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Triflusal is a platelet antiaggregant employed for the treatment and prevention of 
thromboembolic diseases. After administration, it is biotransformed into its active 
metabolite, the 2-hydroxy-4-trifluoromethylbenzoic acid (HTB). We present here an 
investigation on HTB photobinding to human serum albumin (HSA), the most abundant 
protein in plasma, using an approach that combines fluorescence, MS/MS, and 
peptide fingerprint analysis as well as theoretical calculations (docking and molecular 
dynamics simulation studies). The proteomic analysis of HTB/HSA photolysates shows 
that HTB addition takes place at the ε-amino groups of the Lys137, Lys199, Lys205, 
Lys351, Lys432, Lys525, Lys541 and Lys545 residues and involves replacement of 
the trifluoromethyl moiety of HTB with a new amide function. Only Lys199 is located 
in an internal pocket of the protein, and the remaining modified residues are placed in 
the external part. Docking and molecular dynamic simulation studies reveal that HTB 
supramolecular binding to HSA occurs in the “V-cleft” region and that the process is 
assisted by the presence of Glu/Asp residues in the neighborhood of the external Lys, 
in agreement with the experimentally observed modifications. In principle, photobinding 
can occur with other trifluoroaromatic compounds and may be responsible for the 
appearance of undesired photoallergic side effects.

Keywords: triflusal metabolite, human serum albumin, fluorescence, proteomic analysis, docking and molecular 
dynamics

INTRODUCTION

Photoactive molecules can be present in living systems as endogenous substances or they can be 
taken up from exogenous sources (Epstein, 1983; Stein and Scheinfeld, 2007; Onoue et al., 2009). 
They include drugs, cosmetics, pesticides, or dyes and can produce beneficial effects in living 
organisms, which can be used for therapeutic purposes; however, they can be turned into a biological 
damaging agent by non-harmful and low energetic light, triggering a cascade of chemical events that 
may finally result in important biological disorders (Epstein and Wintroub, 1985; Reavy et al., 1997; 
Moore, 1998; Sauvaigo et al., 2001; Moore, 2002; Cuquerella et al., 2012).
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In this context, photoallergy is associated with a cell-mediated 
immune response which is initiated by covalent binding of a 
light-activated hapten (for instance, a drug or a species derived 
therefrom) to a protein (Tokura, 2009; Ariza et al., 2011; Onoue 
et al., 2017). It is considered an emerging health concern due 
to the widespread use of topical drugs (including antibiotics, 
antifungals, antihistaminics, cardiovascular and nonsteroidal anti-
inflammatory drugs), cosmetics, and nutraceutical in humans, 
which has attracted considerable attention from both industry and 
regulatory agencies (Schothorst et al., 1972; Girotti, 2001; Deleo, 
2004; Dubakiene and Kupriene, 2006; Scheuer and Warshaw, 2006; 
Lugovic et al., 2007; Bylaite et al., 2009; Santoro and Lim, 2011; 
Elkeeb et al., 2012; Onoue et al., 2013; Honari, 2014; Kerstein et al., 
2014; Scheinfeld et al., 2014; Onoue et al., 2016).

Triflusal (2-acetoxy-4-trifluoromethylbenzoic acid), a platelet 
antiaggregant, is employed for the treatment and prevention 
of thromboembolic diseases (Messa et al., 1993; Plaza et al., 
1993; McNeely and Goa, 1998; Gonzalez-Correa and De La 
Cruz, 2006). In fact, it acts as prodrug that after administration 
is biotransformed into its active metabolite, the 2-hydroxy-
4-trifluoromethylbenzoic acid (HTB), whose half-life in the 
organism is 70-fold longer than that of triflusal. It has been 
demonstrated that not only triflusal but also HTB is capable to 
induce photoallergy in humans (Serrano et al., 1987; Lee et al., 
1999; Nagore et al., 2000; Lee et al., 2001). In this context, HTB has 
been found to be photolabile under various conditions. Its major 
photodegradation pathway appears to be the nucleophilic attack 
at the trifluoromethyl moiety. In the presence of nucleophiles 
(including amino acids, peptides, or proteins), carboxylic acid 
derivatives (esters, amides, thioesters) are formed.

Photobinding of HTB to bovine serum albumin has been 
previously monitored in our group through the fluorescence 
changes occurring upon irradiation of a drug–protein mixture, 
after isolation of the protein by gel-filtration chromatography 
(Boscá et al., 2001). In addition, formation of photoadducts 
between HTB and lysine or polylysine (Montanaro et al., 2009) 
as well as HTB photoreaction with lysine residues of the simple 
model protein ubiquitin (Nuin et al., 2016) have been observed. 
This points to a photonucleophilic addition of the lysine amino 
group to HTB as a key step in photoallergy. For a simplified 
reaction mechanism, see Scheme S1 in the ESI.

However, ubiquitin is a small protein that lacks binding 
sites and does not bind to drugs efficiently; therefore, it appears 
necessary to employ as target a transport protein present in 
human blood that is able to interact with HTB at some stage while 
the drug is developing its pharmacological action. This is the case 
of human serum albumin (HSA), the most abundant protein in 
human plasma, which is able to bind a widespread range of endo- 
and exogeneous ligands. It is a 67-kDa monomer whose primary 
structure comprises a single chain of 585 amino acid residues, 
with 17 disulfide bridges, 1 tryptophan, and 1 free cysteine; a 
α-helix of six turns forms the 67% of the secondary structure. The 
3D assembly of HSA contains three homologous helical domains 
(I-III), each divided into A and B subdomains (Peters, 1995; 
Fasano et al., 2005; Ghuman et al., 2005). Regarding the seminal 
work of Sudlow and co-workers based on the displacement of 
fluorescence probes, small ligands usually bind at one of the 
two primary sites (I and II) located in subdomains IIA and IIIA, 
respectively. Although to a lesser extent, sites with lower affinity 
can also be populated. The binding constant of HTB to HSA is 
4.7×105 M−1, with site I as the main binding site (Mis et al., 1992).

With this background, we decided to undertake an investigation 
on the possible modification of HSA lysine residues by photobinding 
of HTB. This will provide valuable information both on the 
molecular recognition center of the protein, and on the issue of 
HTB-mediated photoallergy. For this purpose, we have employed a 
combined fluorescence, proteomic and computational approach, as 
summarized in Figure 1.

RESULTS AND DISCUSSION

The obtained results are presented below, arranged in three 
sections dealing with size exclusion chromatography coupled 
with fluorescence measurements, proteomic analysis, and 
computational studies.

Fluorescence detection of covalent HTB photoadducts to HSA. 
A mixture of HTB (5 × 10−5 M) in the presence of HSA (1:1 drug/
protein molar ratio) was irradiated in a multilamp photoreactor 
(λmax = 300 nm, PBS, air, 30 min). The fluorescence spectra 
recorded before and after irradiation were markedly different 
(Figure 2). The band for the irradiated mixture was less intense 

FIGURE 1 | Approach for investigating the photobinding of HTB to HSA.
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and red-shifted (λmax = 425 nm) respect to that non-irradiated 
(λmax = 415 nm). This suggests photodegradation, in agreement with 
the previously reported photoreactivity for other trifluoromethyl-
substituted substrates (Pérez-Ruiz et al., 2018). The irradiated 
sample was then treated with guanidinium hydrochloride and 
filtered through Sephadex, in order to elute only the high-molecular 
weight components of the photomixture. The emission of the eluate 
still displayed fluorescence (λmax = 435 nm), clearly indicating 
covalent HTB photobinding to the protein. The fluorescence of a 
non-irradiated HTB/HSA mixtures filtered through Sephadex was 
negligible, indicating no photobinding.

Determination of the modified amino acid residues by proteomic 
analysis. The photobinding of HTB to HSA was then investigated 
by proteomic analysis, a tool that allows identifying which amino 
acids are modified when covalent binding to proteins occurs. For 
that purpose, an irradiated HTB/HSA mixture ([HTB] = [HSA] = 
5 × 10−5 M, λmax = 300 nm, PBS, air, 30 min) was filtered to remove 
HTB excess, submitted to trypsin digestion (to cleave peptide 
chains mainly at the carboxyl side of Lys or Arg residues, unless 
there is a neighboring Pro residue), and the resulting mixture was 
analyzed by HPLC-MS/MS, in order to investigate the modified 
peptide sequence and to undertake a detailed characterization 
of the HTB-HSA adducts. Processing of the full scan and 
fragmentation data files was performed by using the Mascot® 
database search engine, and by entering variable modifications 
that take into account Lys as the main nucleophilic sites able to 
react with the trifluoromethyl group of HTB.

The results are depicted in Figure 3A with the modified peptides 
in black and the modified amino acids in red. For clarity, the 
amino acid numbering used corresponds to that provided in PDB 
structures, where the first 24 amino acids are usually not observed. 
An increment of ca. 164 amu was observed in eight peptides. 
Formation of HTB-HSA adducts at Lys137, Lys199, Lys205, 
Lys351, Lys432, Lys525, Lys541, and Lys545 (Table 1) agrees with 

the ESI-MS/MS assigned spectra and fragmentation pattern of the 
modified peptides (see Figures 3B, C for Lys199 and Figures S1–S7 
in the ESI for the other modified Lys). The original ESI-HRMS/
MS spectra of the modified peptides and tables containing the list 
of ions detected in the ESI-HRMS/MS spectra can be found in the 
ESI (Figures S8-S15 and Tables S1-S8).

An analysis of the arrangement of the Lys residues covalently 
modified by HTB (Lys137, Lys199, Lys205, Lys351, Lys432, Lys525, 
Lys541 and Lys545) in the tridimensional structure of HSA, 
revealed that: i) the vast majority of Lys residues present in HSA 
(60) remain unmodified, ii) only Lys199 is located in an internal 
pocket of the protein, and iii) the remaining modified residues are 
placed in the external part of the protein (Figure 4). The covalent 
modification of these lysine residues was further studied at atomic 
detail by docking and molecular dynamics (MD) simulation studies, 
which is discussed below.

Computational studies to elucidate the HTB binding mode. It 
has been reported that Lys199 has an unusually low pKa of ~8 
that favors a neutral protonation state (nucleophile), allowing 
its chemical modification by electrophilic reagents, such as 
trifluoromethyl-substituted aryl halides and sulfonates (Gerig 
and Reinheimer, 1975; Gerig et al., 1978). In addition, diverse 
experimental results and computational studies have identified 
Lys199 as the key catalytic residue in the esterase activity of HSA 
(Figure 4A) (Gerig et al., 1981; Díaz et al., 2001; Lockridge et al., 
2008; Phuangsawai et al., 2014). Interestingly, all the external 
Lys residues modified by HTB have an acidic residue(s) (Glu/
Asp) in their local environments that can act as general base for 
deprotonation and therefore the generation of the nucleophile, 
which justify the experimentally observed covalent modifications 
of these external lysine residues, corresponding to non-specific 
binding of HTB to HSA (Figures 4B−G).

The selective covalent modification of Lys199 by HTB 
among all the internal lysine residues in HSA could be due to 
binding of the ligand in the identified pocket of the protein; in 
an effort to understand in atomic detail the HTB binding mode, 
computational studies were performed. To this end, molecular 
docking using GOLD 5.2.2 (Jones et al., 1997) was carried out 
using the available protein coordinates of the crystallographically 
determined HSA in complex with oxyphenbutazone (PDB 
code 2BXB) (Ghuman et al., 2005). This structure was selected 
considering the results of our previous studies with quinone 
methides generated by photoirradiation (Pérez-Ruiz et al., 
2018). These reactive intermediates proved to cause the covalent 
modification of Lys195 that is located in the vicinity of Lys199. 
The proposed binding mode of HTB was further validated by MD 
simulation studies that were performed by using the monomer 
of the HTB@HSA protein complex obtained by docking in a 
truncated octahedron of water molecules obtained with the 
molecular mechanics force field Amber (Case et al., 2005).

The results from the simulation studies showed that the 
proposed binding for HSA in the “V-cleft” region obtained by 
docking was reliable as the HTB@HSA-V-cleft complex proved 
to be very stable during 100 ns of simulation (Figure 5). Thus, 
an analysis of the root-mean-square deviation (rmsd) for the 
protein backbone (Cα, C, N, and O atoms) calculated for the 
complex obtained from MD simulation studies (100 ns) revealed 

FIGURE 2 | Fluorescence spectra (λexc = 320 nm) of non- and 30 min-irradiated 
samples of HTB alone and HTB/HSA mixtures, before and after treatment with 
guanidinium hydrochloride and Sephadex filtration. [HTB] = [HSA] = 5 × 10−5 M; 
PBS, air.
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average values of 1.8 Å (see Figure S16 in the ESI). In addition, 
no significant modifications in the position of the ligand were 
observed during the simulation (average 1.6 Å). HTB would be 
anchored to the “V-cleft” pocket of HSA by two strong hydrogen-
bonding interactions, specifically, one between the carboxylate 
group in HTB and the side chain of Ser202 and the second one 
between a fluorine atoms of CF3 in HTB and the NH group of 
Trp214 (Figures 5A, B). The stability of these interactions can be 
easily visualized by an analysis of the relative distance between 
the atoms involved in those interactions as it is shown in Figures 
5C, D. Thus, the average distances between the O12 atom (CO2 

group) in HTB and the side-chain oxygen atom (OG) in Ser202, 
and the closest fluorine atom in HTB and the aromatic nitrogen 
atom (NE1) in Trp214 were 2.9 Å and 3.4 Å, respectively. In 
addition, the aromatic ring of the ligand would be embedded in 
the apolar pocket involving the side chains of residues Leu198, 
Val455, Val344, Val343, Trp214, and Lys195 (carbon chain). It 
is worth noting the strong π-stacking interaction between the 
ligand and the indole ring of Trp214, which are stacked at a 
distance of about 4 Å during the whole simulation.

Importantly, the results of our computational studies would also 
explain the covalent modification of Lys199. Thus, (i) the CF3 moiety 

FIGURE 3 | (A) Amino acid sequence (92% coverage) obtained after irradiation of HTB in the presence of HSA, with the non-resolved amino acids in blue. 
UniProtKB access number for HSA is P02768. The modified peptides are in black, and the altered amino acid residues are in red. (B) Modified peptide with 
fragmentation ions and ESI-MS/MS assigned spectrum of 198LKCASLQK205. (C) Related data with the “y” and “b” ion series. Nomenclature for the different ion types 
is described in http://www.matrixscience.com/help/fragmentation_help.html.
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in HTB would be located in the proximity of ε-amino group of 
Lys199 with an average distance (between N and C atoms) of 5.5 Å 
during the simulation (Figure 5E), and (ii) both the nucleophile 
and the CF3 group in HTB would have the appropriate arrangement 

for the nucleophilic substitution reaction that triggers the amide 
adduct formation (Figure  5B). Moreover, these results were also 
in agreement with the previously reported displacement studies 
using ibuprofen, which is a non-steroidal anti-inflammatory drug 
with high affinity to site II, pointing to site I as clearly preferred for 
binding of HTB (Montanaro et al., 2009).

CONCLUSIONS

The active metabolite of triflusal, HTB, undergoes covalent 
photobinding to HSA. The amino acids that become modified 
in the process are eight Lys residues of the protein, seven of 
them are external, and only one (Lys 199) is located in a binding 
pocket of HSA. The mass spectrometric analysis of the adducts is 
consistent with photonucleophilic attack of the ε-amino group of 
Lys to the trifluoromethyl group of HTB, which is assisted by the 

FIGURE 4 | (A) Position of the Lys residues modified by HTB in the three-dimensional structure of HSA. Two perspectives are shown. The side chains of the 
external modified Lys residues (yellow), the internal Lys199 (orange), and the acidic residues constituting the local environment of the external Lys residues (Glu/Asp, 
green) are indicated. (B−G) Close view of the seven modified external Lys residues (Lys137, Lys205, Lys351, Lys541, Lys545, Lys525, and Lys432) identified by 
proteomic analysis. Note how, for all cases, the latter residues have either Glu or Asp residues in the vicinity to deprotonate them. The position of the internal lysine 
residue Lys199 is highlighted with a yellow shadow.

TABLE 1 | Modified peptides, with experimental and calculated mass values.

Peptide Mr exp Mr calc Modified 
Lys

137KYLYEIAR144 1,218.5930 1,218.5920 137

198LKCASLQK205 1,053.5158 1,053.5164 199

200CASLQKFGER209 1,358.5912 1,358.5925 205

349LAKTYETTLEK359 1,459.7046 1,459.7082 351

429NLGKVGSK436 965.48400 965.48180 432

525KQTALVELVK534 1,291.7032 1,291.7023 525

539ATKEQLK545 980.47860 980.48140 541

542EQLKAVMDDFAAFVEK557 2,003.9174 2,003.9186 545
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presence of Glu/Asp residues in the neighborhood of the external 
Lys units. Based on docking and MD simulation studies, the HTB 
binding domain to HSA has been identified in atomic detail, and 
the covalent modification mechanism triggered upon irradiation 
can be explained. Thus, HTB is anchored to the “V-cleft” pocket 
of HSA by two strong hydrogen-bonding interactions with 
Ser202 and Trp214, with its aromatic ring embedded in the apolar 
pocket involving the Leu198, Val455, Val344, Val343, Trp214, 
and Lys195 residues. Overall, the obtained results explain the 
covalent modification of Lys199 and are relevant in connection 
with the photoallergy observed for triflusal in clinical studies.

EXPERIMENTAL SECTION

General. 2-Hydroxy-4-trifluoromethylbenzoic acid (HTB) and 
HSA were commercially available from Merck. Spectrophotometric, 
HPLC, or reagent grade solvents were used without further 
purification. Solutions of phosphate-buffered saline (PBS) (0.01 M, 
pH 7.4) were prepared by dissolving phosphate-buffered saline 
tablets in Milli-Q water.

Fluorescence Experiments. Spectra were recorded on a 
JASCO FP-8500 spectrofluorometer system, provided with a 
monochromator in the wavelength range of 200−850 nm, at 22°C. 

Experiments were performed on solutions of HTB (5 × 10−5 M) 
in the presence of HSA (at 1:1 HTB/HSA molar ratio), employing 
10 × 10 mm2 quartz cells with 4-ml capacity.

Steady-State Photolysis Experiments. Steady-state photolysis 
of HTB (5 × 10−5 M) was performed by using a 150 W Xe Lamp 
coupled to a monochromator at lamp output (lexc = 300 nm) in 
PBS under air and in the presence of protein (HTB/HSA 1:1 molar 
ratio), through Pyrex. The course of the reaction was followed by 
monitoring the changes in the fluorescence spectra of the reaction 
mixtures at increasing times.

Treatment with Guanidinium Chloride and Filtration 
through Sephadex. Guanidinium chloride (1.72 ml, 6 M) was 
added to 3 ml of HTB/HSA in PBS, in order to cause protein 
denaturation. The mixture was then filtered through a PD-10 
desalting column containing 8.3 ml of Sephadex™ G-25 medium. 
Firstly, 25 ml of pure PBS were eluted; then, 2.5 ml of the HTB/
HSA mixture treated with GndCl were also eluted; finally, 3.5 ml 
of PBS were eluted again. The absorption and emission of the final 
sample were then measured. To take into account the dilution 
factor, a similar experiment was conducted directly on HSA (in 
the absence of HTB). In this way, the ratio between the absorbance 
value before and after filtration was obtained, which was employed 
as correction factor in the experiments.

FIGURE 5 | Proposed binding mode of HTB (yellow) to HSA protein as obtained by MD simulation studies. (A) Overall view of the proposed binary HTB@HSA 
complex. Snapshot after 88 ns is shown. The side chain of the experimentally modified internal lysine residue is shown (orange). (B) Detailed view of the HTB@
HSA complex. The position of Lys199 and relevant hydrogen bonds are highlighted with a blue shadow. (C, D, E) Variation of the relative distance in the HTB@
HSA protein complex during 100 ns of simulation between: (C) the O12 atom (CO2 group) in HTB and the side-chain oxygen atom (OG) of Ser202, (D) the closest 
fluorine atom (CF3 group) in HTB and the aromatic nitrogen atom (NE1) of Trp214, and (E) the C13 atom (CF3 group) in HTB and the NZ atom of Lys199. Note how 
Lys199 is well located for nucleophilic attack to the CF3 group. Relevant side-chain residues are shown and labeled. Hydrogen-bonding interactions are shown as 
red dashed lines. The position of Lys199 and relevant hydrogen bonds are highlighted with a blue shadow.
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Protein Digestion and LC-ESI-MS/MS Analysis. The proteic 
contents of irradiated samples were enzymatically digested into 
smaller peptides using trypsin. Subsequently, these peptides 
were analyzed using nanoscale liquid chromatography coupled 
to tandem mass spectrometry (NanoLC-MS/MS). Briefly, 20 µg 
of sample were taken (according to Qubit quantitation), and the 
volume was set to 20 µl. Digestion was achieved with sequencing 
grade trypsin (Promega) according to the following steps: i) 2 mM 
DTT in 50 mM NH4HCO3 V = 25 µl, 20 min (60°C); ii) alkylation 
of thiol groups by 5.5 mM IAM in 50 mM NH4HCO3 V = 30 µl, 
30 min (dark); iii) 10 mM DTT in 50 mM NH4HCO3 V = 60 µl, 
30 min; and iv) trypsin (trypsin: protein ratio 1:20 w/w) V = 
64 µl, overnight 37°C. Digestion was stopped with 7 µl 10% TFA 
(Cf protein ca 0.28 µg/µl). Next, 5 µl of sample were loaded onto 
a trap column (NanoLC Column, 3µ C18-CL, 350 µm × 0.5 mm; 
Eksigent) and desalted with 0.1% TFA at 3 µl/min during 5 min. 
The peptides were then loaded onto an analytical column (LC 
Column, 3 µ C18-CL, 75 µm × 12 cm, Nikkyo) equilibrated in 
5% acetonitrile 0.1% formic acid. Elution was carried out with a 
linear gradient of 5% to 45% B in A for 30 min (A: 0.1% formic 
acid; B: acetonitrile, 0.1% formic acid) at a flow rate of 300 µl/min. 
Peptides were analyzed in a mass spectrometer nanoESI-qQTOF 
(5600 TripleTOF, ABSCIEX). The TripleTOF was operated in 
information-dependent acquisition mode, in which a 0.25-s 
TOF MS scan from 350–1,250 m/z was performed, followed by 
0.05-s product ion scans from 100–1,500 m/z on the 50 most 
intense 2–5 charged ions. ProteinPilot v4.5. (AB Sciex) search 
engine default parameters were used to generate peak list directly 
from 5600 TripleTOF wiff files. The obtained mgf was used for 
identification with MASCOT (v 4.0, Matrix Science). Database 
search was performed on Swiss-Prot database. Searches were 
done with tryptic specificity allowing one missed cleavage and 
a tolerance on the mass measurement of 100 ppm in MS mode 
and 0.6 Da in MS/MS mode. Carbamidomethylation of cysteine 
residues is defined as fixed modification. The modification due to 
this reagent was defined in the MASCOT server.

Docking Studies. They were carried out using program GOLD 
5.2.2 and the protein coordinates found in the crystal structure 
of HSA in complex with oxyphenbutazone (PDB code 2BXB). 
Ligand geometries were minimized using the AM1 Hamiltonian as 
implemented in the program Gaussian 09 and used as MOL2 files. 
Each ligand was docked in 25 independent genetic algorithm (GA) 
runs, and for each of these, a maximum number of 100,000 GA 
operations were performed on a single population of 50 individuals. 
Operator weights for crossover, mutation, and migration in the entry 
box were used as default parameters (95, 95, and 10, respectively) 
as well as the hydrogen bonding (4.0 Å) and van der Waals (2.5 Å) 
parameters. The position of the side chain of the experimentally 
observed modified residue was used to define the active site, and the 
radius was set to 8 Å. All crystallographic water molecules and the 
ligands were removed for docking. The “flip ring corners” flag was 
switched on, while all the other flags were off. The GOLD scoring 
function was used to rank the ligands for fitting.

Molecular Dynamics Simulations Studies. Ligand Minimization.  
The ligand geometries of the highest score solution obtained by 
docking were minimized using a restricted Hartree−Fock (RHF) 
method and a 6-31G(d) basis set, as implemented in the ab initio 

program Gaussian 09 (Frisch et al., 2009). Partial charges were 
derived by quantum mechanical calculations using Gaussian 09, 
as implemented in the R.E.D. Server (version 3.0) (Dupradeau 
et al., 2010; Vanquelef et al., 2011), according to the RESP (Cornell 
et al., 1995) model. Ligand coordinates obtained by docking were 
employed as starting point for MD simulations. The missing 
bonded and nonbonded parameters were assigned, by analogy or 
through interpolation, from those already present in the Amber 
database (GAFF) (Wang et al., 2004; Wang et al., 2006).

Generation and Minimization of the Complexes. Simulations of 
the HTB@HSA binary complex were carried out using the enzyme 
geometries in PDB code 2BXB and the ligand geometries of the 
highest score solution. Computation of the protonation state of 
titratable groups at pH 7.0 was carried out using the H++ Web 
server (Gordon et al., 2005). Addition of hydrogen and molecular 
mechanics parameters from the ff14SB (Maier et al., 2015) and 
GAFF force fields, respectively, were assigned to the protein and 
the ligands using the LEAP module of AmberTools 17. As a result 
of this analysis: i) His535 was protonated in δ position; ii) His3, 
His9, His39, His146, His242, His288, His440, His464, and His510 
were protonated in ε position; and iii) His67, His105, His128, 
His247, His338, and His367 were protonated in δ and ε positions. 
The protein was immersed in a truncated octahedron of ~25,000 
TIP3P water molecules and neutralized by addition of sodium 
ions. The system was minimized in five stages: a) minimization 
of poorly unsolved residues: 12, 33, 41, 51, 56, 60, 73, 81, 82, 84, 
94, 95, 97, 111, 114, 174, 186, 190, 205, 209, 225, 227, 240, 250, 
275, 276, 277, 297, 301, 313, 317, 321, 359, 390, 402, 436, 439, 444, 
466, 513, 519, 524, 532, 536, 538, 541, 545, 550, 551, 560, 562, 564, 
565, 574, and 580 (1,000 steps, first half using steepest descent and 
the rest using conjugate gradient); b) minimization of the ligand 
(1,000 steps, first half using steepest descent and the rest using 
conjugate gradient); c) minimization of the solvent and ions (5,000 
steps, first half using steepest descent and the rest using conjugate 
gradient); d) minimization of the side-chain residues, waters, and 
ions (5,000 steps, first half using steepest descent and the rest using  
conjugate gradient); and e) final minimization of the whole system 
(5,000 steps, first half using steepest descent, and the rest using 
conjugate gradient). A positional restraint force of 50 kcal mol−1 
Å−2 was applied to not minimized residues of the protein during 
the stages a−c and to α carbons during the stage d, respectively.

Simulations. MD simulations were performed using the pmemd.
cuda_SPFP (Goetz et al., 2012; Le Grand et al., 2013; Salomon-
Ferrer et al., 2013) module from the AMBER 16 suite of programs. 
Periodic boundary conditions were applied, and electrostatic 
interactions were treated using the smooth particle mesh Ewald 
method (PME) (Darden et al., 1993) with a grid spacing of 1 Å. 
The cutoff distance for the nonbonded interactions was 9 Å. The 
SHAKE algorithm (Ryckaert et al., 1977) was applied to all bonds 
containing hydrogen using a tolerance of 10−5 Å and an integration 
step of 2.0 fs. The minimized system was then heated at 300 K at 
1 atm by increasing the temperature from 0 to 300 K over 100 ps 
and by keeping the system at 300 K another 100 ps. A positional 
restraint force of 50  kcal mol−1 Å−2 was applied to all α carbons 
during the heating stage. Finally, an equilibration of the system at 
constant volume (200 ps with positional restraints of 5 kcal mol−1 
Å−2 to α alpha carbons) and constant pressure (another 100 ps with 
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positional restraints of 5 kcal mol−1 Å−2 to α carbons) was performed. 
The positional restraints were gradually reduced from 5 to 1 mol−1 
Å−2 (5 steps, 100 ps each), and the resulting systems were allowed 
to equilibrate further (100 ps). Unrestrained MD simulations were 
carried out for 100 ns. System coordinates were collected every 10 
ps for further analysis. The molecular graphics program PyMOL 
(DeLano, 2008) was employed for visualization and depicting 
ligand/protein structures. The cpptraj module in AMBER 16 was 
used to analyze the trajectories and to calculate the rmsd of the 
protein during the simulation (Roe and Cheatham, 2013).
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