 
balanced by the presence of adequate antioxidant systems, and 
the damage to the diverse cellular constituents is contained. 
However, during aging, as well as during several pathological 
conditions, in particular in neurodegenerative diseases, this 
equilibrium becomes unbalanced. Increased ROS concentrations 
result in molecular damage at the site where they are produced 
or, through diffusion, in surrounding areas, leading to the 
generation of the so-called oxidative stress condition. ROS 
targets essentially comprise all cellular macromolecules, ranging 
from proteins, lipids, carbohydrates, up to nucleic acids (Cipak 
Gasparovic et al., 2017). The hippocampus region, the cortex, 
and more generally the brain are particularly vulnerable to 
oxidative stress because of their high consumption of oxygen 
and dependence on mitochondrial energy production. This 
susceptibility is increased by low levels of antioxidant defenses 
and a high content of polyunsaturated fats, which are especially 
vulnerable to oxidative alterations (Cobley et al., 2018).

Mitochondria form a dynamic tubular network extended 
throughout the cytosol, a behavior that is often misrepresented 
by the cell biology textbooks. Two crucial processes, fusion and 
fission, regulate the entire morphology and structure of this 
mitochondrial network (Mishra and Chan, 2016). During the 
fission reaction, a part of the mitochondrial tubule is divided 
into fragments, a process that is regulated by a member of the 
dynamin family, Dynamin-1-like protein (Drp1), together with 
the OMM fission factors Mitochondrial fission 1 protein (Fis1) 
and Mitochondrial dynamics protein MID49 [Mitochondrial 
elongation factor 2 (MIEF2)]. Fusion, where two or more pieces 
of mitochondria are fused together to one structure, happens 
through joint activity of the proteins Dynamin-like 120 kDa 
protein [or Optic atrophy protein 1 (OPA1)] and Mitofusin 1 
and 2 (Mfn1 and Mfn2). Fusion/fission processes together with 
the precursor proteins import and internal proteins translation 
are part of the mitochondrial biogenesis in which the cells 
increase their mitochondrial mass (Sanchis-Gomar et al., 2014). 
A master regulator of mitochondrial biogenesis is Peroxisome-
proliferator-activated receptor γ coactivator-1α (PGC-1α) 

(Scarpulla, 2011) that activates a series of transcriptional factors, 
including the Mitochondrial transcription factor A (TFAM), 
which regulates transcription and replication of mtDNA (Kang 
et  al., 2018), and Nuclear respiratory factor 1 (NFR-1) and 2 
(NFR-2), which control the mitochondrial protein-encoded 
nuclear genes (Scarpulla, 2011).

The buffer of intracellular Ca2+ is mediated mainly by 
the cooperation between endoplasmic reticulum (ER) and 
mitochondria through the formation of contact sites (Krols 
et al., 2016) that permit the Ca2+ uptake from the cytosol and 
the exchange of the ion between the two organelles (Rizzuto 
and Pozzan, 2006). Ca2+ regulates important mitochondrial 
metabolic enzymes (McCormack et al., 1990). The mitochondria 
contain two types of Ca2+ channels: the Mitochondria calcium 
uniporter (MCU) with high selectivity for this ion and localized 
in the IMM (De Stefani et al., 2011) and the Voltage-dependent 
anion channel (VDAC) localized in the OMM that regulates the 
release of the Ca2+ from the mitochondria (Krols et al., 2016). 
Furthermore, VDAC cooperates with the adenine nucleotide 
transporter in the IMM and the cyclophin D (CypD) in the 
matrix on the formation of the mitochondrial permeability 
transition pore (mPTP) (Bernardi, 1999). An mPTP opening 
leads to activation of apoptosis and then cell death (Green and 
Kroemer, 2004). As already mentioned above, at the synaptic 
level, mitochondria regulate the amount of Ca2+ fundamental 
for neurotransmission and in general for the exertion of synaptic 
functions (Werth and Thayer, 1994; Billups and Forsythe, 2002).

Mitochondrial functions and eventually cellular homeostasis 
are guaranteed by a dedicated mitochondrial quality control 
system (mtQCS). The mtQCS comprises a multitude of different 
biochemical mechanisms that act at different levels, affecting 
individual polypeptides as well as the whole organelle. While 
the folding state and activities of mitochondrial proteins are 
controlled by endogenous chaperones and proteases (Voos, 
2013), damaged mitochondria may be removed by a selective 
autophagy pathway, termed mitophagy (Youle and Narendra, 
2011). The primary regulator of the mitophagy is a specialized 
signaling system consisting of the protein PTEN-induced kinase 
1 (Pink1) and the ubiquitin ligase Parkin that is activated after 
the loss of mtΔΨ (Rüb et al., 2017). An accumulation of Pink1 
at the OMM of damaged mitochondria is thought to recruit 
Parkin that leads to a labeling of the mitochondria for the 
subsequent mitophagy process. This is followed by the formation 
of an autophagosomal membrane engulfing the mitochondria 
followed by its fusion with the lysosomes where ultimately the 
digestion of the mitochondrial material takes place.

MITOCHONDRIAL DYSFUNCTION IN AD

In AD brain, the alteration of energetic pathways, also linked 
to the reduction of glucose consumption, is a well-established 
feature of the disease (Gibson and Shi, 2010). The glucose uptake 
in the brain is usually measured with the positron emission 
tomography (PET) tracer 18-fluorodeoxyglucose (fDG). In 
subjects with AD, PET studies have consistently demonstrated 
a low rate of glucose metabolism (between 20% and 30% 
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lower than healthy individuals) in brain regions involved in 
processing memory (e.g., the hippocampus, posterior cingulate, 
temporal, and parietal lobes) (Kapogiannis and Mattson, 2011). 
Furthermore, it was proposed that the metabolic changes 
appeared earlier than the onset of the histopathological markers 
and symptoms (Gibson and Shi, 2010). Although the real cause 
is still unclear, the defective metabolism that characterizes AD 
could be easily linked to mitochondrial dysfunction.

Since its formulation in 1992 (Hardy and Higgins, 1992), 
the “amyloid cascade hypothesis” has dominated the AD field 
in the past 30 years. This hypothesis was based on two clear 
evidences: Aβ peptides constitute the extraneuronal senile 
plaques and mutation of Aβ peptides precursor, amyloid-β 
precursor protein (APP), leads to an early onset of AD. However, 
due to the fails in all Phase III clinical trials in human AD, 
this hypothesis has substantially lost ground and needed to be 
strongly revised or integrated with other hypotheses (Karran et 
al., 2011). In 2004, a new hypothesis was proposed to explain 
the onset of sporadic AD. The hypothesis, called “mitochondrial 
cascade hypothesis,” described that each human genetic heritage 
influences mitochondrial functions with a primary repercussion 
on the onset of AD pathology. In other words, according to this 
hypothesis, the mitochondrial dysfunction is the primary process 
to trigger all the cascade of events that lead to sporadic late-onset 
AD (Swerdlow and Khan, 2004; Swerdlow et al., 2014). 

Despite the fact that the validity of the mitochondrial 
cascade hypothesis has yet to be demonstrated in different AD 
models as well as human patients, the following mitochondrial 
functions were found severely compromised in the AD context 
(Hauptmann et al., 2009): mitochondrial morphology (Johnson 
and Blum, 1970) and number (Hirai et al., 2001), oxidative 
phosphorylation, mtΔΨ, Ca2+ buffering, ROS production 
(Butterfield and Halliwell, 2019), mtDNA oxidation and 
mutation (Wang et al., 2006), mitochondrial-ER contact 
sites (Area-Gomez et al., 2018), mitochondrial biogenesis, 
mitochondrial transport along the neuronal axon (Calkins 
and Reddy, 2011), and mitophagy (Figure 1). In a neuronal 
context, any of these dysfunctional processes could lead to 
synaptic deficits and critical consequences not only for single 
neurons but also for a more complex structure like the brain  
(Cai and Tammineni, 2017). 

In AD brains, the activities of the enzymes involved in 
mitochondrial energy production, such as complex IV cytochrome 
c oxidase (COX), pyruvate dehydrogenase complex, mitochondrial 
isocitrate dehydrogenase, α-ketoglutarate dehydrogenase (αKGDH), 
and ATP synthase complex were found decreased, while the succinate 
dehydrogenase (complex II) and malate dehydrogenase activities 
were increased (Maurer et al., 2000; Cardoso et al., 2004; Gibson 
and Shi, 2010; Wojsiat et al., 2015). This definitely compromises the 
maintenance of the mtΔΨ and eventually of the mitochondrial ATP 
production (Beck et al., 2016). 

In line with that, the imbalance between ROS production and 
antioxidant power was observed in AD brains, cerebrospinal fluid 
(CSF), and blood (García-Blanco et al., 2017). Since the 1990s, the 
ROS-induced oxidative stress has received considerable attention 
as one of the main factors contributing to the AD pathogenesis 
(Mark et al., 1997). Already the mild cognitive impairment 

(MCI), an early stage in the AD chronology, is characterized by 
the significant increase of oxidative stress markers, such as lipid 
peroxidation and protein oxidation products, and the decrease of 
antioxidants in the brain and peripheral compartments (Praticò 
et al., 2002; Rinaldi et al., 2003; Butterfield et al., 2006).

The analysis of the samples from different AD experimental 
models and AD patients showed a strong link between 
the oxidative stress and mitochondrial dysfunction. In the 
transgenic mice over-expressing human APP (Tg mAPP mice), 
an early and progressive accumulation of Aβ peptide in synaptic 
mitochondria led to a mitochondrial synaptic dysfunction such 
as damaged mitochondrial respiratory activity, increased mPTP 
and oxidative stress, and impaired mitochondrial axonal transport 
(Du et al., 2010). Data from the 3xTg-AD mice showed that the 
compromised mitochondria bioenergetics together with elevated 
oxidative stress levels are early phenomena appearing before the 
development of observable Aβ plaques (Hauptmann et al., 2009; 
Yao et al., 2009). Oxidation of one of the mitochondrial enzymes 
involved in the oxidative phosphorylation, ATP synthase, was 
found in isolated lymphocytes from AD peripheral blood as well 
as in MCI and AD brains (Sultana et al., 2006; Reed et al., 2008; 
Tramutola et  al., 2018). This may explain the compromised 
activity of the ATP synthase and the reduction of ATP levels in 
AD. Another paper showed a correlation between the reduction 
of the mitochondrial enzyme Aconitase (ACO2) activity and 
the plasma antioxidant levels in peripheral lymphocytes from 
MCI and AD patients proving again the strong association 
between the oxidative stress and the mitochondrial dysfunction 
in AD (Mangialasche et al., 2015). Interestingly, the new and 
innovative technology for AD modeling obtained with the 
human induced pluripotent stem cells (iPSCs) directly from AD 
patients demonstrated further that AD-relevant mitochondrial 
aberrations, including oxidative stress, have a causative role in 
the developments of the disease. Indeed, neurons and astrocytes 
from AD-iPSCs presented increased ROS production and RCC 
levels and enhanced susceptibility to the stressors (Ochalek 
et al., 2017; Oksanen et al., 2017; Birnbaum et al., 2018).

The mitochondrial dynamics such as fusion and fission 
processes were found unbalanced in AD, potentially leading to 
i) compromised distribution and morphology of mitochondria in 
the neurons (Hirai et al., 2001) and ii) fragmented mitochondria 
observed in fibroblasts and brains from AD patients (Wang et al., 
2008a; Wang et al., 2009). The mitochondrial fusion and fission 
proteins were differentially expressed in AD hippocampus with 
an increase of the mitochondrial fission protein Fis1 alongside 
with a significant downregulation of Drp1 and fusion proteins 
Mfn1, Mfn2, and OPA1 (Wang et al., 2009). Similar results 
were found in a AD cybrids model, together with bleb like- 
and shorter mitochondria compared to control samples (Gan 
et  al., 2014). Furthermore, increased phosphorylation at Ser 
616 site and S-nitrosylation of Drp1, which both facilitate the 
mitochondrial fission (Taguchi et al., 2007; Cho et al., 2009), 
were higher in a AD brains compared to control (Wang et  al., 
2009). Beside that, the protein Drp1 was seen interacting with 
Aβ and phosphorylated tau in brain homogenates from AD 
patients (Manczak et al., 2011; Manczak and Reddy, 2012). A 
recent study performed in samples from AD and healthy control 
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subjects showed the significant association between a specific 
polymorphism in MFN2 gene and AD suggesting that genetic 
polymorphism of fusion process regulation might be involved 
in the AD pathogenesis (Kim et al., 2017). In addition, mfn2 
protein act as a tether between mitochondria and ER membranes 
(de Brito and Scorrano, 2008). In this regard, mfn2 influences the 
Presenilin 2 (PS2), whose mutation is linked to the familial AD 
(FAD), in the modulation of the mitochondria-ER contact sites  
(Filadi et al., 2016). 

Several experimental AD models linked to APP 
overexpression or Aβ peptides treatments are characterized 
as well by mitochondrial fragmentation and abnormal 
mitochondrial distribution along the neurons due to an alteration 
of mitochondrial fusion and fission proteins levels (Wang et al., 
2008b; Du et al., 2010; Zhao et al., 2010; Calkins and Reddy, 2011; 
Wang et al., 2017). All these results lead to two critical remarks: 
i) the altered balance between fusion and fission that interferes 
with mitochondrial transport contributes actively to the AD 
pathogenesis and ii) the mitochondrial dynamics impairment 
could be a new therapeutic target in AD.

Another key mitochondrial function, the mitochondrial 
biogenesis, was impaired in AD. The significant reduction of 
the number of mitochondria in AD human hippocampus and 
in cell culture models already suggests that the mitochondrial 
biogenesis is compromised (Hirai et al., 2001; Wang et al., 2008b). 
Furthermore, the level of protein regulating the mitochondrial 
biogenesis such as PGC-1α, NRF1 and 2, and TFAM was 
significantly reduced in human AD hippocampus and cellular 
models overexpressing APP Swedish mutation (Qin et al., 
2009; Sheng et al., 2012). In the AD mouse model harboring 
mutant human transgenes of APP and Presenilin-1 (PS1), the 
mitochondrial biogenesis markers were found again declined in 
particular in the hippocampus region, and the use of melatonin 
brought beneficial effects (Song et al., 2018).

Interestingly, on one side, mitophagy was able to reverse the 
memory impairment, to prevent the cognitive deterioration 
and the Aβ peptide/tau pathology in several AD models 
(Fang et al., 2019). However, on the other side, mitophagy was 
also strongly affected in AD, leading to the accumulation of 
damaged mitochondria and consequently to dysfunctional 
neurons. One cause may be the impairment of the fusion 
between the autophagosome and lysosomes. This was observed 
in cultured cells overexpressing mutant APP, in AD mouse 
models, and also in neurons from AD patients’ brain (Boland 
et al., 2008; Lee et al., 2010; Coffey et al., 2014). In AD brains, 
the somatic mutations found in mtDNA are higher than in 
healthy brains, potentially triggering other neuropathological 
consequences such as the increased ROS production in 
neurons and the promotion of amyloidogenic processing of APP  
(Lin et al., 2002).

The two major and typical histopathological markers of AD, 
Aβ peptide and tau, harmfully accumulate in or interact non-
specifically with mitochondria (Eckert et al., 2010). Aβ peptide and 
abnormal tau negatively affect axonal transport and consequently 
the transport of mitochondria along the axon from the neuronal 
soma to the synapses. AD mouse models, overexpressing Aβ 
peptides, have damaged mitochondria usually characterized by 

impaired axonal transport of mitochondria, a reduced mtΔΨ, 
and inhibited RCC with a compromised ATP production (Rui 
et al., 2006). The accumulation of Aβ peptides or of the precursor 
APP inside the mitochondria (Anandatheerthavarada et al., 
2003; Hansson Petersen et al., 2008) and even the interaction of 
Aβ peptides with some component of the mitochondrial matrix 
(Lustbader et al., 2004) would be the most straightforward and 
rational explanations to justify the mitochondrial dysfunctions 
in the animal models of AD. However, mitochondria lack APP 
and the set of the enzymes required for Aβ peptide generation, 
making a mitochondria-localized production of Aβ peptides 
unlikely. Furthermore, a solid mechanism that explains the 
mitochondrial import of Aβ peptides and the direct negative 
effects of Aβ peptides on mitochondria is still missing, suggesting 
that the mitochondrial dysfunctions identified in all these AD 
models are indirect effects of Aβ peptides. In support of this point, 
a recent study showed that Aβ peptides impaired mitochondrial 
import of nuclear-encoded precursor proteins due to an extra 
mitochondrial co-aggregation process (Cenini et al., 2016).

Tauopathies including AD are also characterized by 
mitochondrial dysfunction. Tau influences, directly and 
indirectly, the mitochondrial transport along the neuronal axon 
and the mitochondrial functions. This leads to the reduction 
and impairment of mitochondria at the presynaptic terminals 
with obvious deleterious consequences (Dubey et al., 2008; 
DuBoff et al., 2012). In AD brains, phosphorylated tau was 
found interacting with VDAC1 leading as well to mitochondrial 
dysfunction (Manczak and Reddy, 2012). Hyperphosphorylation 
of tau negatively affects complex I activity with a decrease of 
ATP production, an increase of oxidative stress, dissipation of 
mtΔΨ, induction of the mitochondrial fission, and excessive 
mitochondrial fragmentation in postmortem brains from AD 
patients and in murine models (Manczak et al., 2011; Eckert 
et al., 2014). In addition, mitochondrial stress was shown to 
promote tau-hyperphosphorylation in a mouse model (Melov 
et al., 2007). These observations argue for a prominent role of tau 
pathology in the mitochondrial dysfunction of AD. 

The Translocase of outer membrane 40 kDa submit homolog 
(Tomm40) is a mitochondrial channel localized in OMM that is 
fundamental for the import of nuclear-encoded mitochondrial 
preproteins (Chacinska et al., 2009). Aβ peptides affected 
directly or indirectly the mitochondrial import machinery 
including Tomm40, and this may also contribute to the 
mitochondrial dysfunction observed in AD (Devi et al., 2006; 
Anandatheerthavarada and Devi, 2007; Cenini et al., 2016). 
TOMM40 gene is contained in a tight gene cluster together 
with APOE gene in the chromosome 19 (Gottschalk et al., 2014; 
Subramanian et al., 2017). APOE is one of the most significant 
genetic risk factors for late-onset sporadic AD (LOAD) with the 
ε4/ε4 isoform linked to the highest risk (Saunders et al., 1993). It 
seems that also a variable-length, deoxythymidine homopolymer 
polymorphism in intron 6 of the TOMM40 gene represents 
a genetic risk for LOAD. However, different groups showed 
that TOMM40 SNPs (single-nucleotide polymorphisms) are 
associated with the LOAD (Martin et al., 2000; Takei et al., 2009; 
Kim et al., 2011; Davies et al., 2014). In a Caucasian ethnic group 
three variants of the TOMM40 polymorphisms were identified, 
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and the variant rs10524523 has received particular attention since 
it lowered the age of LOAD onset by 7 years in APOE3/4 carriers 
(Roses et al., 2010). Furthermore, this variant was associated with 
impaired cognition and the gray matter volume in the brain area 
susceptible to AD (Johnson et al., 2011). Different groups also 
demonstrated the strong influence of TOMM40 “523” variant on 
TOMM40 and APOE genes transcription (Linnertz et al., 2014; 
Payton et al., 2016).

The integration of all these facts into a significant biological 
context like neuronal cells in AD, suggests that the accumulation 
of dysfunctional mitochondria at the synapses and the lack 
of their replacement would contribute substantially to the 
neurons degeneration and consequently to the worsening of the 
AD condition.

MITOCHONDRIAL THERAPIES IN AD

AD is still without a cure and also essentially lacks a rational 
understanding of the primary event triggering the disease. 
Nevertheless, an improved comprehension of this deleterious 
disorder and the development of effective treatments are essential 
not only to heal the disease but also eventually to prevent or 
postpone the onset of the symptoms in the patients. 

The traditional cures used nowadays to treat the AD patients 
are so far the cholinesterase inhibitors (donepezil, rivastigmine, 
and galantamine) and memantine that block the N-methyl-D-
aspartate (NMDA) receptor and the excess of glutamate activity. 
NMDA receptors and acetylcholin (Ach) are fundamental in 
memory and learning processes and their concentration and 
function are compromised in AD (Francis, 2005). However, 
these treatments improve the cognitive and memory functions, 
without really slowing down the progression of the disease.

As described above, mitochondrial dysfunctions and a 
compromised energetic metabolism are two prominent aspects 
of AD pathology. Therefore, mitochondria should be seriously 
considered as pharmacological targets. In the course of history, 
nevertheless, different compounds affecting mitochondria were 
already tested in AD without a successful outcome. However, as the 
idea of AD as a multifactorial disease gained more ground in the 

last years, a reconsideration of mitochondria as a valid therapeutic 
target together with other medications is strongly recommended.

Mitochondria could be targeted through two ways: i) by 
pharmacologic approaches acting on mitochondria directly or 
ii) by action on the lifestyle that indirectly hits this organelle 
(Figure 2). In the following section, we describe the most 
popular mitochondrial treatments that have been used until 
today on AD patients, and in Table 1, we summarize specifically 
the beneficial effects of these compounds on mitochondria 
in different experimental AD models. The table is also a proof 
that these treatments are able to act effectively and positively on 
mitochondria, and therefore a revision and improvement of their 
use in AD would be worthy.

More information about the ongoing clinical trials 
concerning mitochondria in AD are summarized in Wilkins et 
al. and in Perez Ortiz et al. (Perez Ortiz and Swerdlow, 2019; 
Wilkins and Morris, 2017), and they can also be found in www.
clinicaltrials.gov. 

Antioxidants
Since the increased oxidative stress accompanied by the 
reduction of the antioxidant power was measured in the brain, 
CSF, and blood from AD patients, treatments with antioxidant 
compounds were tested to counteract this oxidative unbalance 
and slow down the progression of the AD symptoms. 

Typical antioxidants were the vitamins, E and C, but their 
effects in the context of AD remain questionable. For example, in 
two studies with vitamin E, some markers of lipid peroxidation 
were found decreased in AD patients’ CSF, with no consistent 
effect on or even a deterioration of cognitive functions (Arlt et al., 
2012; Galasko et al., 2012). Vitamin E was also administered in 
combination with selenium. However, high levels of selenium 
were found toxic with a pro-oxidant effect, glial activation, and 
neuronal death (Vinceti et al., 2014). There is an important 
study called PREADViSE that was performed to see the long-
term effect of anti-oxidant supplements (Vitamin E, selenium, 
Vitamin E + selenium or placebo) on dementia incidence among 
asymptomatic men. However, the supplement did not prevent 
dementia occurrence (Kryscio et al., 2017).

FIGURE 2 | Schematic summary of mitochondrial-targeted therapies used in AD models and clinical trials. 
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TABLE 1 | List of compounds and lifestyle activities effects on mitochondria in experimental models for AD.

Treatment Effect on mitochondria Experimental AD models References

Antioxidants
Vitamin E Increase mtΔΨ and ATP 

ROS scavenger
Reduction of lipid peroxidation

In vitro glutamate-injured astrocytes
In vivo aged old mice

(Selvaraju et al., 2014; 
Schloesser et al., 2015)

Selenium Inhibition of ROS production and oxidative damage 
Reduction of mitochondrial membrane depolarization

In vitro Aβ42-CFP-overexpressed HEK293 
cell line
In vivo scopolamine-treated aged rats

(Chen et al., 2013; Balaban 
et al., 2017)

Vitamin C Maintenance of mitochondrial integrity through reduction 
of oxidative damage 
Reduction of mitochondrial membrane depolarization and 
mitochondria-mediated apoptosis

In vitro Aβ1-42 peptide-treated human cortical 
neurons
In vivo 5XFAD Tg mice
In vivo APP/PSEN1 mice

(Medina et al., 2002; Kook 
et al., 2014; Dixit et al., 2017)

Coenzyme Q10 Attenuation of decreased oxidative phosphorylation 
efficiency and of increased H2O2 production
Reduction of mitochondrial accumulation of Aβ peptide 
Prevention of Aβ peptide-induced mPTP opening
Protection against dissipation of mtΔΨ
Beneficial effect of mitochondrial ETC

Isolated mitochondria from Aβ1-40 peptide-
treated diabetic Goto–Kakizaki aged rats 
In vitro Aβ25-35 peptide-treated HUVEC cell line 
In vitro Aβ1-42 peptide-treated M17 cell line 
In vivo TgP301S mice 
In vivo Tg19959 mice 

(Moreira et al., 2005; Dumont 
et al., 2011; Elipenahli et al., 
2012; Sadli et al., 2013; Durán-
Prado et al., 2014)

Mitoquinone 
(MitoQ)

Prevention of increased ROS production, loss of mtΔΨ, 
decreased GSH/GSSG ratio, increased MDA and 3-NT
Regulation of mitochondrial fusion, fission, and matrix 
genes
Protection of mitochondrial structure
Amelioration of ATP production, COX activity, and 
depletion of the cardiolipin

In vitro Aβ22-35 peptide-treated mouse cortical 
neurons and N2a cell line 
In vivo 3xTg-AD and Tg2576 mice
In vivo human Aβ-overexpressed C. elegans

(Manczak et al., 2010; 
McManus et al., 2011; Ng 
et al., 2014)

SkQ1 Preservation of mitochondrial structure
Improvement of mitochondrial biogenesis
Increase of COX activity
Inhibition of ROS production 
Reduction of mtDNA deletion 

In vivo OXYS rats (Loshchenova et al., 2015; 
Stefanova et al., 2016; 
Kolosova et al., 2017)

MitoApo or 
apocynin

Protection against oxidative stress-induced cell death
Reduction of superoxide production

In vitro 6-OHDA-treated LUHMES cell line (Brenza et al., 2017)

Astaxanthin Prevention of mitochondrial H2O2 production In vitro Aβ1-42 oligomers-treated mouse 
hippocampal neurons

(Lobos et al., 2016)

Melatonin Restoration of: respiration rate, RCC proteins expression, 
mtΔΨ, ROS production, ATP levels
Prevention of decreased mitochondrial volume
Improvement of mitochondrial biogenesis factors 
expression and mtDNA/nuDNA ratio
Amelioration of mitochondrial membrane fluidity and 
mitochondrial structure
Stabilization of cardiolipin and mPTP
Decrease of mitochondrial Ca2+ levels

Isolated mitochondria from APPswe and APP/
PSEN1 mice 
In vitro APPswe-overexpressed HEK293 cell 
line
In vitro Aβ22-35 peptide-treated cultured rat 
hippocampal neurons 
In vitro Aβ peptide-treated NARP cybrids cell 
line 
In vivo OXYS rats 
In vivo injection of Aβ1-42 peptide in rats 
hippocampus
In vivo APP/PSEN1 mice 

(Dong et al., 2010; Dragicevic 
et al., 2011a; Dragicevic 
et al., 2012; Peng et al., 
2012; Rosales-Corral et al., 
2012b; Gerenu et al., 2015; 
Rudnitskaya et al., 2015; Wang 
et al., 2019)

α-Lipoic acid (LA) Decrease of oxidative stress and apoptotic markers
Preservation of COX assembly
Elevation of ATP levels, Krebs cycle dehydrogenase, 
complex I, and COX activities 

In vitro AD fibroblast 
In vivo aged rats
In vitro Aβ1-42 peptide-treated differentiated 
SH-SY5Y cell line 
In vivo ApoE4 Tg mice

(Moreira et al., 2007; Ajith 
et al., 2014; Marinelli et al., 
2017)

N-Acetyl-cysteine 
(NAC)

Decrease oxidative stress and apoptotic markers
Preservation of COX assembly

In vitro AD fibroblast (Moreira et al., 2007)

Ginkgo biloba Stabilization of mtΔΨ and ATP production
Reduction of ROS/RNS production
Increase of mitochondrial APE1 levels 
Enhancement of complex I, III, COX activities 
Improvement of oxygen consumption
Up-regulation of mitochondrial DNA
Block of mitochondria-mediated apoptosis

In vitro APPmutant-overexpressed and Aβ 
peptide-treated PC12 cell line
In vitro Aβ25-35 peptide-treated IMR-32 and 
SH-SY5Y cell line 
In vitro APP-overexpressed SH-SY5Y cell line 
In vivo Aβ25-35 peptide-injected rats 

(Eckert et al., 2003; Eckert 
et al., 2005; Rhein et al., 2010; 
Tian et al., 2013; Kaur et al., 
2015)

(Continued)
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TABLE 1 | Continued

Treatment Effect on mitochondria Experimental AD models References

Szeto-Schiller 
tetrapeptides 31 
(SS31)

Increase of mitochondrial biogenesis and dynamics 
proteins level
Rescue of mitochondrial anterograde transport
ROS scavenger and reduction of H2O2 and lipid 
peroxidation levels
Prevention of mPTP, mitochondrial swelling, and 
mitochondria-mediated apoptosis
Protection of mitochondrial structure
Increase of ATP production and supply at nerve terminals
Increase of COX activity, and mtΔΨ
Increase of mtDNA copy number and mitochondrial 
network

In vitro primary neurons from Tg2576 mice
In vitro Aβ22-35 peptide-treated 
or APPswe and APPInd-overexpressed N2a 
cell line
In vivo Tg2576 mice

(Manczak et al., 2010; Calkins 
et al., 2011; Reddy et al., 
2017, Reddy et al., 2018)

Catalase Reduction of abnormal APP process, oligomeric Aβ 
peptides, and BACE1 activity and levels, and oxidative 
damage
Increase of protective soluble APPα and CTF83 fragments

In vivo MCAT/APP mice (Mao et al., 2012)

Phenylpropanoids
Resveratrol Attenuation of ROS accumulation, mtΔΨ, and 

mitochondria-mediated apoptosis
Increase of COX levels
Stimulation of mitophagy/autophagy

In vitro Aβ peptide-treated PC12 cell line
In vivo APP/PSEN1 mice 

(Jang and Surh, 2003; Porquet 
et al., 2014; Deng and Mi, 
2016; Wang et al., 2018)

Quercetin Restoration of mtΔΨ, ROS production, and ATP levels, 
and the normal mitochondrial morphology
Increase MnSOD activity
Prevention of mitochondria-mediated apoptosis

In vivo APP/PSEN1 mice 
In vitro Aβ peptide-treated rat hippocampal 
neurons 
In vitro OA-treated HT22 hippocampal 
neurons 
In vivo aluminum-treated rats

(Wang et al., 2014; Jiang et al., 
2016; Sharma et al., 2016; 
Godoy et al., 2017)

Wogonin Rescue the mtΔΨ loss 
Attenuation of mitochondria-mediated apoptosis

In vitro Tet-On Aβ42-GFP-overexpressed 
SH-SY5Y cell line
In vivo 3xTg-AD mice 

(Huang et al., 2017)

Epigallocatechin-3-
gallate (EGCG)

Attenuation of ROS accumulation 
Increase of MnSOD level
Restoration of altered mtΔΨt, ATP levels, and 
mitochondria respiratory rates

Isolated mitochondria from hippocampus, 
cortex, and striatum of APP/PSEN1 mice 
In vitro APP695-overexpressed N2a cell line 
In vitro APPmut-overexpressed 
neuroblastoma cell line
In vivo streptozotocin-infused Wistar rats

(Dragicevic et al., 2011b; 
Biasibetti et al., 2013; Zhang 
et al., 2017)

Curcumin Increase of ATP levels and COX activity
Positive effect on mtΔΨ and respiratory control ratio
Reduction of ROS production and mitochondria-mediated 
apoptosis
Restoration of complex I, II, COX levels and activities 

In vitro Aβ22-35 peptide-treated SH-SY5Y cell 
line
In vitro glutamate-treated PC12 cell line 
In vivo APP751SL mice 
In vivo APP/PSEN1 mice 
In vivo aluminum-treated rats 

(Sood et al., 2011; Chang 
et al., 2014; Hagl et al., 2014; 
Gerenu et al., 2015; Reddy 
et al., 2016)

Action of the life style

Calories restriction Decrease of F0F1-ATPase activity In vivo P301L mice (Delic et al., 2015)
Oleuropein 
aglycone (OLE) 

Stimulation of mitophagy/autophagy In vivo TgCRND8 mice (Grossi et al., 2013; Pantano 
et al., 2017)

Hydroxytyrosol 
(HT)

Reduction of mitochondrial carbonyl protein 
ROS scavenger
Enhancement of MnSOD level

In vivo APP/PSEN1 mice 
In vitro copper-treated SH-SY5Y cell line

(Peng et al., 2016; Omar et al., 
2017)

Ketones Increase of TCA cycle intermediates and ATP hydrolysis
Reduction of mitochondrial redox potential (free 
mitochondrial [NAD+]/[NADH] ratio oxidation)

In vivo 3xTg-AD mice (Pawlosky et al., 2017)

Physical exercise 
(PE)

Increase of mitochondrial mass, mtΔΨ, complexes I, COX, 
αKGDH, and ATP synthase activities 
Reduction of ROS production and mtDNA oxidative 
damage
Restoration of mitochondrial antioxidant enzymes and 
OGG1 activities 
Suppression of OGG1 and MnSOD acetylation 
Modulation of mitochondrial dynamics proteins (Mfn1 
and Drp1)

Isolated mitochondria from APP/PSEN1 mice 
In vivo swimming-trained pregnant rats
In vivo 3xTg-AD mice 

(Bo et al., 2014; Klein et al., 
2019)

(Continued)
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Targeting directly the mitochondria with antioxidant 
compounds was always one of the most considered therapeutic 
strategies in AD. In this regard, an antioxidant directed to 
mitochondria that has been tried was the coenzyme Q10 
(CoQ10). CoQ10 has a quinone structure and is a component of 
the mitochondrial RCC. In a rat model for AD, CoQ10 prevented 
the cognitive decline (Dehghani Dolatabadi et al., 2012). Still, due 
to a low bioavailability in the brain (Kwong et al., 2002), CoQ10 
has never been successful in humans. To overcome this issue, 
the mitoquinone mesylate (MitoQ) was optimized. MitoQ is 
an antioxidant compound made of ubiquinone conjugate with 
triphenylphosphonium (TPP). The TPP is necessary to target 
the molecule to the mitochondria because it helps to cross the 
lipid bilayers accumulating on the negative site of mitochondrial 
membranes (Kelso et al., 2001; Smith et al., 2003). MitoQ behaved 
as ROS scavenger and was tested in different AD model systems 
(see Table 1). Here, MitoQ shown to prevent oxidative damage, 

to protect RCC activity, to reduce Aβ peptide levels, synaptic loss, 
and astrogliosis, and to improve cognitive functions (McManus 
et al., 2011; Ng et al., 2014). As reported in the review from Ortiz 
(Perez Ortiz and Swerdlow, 2019), at the moment, MitoQ is tested 
in a small clinical trial to check its effect on cerebrovascular blood 
flow in AD. Similarly to MitoQ, other antioxidant compounds 
(SkQ1, MitoApo, astaxanthin) affect positively the mitochondrial 
functions (see Table 1) and could be potentially used to treat AD 
(Lobos et al., 2016; Stefanova et al., 2016; Brenza et al., 2017). 

Another group of antioxidant molecules such as melatonin, 
α-lipoic acid (LA), N-Acetyl-cysteine (NAC), and Ginkgo biloba 
were tested in vivo and in vitro and showed protective effects on 
Aβ peptide accumulation and mitochondrial toxicity as well as on 
cognitive functions (Dong et al., 2010; Rosales-Corral et al., 2012a). 
Melatonin is a neurohormone produced by the pineal gland with 
neuroprotective functions in AD pathogenesis (Shukla et al., 2017). 
Melatonin is a ROS scavanger and showed some anti-amyloidogenic 

TABLE 1 | Continued

Treatment Effect on mitochondria Experimental AD models References

2-deoxyglucose Increase of αKGDH level
Reduction of mitochondrial APP and Aβ oligomer level, 
mitochondrial stress response proteins levels, mtΔΨ

In vivo 3xTg-AD mice 
In vivo Aβ peptides-treated adult rats

(Guo and Mattson, 2000; Yao 
et al., 2011)

Rapamycin Prevention of decrease of mtΔΨ
Stimulation of mitophagy/autophagy

In vitro Aβ1-42 peptide-treated PC12 cell line (Xue et al., 2016)

Spermidine, 
Urolithin A, 
Actinonin

Stimulation of mitophagy/autophagy In vivo Aβ and tau Caenorhabditis elegans 
models
In vivo APP/PSEN1 mice 

(Fang et al., 2019)

Other mitochondrial-based therapy 

Nicotinamide 
adenine 
dinucleotide (NAD)

Prevention of OCR deficits
Promotion of PGC-1α level
Restoration of NAD+ and ATP level
Changes of mitochondrial dynamics fusion–fission
Block of ROS accumulation
Stimulation of mitophagy/autophagy

In vitro APP/PSEN1-overexpressed 
hippocampal neuroblastoma 
In vitro NMN-treated organotypic 
hippocampal slice cultures (OHCs)
In vivo APP/PSEN1 mice 
In vivo Aβ oligomer-infused rats
In vivo Tg2576 mice
In vivo Aβ and tau Caenorhabditis elegans 
models

(Long et al., 2015; Wang et al., 
2016; Fang et al., 2019)

Pioglitazone Restoration of mitochondrial energy metabolism and 
activity

Isolated mitochondria from APP/PSEN1 mice 
In vitro APP695-overexpressed CHO cell line

(Chang et al., 2015, Chang et 
al., 2019)

Dimebon 
(Latrepirdine)

Increase and maintenance of succinate dehydrogenase 
and RCC activities, mtΔΨ, ATP levels, TIM and TOM 
proteins levels, mitochondrial dynamics and morphology
Attenuation of Ca2+ induced mitochondrial swelling 
Restoration of impaired autophagy/mitophagy and mPTP 
proteins levels

Isolated mitochondria from rat 
In vitro mouse cortical neurons and SH-SY5Y
In vitro APPswe-overexpressed HEK293 cell 
line 
In vitro glutamate-treated CGNs

(Zhang et al., 2010; Naga and 
Geddes, 2011; Eckert et al., 
2012; Weisová et al., 2013)

AD, Alzheimer’s disease; ETC, electron transport chain; RCC, respiratory chain complexes, mtΔΨ: mitochondrial membrane potential; OCR, oxygen consumption rates; ATP, 
adenosine triphosphate; mPTP, mitochondrial permeability transition pore; mtDNA, mitochondrial deoxyribonucleic acid; nuDNA, nuclear deoxyribonucleic acid; APE1, apurinic/
apyrimidinic endonuclease 1; MnSOD, manganese superoxide dismutase; OGG1, oxoguanine DNA glycosylase-1; αKGDH, α-ketoglutarate dehydrogenase; COX, cytochrome c 
oxidase or complex IV; TIM, translocase inner membrane; TOM, translocase outer membrane; Mfn1, mitofusin-1; Drp1, dynamin-1-like protein; PGC-1α, peroxisome-proliferator-
activated receptor γ coactivator-1α; NAD, nicotinamide adenine dinucleotide; NADH, reduced nicotinamide adenine dinucleotide; ROS, reactive oxygen species; RNS, reactive nitrogen 
species; GSH, glutathione; GSSG, oxidized glutathione; 3-NT, 3-nitrotyrosine; MDA, malondiaaldehyde; SelM, selenoprotein M; 6-OHDA, 6-hydroxydopamine; OA, okadaic acid; 
H2O2, hydrogen peroxide; NMN, nicotinamide mononucleotide; Aβ, β-amyloid peptide; AβPP, β-amyloid precursor protein; PS1, presenilin 1; BACE1, β-secretase-1; HEK293, human 
embryonic kidney 293 cell lines; HUVEC, human umbilical vein endothelial cell line; M17, human neuroblastoma cell line; N2a, mouse neuroblastoma cell line; LUHMES, Lund human 
mesencephalic cell line; SH-SY5Y, human neuroblastoma cell lines; IMR-32, human neuroblastoma cell lines; PC12, pheochromocytoma of rat adrenal medulla-derived cell lines; 
OHCs, organotypic hippocampal slice cultures; NARP, cybrid cell lines bearing mtDNA mutation T8993G; CGN, cerebellar granule neurons; 5xFAD, mice expressing human APP and 
PSEN1 genes with a total of five AD-linked mutations, the Swedish, Florida, and London mutations in APP, and the M146L and L286V mutations in PSEN1; APP/PSEN1, mice contain 
human APP gene bearing the Swedish mutation and PS1 gene containing L166P mutation; TgP301S, mice expressing mutant human microtubule-associated protein tau (MAPT); 
Tg19959, mice expressing human APP gene bearing the Swedish mutation and Indiana mutation; TgCRND8, mice expressing human APP695 gene with the Swedish mutation and 
Indiana mutation; 3xTg-AD, mice contain three mutations (Swedish, MAPT, PS1) associated with familial AD; Tg2676 mice, mice expressing mutant human form of APP (isoform 
695) with Swedish mutation; APP751SL, mice expressing the human APP bearing both Swedish and the London mutation; ApoE4 Tg mice, mice expressing human apolipoprotein E 
(APOE) gene; OXYS rats, senescence-accelerated rats; MCAT, mitochondria-targeted catalase; C. elegans, Caenorhabditis elegans. 
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properties (Dong et al., 2010; Rosales-Corral et  al., 2012a). At 
mitochondrial level, melatonin prevented the ROS production, the 
cardiolipin oxidation, and the mPTP opening, restored the Ca2+ 
balance, and reduced the caspase-3 and -9 levels (Feng and Zhang, 
2004; Jou et al., 2004; Petrosillo et al., 2009; Espino et al., 2010). 
Treatments with α-lipoic acid, a cofactor for many RCC enzymes, 
exhibited a positive effect on cognitive functions in clinical trials on 
AD patients and in murine models of aging and AD, α-lipoic acid 
affected also the formation and the stabilization of Aβ peptide fibril 
as well as the protection against the Aβ peptide toxicity in cultured 
hippocampal neurons (Liu et al., 2002; Lovell et al., 2003; Ono et al., 
2006; Hager et al., 2007; Quinn et al., 2007; Sancheti et al., 2013). 
N-Acetyl-cysteine (NAC) is the precursor of the endogenous 
antioxidant glutathione (GSH), a key molecule for the maintenance 
of mitochondrial functions (Traber et al., 1992). In vitro and in vivo, 
NAC had beneficial effects on Aβ peptide and phosphorylated tau 
levels with improvement of cognitive functions, protection against 
memory decline, and reduction of oxidative stress markers (see 
also Table 1) (Studer et al., 2001; Fu et al., 2006; Huang et al., 2010; 
Costa et al., 2016). In two clinical trials, subjects with MCI, AD, or 
early memory loss were treated for a long time with a nutraceutical 
formulation that also included NAC. Improvement of cognitive 
and behavioral functions was observed (Remington et al., 2015; 
Remington et al., 2016). G. biloba is a natural antioxidant already 
used in the Chinese traditional medicine. Table 1 shows all the 
effects of G. biloba on mitochondrial functions. Two clinical trials 
were performed to test the effect of G. biloba in the prevention 
against memory and cognitive decline in older adults and AD 
subjects. Unfortunately, no positive effects were observed in these 
tests (Snitz et al., 2009; Vellas et al., 2012).

The Szeto-Schiller (SS) tetrapeptides are a group of small 
peptides that due to their structure act as antioxidants and 
can reach the mitochondrial matrix and the IMM (Szeto, 
2006). In one of AD murine models, the SS31 reduced Aβ 
peptide production, mitochondrial dysfunction, and enhanced 
mitochondrial biogenesis and synaptic activity (Calkins et  al., 
2011; Reddy et al., 2017). Recently, a combination of SS31 and 
the mitochondrial division inhibitor 1 (Mdivi1) was tested in 
cultured AD cells with positive effects, suggesting that a combined 
treatment of mitochondria-targeted antioxidants could have 
higher effectiveness (Reddy et al., 2018).

An interesting preclinical study proposed to target the 
antioxidant enzyme catalase to the mitochondria. Catalase 
catalyzes the decomposition of hydrogen peroxide (H2O2) in 
water (H2O) and oxygen (O2) and is typically localized in the 
peroxisome. A double transgenic mouse with mitochondria-
targeted catalase (MCAT) and APP was created, and the 
protective effects against abnormal APP processing, Aβ peptide 
pathology, and lifespan extension were tested. Mitochondrial 
catalase showed beneficial outcomes in this highly artificial 
model. Although most of the antioxidant clinical trials were not 
entirely successful, this study proved that a direct target of an 
antioxidant to the mitochondria might still have a chance as a 
therapeutic approach in AD (Mao et al., 2012).

Despite the oxidative stress unbalance is an evident hallmark 
in AD and some mitochondrial-targeted antioxidant strategies 
showed promising effect on cognitive functions, none entered 

so far in the market as a valid AD treatment. There are different 
reasons to justify the failures (summarized in Persson et al. paper; 
Persson et al., 2014). The antioxidants at certain concentrations 
and conditions could behave as pro-oxidants and therefore they 
are more harmful than useful. The antioxidant administration 
during the clinical trials was probably started too late during the 
development of the disease suggesting that an early intervention 
could be more effective. Last, the antioxidant bioavailability in 
the brain could be low due to the difficulty of these molecules 
to cross the blood–brain barrier (BBB) requiring a rational 
modification of their structure to overpass this issue. 

Phenylpropanoids
The phenylpropanoids are natural compounds that exert many 
physiological functions crucial for the survival of plants. In this 
heterogeneous group of substances, many subclasses have been 
identified such as stilbenoids, flavonoids, curcuminoids, phenolate 
esters, and lignans. These compounds showed an effect against 
the Aβ peptide and tau pathologies, on the activation of the 
inflammation response, on the oxidative stress, and also on the 
mitochondrial dysfunction (Kolaj et al., 2018). Between others, 
resveratrol, quercetin, wogonin, epigallocatechin-3-gallate 
(EGCG), and curcumin were already tested and showed to promote 
mitochondrial biogenesis, to impede apoptotic pathways through 
inhibition of DNA fragmentation, ROS formation, and caspase-3 
activation, and to reduce perturbation of mtΔΨ and ATP levels (see 
also Table 1 for the effects of phenylpropanoids on mitochondria 
in AD models) (Lagouge et al., 2006; Davis et al., 2009; Im et al., 
2012; Valenti et al., 2013; Reddy et al., 2016). Furthermore, these 
compounds were able to restore the mitochondrial functions in 
a transgenic mouse model of AD (Dragicevic et al., 2011b). In 
particular in an in vitro study, EGCG, a major flavonoid component 
of the green tea, accumulated in mitochondria and exerted a 
strong influence on the mitochondrial functions proposing it 
as pharmacological treatment in AD (Schroeder et  al., 2009; 
Dragicevic et al., 2011b). However, phenylpropanoids have a dual 
effect on mitochondrial function, depending on the concentration. 
For example, EGCG could increase apoptosis in cultured neurons 
at specific concentrations, while quercetin protected cultured 
hippocampal cells against Aβ peptide-induced apoptosis only 
in low concentrations (Chung et al., 2007; Ansari et al., 2009). 
Curcumin is an antioxidant compound with massive potential 
for the prevention and treatment of AD. It showed beneficial 
effects on Tg2576 AD model mice, such as reduction of the brain 
oxidative stress and the neuroinflammation, but no effect in AD 
patients, probably due to a low bioavailability (Lim et al., 2001; 
Baum et al., 2008; Ringman et al., 2012). New strategies have been 
implemented to overpass this limitation and improve the curcumin 
pharmacokinetics, such as the nanotechnology-based delivery 
system, new pharmaceutical formulations, and the change in the 
way of administration (Reddy et al., 2014; Serafini et al., 2017). 

Like the antioxidant, the use of the phenylpropanoids in AD 
treatment needs to be considered with caution and none of them 
has become a real therapy yet. The new AD clinical trials based 
on this group of molecules definitely require a broad design, a 
substantial revision, and a careful implementation.
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Action on the Lifestyle
Calories Restriction, Diet, Exercises
Lifestyle activities, in particular exercise and diet, have been 
known to act at the mitochondrial level and should therefore be 
considered as possible interventions to treat AD. Table 1 reports 
the effects of the compounds and activities strictly related to the 
lifestyle on mitochondria from AD models. 

A Mediterranean diet has been correlated to the reduction of 
the incidence of AD (Scarmeas et al., 2006; Karstens et al., 2019). 
The Mediterranean diet is mainly composed of fruits, vegetables, 
and omega-3 fatty acids, which are enriched in olive oil. It was 
observed that, for example, polyphenol-rich extra-virgin oil 
reduced mitochondria-generated oxidative stress and insulin 
resistance in high-fat diet fed rats (Lama et al., 2017). Another 
polyphenol component of olive oil called oleuropein aglycone 
(OLE) promoted autophagy, decreased aggregated proteins 
levels, and reduced the cognitive impairment in AD patients’ 
brain (Grossi et al., 2013; Cordero et al., 2018). Hydroxytyrosol 
(HT), another bioactive compound of olive oil, ameliorated 
mitochondrial dysfunction in an animal model of AD (Peng 
et al., 2016). On the other side, higher consumption of fructose 
affected negatively the mitochondrial function in hippocampus 
from adult rats, suggesting that fructose consumption should 
be actively avoided (Cigliano et al., 2018). Ketones are another 
source of energy for the brain when there is a limited amount 
of available glucose (Owen et al., 1967). The ketone ester 
diet in a model of AD (3xTgAD) had positive effects also on 
mitochondrial functions (Pawlosky et al., 2017). The therapeutic 
ketosis was suggested to reduce the AD brain pathology including 
the accumulation of Aβ plaques and NFT (Kashiwaya et al., 
2013). Of course, the results obtained in AD murine models have 
to be proven in humans through clinical trials (Puchowicz and 
Seyfried, 2017). In this regard, there are experiments going on at 
the University of Kansas about the effect of a ketogenic diet (KD) 
on participants with AD, but no definitive results are available yet 
(Taylor et al., 2018; Taylor et al., 2019).

An extreme form of diet is represented by calorie restriction 
(CR). CR is a strong limitation on calorie intake without facing a 
lack of nutrients. It is well known that CR is an excellent way to 
extend lifespan, to increase insulin sensitivity, and to prevent age-
related diseases (Mattison et al., 2017). At the mitochondrial level, 
CR showed positive effects by affecting mitochondrial biogenesis 
through the induction of NO synthetase (eNOS) (Nisoli et al., 
2005). Newly synthesized mitochondria led to an increase of 
mitophagy, reduction of ROS, increased ATP levels, and overall 
improvement of the mitochondrial quality and cell bioenergetics 
(López-Lluch et al., 2006). Furthermore, CR affected the mtDNA 
content as well as the amount of TFAM-bound mtDNA in rats 
(Picca et al., 2013). There are ongoing clinical studies around the 
world concerning the effect of CR and dietary intervention on 
MCI (Wilkins and Morris, 2017).

Physical exercise (PE) has been demonstrated to generally 
benefit the health of the body and mind, affecting properties 
such as brain plasticity and cognitive function. Hence, it could 
be a good prevention for age-related diseases (Hernández et al., 
2015; Paillard et al., 2015). It is well known that PE targets 

mitochondria and improved mitochondrial function (see Table 
1 to check the effects of PE on mitochondria in AD models). 
A study showed that PE increased mtDNA repair, ameliorated 
mitochondria respiratory function through the increase of 
RCC activity, attenuated ROS generation capacity together 
with a reduction of Aβ1-42 peptide levels, and correlated with 
an amelioration of cognitive function in the hippocampus from 
the APP/PS1 transgenic mouse model of AD (Bo et al., 2014). 
However, data obtained in another AD mouse model (3xTg-AD) 
demonstrated that short-term exercise did not augment the 
critical gene expression of mitochondrial biogenesis, even if 
the glucose metabolism was overall improved (Do et al., 2018). 
Maternal exercise during pregnancy resulted in a positive 
effect on mitochondrial function concerning the onset of AD. 
In this study, a protective effect against Aβ oligomer-induced 
neurotoxicity in the adult offspring brain rats was shown (Klein 
et al., 2019). Clinical trials with PE were performed in older 
adults with healthy as well as impaired cognitive function. 
Aβ1-42 concentration in plasma and CSF was modified. In the 
brain, improvements of cognitive and executive functions, 
and even a change of hippocampal volume and memory, were 
observed, together with a reduced brain atrophy (Baker et al., 
2010; Erickson et al., 2011; Vidoni et al., 2015; Yokoyama et al., 
2015). Of course, in these human studies, neither a direct effect 
of PE on mitochondria nor the molecular mechanisms of PE 
benefits have been proved. However, all the studies performed in 
animal models positively supported the hypothesis that PE may 
have a beneficial effect on mitochondrial functions and glucose 
metabolism also in humans.

Diet, CR, and PE can also be combined to improve the quality 
of human aging and to prevent neurodegenerative disease (Rege 
et al., 2017). These approaches were shown to affect mitophagy, 
the cellular removal mechanism for damaged mitochondria, 
indicating the mitophagy as a new and promising therapeutic 
target to prevent the progression of the diseases. Experimental 
evidences from rodent studies showed that fasting and exercises 
could have a beneficial effect not only on mitophagy but also 
on mitochondrial biogenesis, reduction of oxidative stress, 
and overall neuronal plasticity (Alirezaei et al., 2010). Other 
strategies to boost mitophagy in order to delay AD are the use 
of compounds like 2-deoxyglucose, which protects neurons and 
enhances mitochondrial functions (Table 1) (Duan and Mattson, 
1999; Yao et al., 2011). Additional molecules that promote 
autophagy/mitophagy are rapamycin, spermidine, urolithins, 
and the antibiotic actinonin (Spilman et al., 2010; Morselli et al., 
2011; Ryu et al., 2016; Fang et al., 2019). The mTOR inhibitor 
rapamycin was already demonstrated to have beneficial effects 
on a mouse AD model (Spilman et al., 2010). Testing these 
molecules in clinical AD might be worth it.

Other Mitochondria-Based AD Therapy 
Oxaloacetate 
Treatment with oxaloacetate (OOA), an intermediate of 
the Krebs cycle and gluconeogenesis, has been proposed 
as a new therapeutic approach for AD, and it was already 
tested in some AD subjects (Swerdlow et al., 2016). Studies 
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involving OOA performed in mice showed positive effects on 
glycolysis, respiratory fluxes, mtDNA and mtDNA-encoded 
proteins, activation of mitochondrial biogenesis, hippocampal 
neurogenesis activity, neuroinflammation, and change in 
brain insulin signaling (Wilkins et al., 2014). Despite there 
are no studies about the direct efficacy of OOA treatment on 
mitochondria in AD models, clinical trials with OOA in AD 
are ongoing. 

NAD
Nicotinamide adenine dinucleotide (NAD) is an intermediate 
common to several mitochondrial metabolic pathways such 
as glycolysis, TCA cycle, and oxidative phosphorylation. 
Studies on in vitro and in vivo AD models proved that NAD 
treatments acted directly on mitochondrial functions and were 
beneficial (Table 1). In the past, the effect of a stabilized oral 
NAD formulation on cognitive functions in AD patients was 
also tested. The rationale behind this testing was based on the 
enhancement of the cellular bioenergetic to improve brain 
performance in the fight against neurodegenerative diseases. 
Interestingly, after 6 months of treatment, the subjects with 
probable AD showed no cognitive deterioration suggesting 
that NAD could be an excellent method to prevent the AD 
progression (Demarin et al., 2004). However, further studies 
are needed to prove NAD as an effective treatment to slow 
down AD.

Pioglitazone
The pioglitazone is a peroxisome proliferator-activated receptor 
gamma (PPARγ) agonist. PPARγ is a ligand-activated nuclear 
transcription factor that has a role in regional transcriptional 
regulation of chr19q13.32 (Subramanian et al., 2017). This region 
contains the TOMM40-APOE-APOC1 genes and, as already 
mentioned, TOMM40 and APOE4 genes are risk factors for 
the LOAD development. Pioglitazone was able to decrease the 
transcription of TOMM40, APOE, and APOC1 genes making 
this molecule an interesting candidate in the AD therapy 
(Subramanian et al., 2017). In CHO cell line overexpressing 
APP695 isoform, pioglitazone lowered the Aβ1-42 level and 
restored the mitochondrial activity (Chang et al., 2015). These 
results were then confirmed in vivo in APP/PSEN1 mice (Table 1) 
(Chang et al., 2019). 

Pioglitazone is usually used to treat diabetes mellitus type 2. 
Some years ago, the pharmaceutical company Takeda used this 
compound in a large and global Alzheimer’s prevention study 
called TOMMORROW to slow down the progression from 
MCI to AD. The people involved were selected based on their 
APOE and TOMM40 genotype without considering Aβ status. 
In 2018, phase III of this prevention trial, unfortunately, closed 
down because the results against symptomatic AD were negative, 
despite some improvement in brain metabolism. 

Dimebon
Another compound that affects mitochondria but failed the 
AD clinical trial was dimebon (latrepirdine). Dimebon 
(latrepirdine) is an old antihistaminic drug (first generation of 

H1-antagonist) used against allergies that was selected in an AD 
clinical trial because it demonstrated cognition and memory-
enhancing properties in rats treated with neurotoxin (Bachurin 
et al., 2001). Moreover, dimebon showed a substantial effect on 
mitochondria from different AD models (Table 1). Anyway, 
dimebon lacked reproducibility in the AD clinical trials and 
showed opposite effects on neuropsychiatric and cognitive 
symptoms, and daily activities (Bachurin et al., 2001; Doody 
et  al., 2008). In a review from 2018, Eckert et al. asked the 
scientific community to reevaluate the drug dimebon as a 
potential treatment of AD since one of the clinical trials was 
able to show a slight improvement of mitochondrial functions 
after using dimebon in respect of the substantial effect on 
cognition and behavior (Eckert et al., 2018).

CONCLUSION

In a multitude of studies, mitochondrial dysfunction has been 
demonstrated to be a crucial feature of AD. Several experimental 
results suggested that a decline of mitochondrial activity 
happens during aging and may get worse at early stages of the 
disease, contributing to disease onset. However, more thorough 
investigations are needed to properly address this point. The 
suitability of the mitochondria as a target in AD treatment is 
still under discussion, considering that some pharmacological 
trials were not successful and others were more promising, but 
none led to a real marketable AD drug. Nevertheless, the current 
understanding of AD indicates that a complete cure may not be 
reachable yet. Future research efforts should be invested to i) 
understand the real chronology of events, ii) collocate correctly 
the mitochondrial dysfunction inside this temporal sequence, and 
iii) establish if the mitochondrial dysfunctions are a primary cause 
or a secondary event. Only when these three key points will be 
correctly settled, it will be easier to intervene pharmacologically 
and no more time and money will be wasted for futile therapeutic 
studies. The failures of the respective drugs or clinical trials 
often happened because the underlying scientific background 
was not always very robust or because the models and the tools 
used to prove the basal hypothesis were not always well defined 
or validated. Therefore, a more rational approach to a complex 
human disease like AD is needed as well as an improvement of 
communication between the different scientific disciplines in 
order to achieve a better understanding of the disease etiology 
and to develop new and more effective drugs.
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