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Multiscale computational models of the heart are being extensively investigated for improved 
assessment of drug-induced torsades de pointes (TdP) risk, a fatal side effect of many 
drugs. Model-derived metrics such as action potential duration and net charge carried by 
ionic currents (qNet) have been proposed as potential candidates for TdP risk stratification 
after being tested on small datasets. Unlike purely statistical approaches, model-derived 
metrics are thought to provide mechanism-based classification. In particular, qNet has been 
recently proposed as a surrogate metric for early afterdepolarizations (EADs), which are 
known to be cellular triggers of TdP. Analysis of critical model components and of the ion 
channels that have major impact on model-derived metrics can lead to improvements in 
the confidence of the prediction. In this paper, we analyze large populations of virtual drugs 
to systematically examine the influence of different ion channels on model-derived metrics 
that have been proposed for proarrhythmic risk assessment. We demonstrate via global 
sensitivity analysis (GSA) that model-derived metrics are most sensitive to different sets of 
input parameters. Similarly, important differences in sensitivity to specific channel blocks are 
highlighted when classifying drugs into different risk categories by either qNet or a metric 
directly based on simulated EADs. In particular, the higher sensitivity of qNet to the block 
of the late sodium channel might explain why its classification accuracy is better than that 
of the EAD-based metric, as shown for a small set of known drugs. Our results highlight 
the need for a better mechanistic interpretation of promising metrics like qNet based on a 
formal analysis of models. GSA should, therefore, constitute an essential component of the 
in silico workflow for proarrhythmic risk assessment, as an improved understanding of the 
structure of model-derived metrics could increase confidence in model-predicted risk.

Keywords: global sensitivity analysis, torsades de pointes, computational modeling, early afterdepolarizations, 
ion channel pharmacology

INTRODUCTION

Drug-induced torsades de pointes (TdP) is a specific form of polymorphic ventricular tachycardia that 
may lead to ventricular fibrillation and sudden cardiac death (Yap and Camm, 2003). Several drugs 
have been withdrawn from the market in the past due to TdP risk Gintant, (2008). Although the current 
clinical safety guidelines are successfully preventing drugs with torsadogenic risk from reaching the 
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market (Sager et al., 2014), safe drugs may be potentially excluded 
due to the low specificity of the screening process, which targets only 
the hERG channels. The Comprehensive in vitro Proarrhythmia 
Assay (CiPA) is a global initiative to provide revised guidelines for 
better evaluation of the proarrhythmic risk of drugs (Fermini et al., 
2016). In silico evaluation of proarrhythmic action for different 
compounds constitutes an important foundation under the CiPA 
initiative to link data from in vitro assays to changes in cell behavior 
(Colatsky et al., 2016; Fermini et al., 2016).

The main component of the in silico evaluation are classifiers 
that are based on the so-called “derived features,” input variables 
for the classifiers that are extracted from the outputs of biophysical 
models. The term “direct features” refers instead to the original 
feature set estimated from experiments investigating how drugs 
affect ion channel kinetics. Biophysical models serve as complex 
transformations that generate feature sets conditioned to the prior 
knowledge used in creating the model, thus potentially improving 
the efficacy of linear classifiers in inferring TdP risk. Diverse sets 
of derived features have been suggested as potential candidates for 
TdP risk classification (Table 1). In one of the earliest works on the 
use of the myocyte models for TdP risk prediction, simulated action 
potential duration at 90% repolarization (APD90) was shown to 
provide the best discrimination between torsadogenic and non-
torsadogenic drugs (Mirams et al., 2011). Other derived features 
extracted from the action potential [e.g., early afterdepolarization 
(EAD) and transmural dispersion of repolarization (TDR)] have 
also been suggested as possible candidate metrics for TdP risk 
prediction (Christophe, 2013, Christophe, 2015). Considering 
derived features from calcium transient in addition to features 
of the action potential has been shown to improve TdP risk 
discrimination (Lancaster and Sobie, 2016). Recently, tertiary TdP 
risk classifiers trained on a set of 12 drugs categorized into three 
clinical TdP risk groups (high, intermediate, and low/no risk) have 
been developed at FDA as part of the CiPA initiative (Dutta et al., 
2017; Li et al., 2017). Finally, two new derived features cqInward 
(Li et al., 2017) and qNet (Dutta et al., 2017) have been proposed to 

separate the 12 training drugs into desired target groups. The qNet 
metric was further validated on 16 test compounds (Li et al., 2018). 
Uncertainty quantification methods (Johnstone et al., 2016) have 
recently gained increased attention due to their ability to better 
estimate the confidence of the model-predicted risk (Chang et al., 
2017) by taking into account noise in the in vitro measurements of 
drug-induced effects on ionic currents, under the CiPA initiative.

Model-derived features that are directly linked to drug-
induced changes in myocyte membrane activity are promising 
metrics to provide mechanism-based classification of compounds 
into different risk categories. A simple model-derived feature, 
qNet (Dutta et al., 2017), has recently been shown to provide 
good risk discrimination and was proposed as a surrogate for the 
propensity to EADs, which are known triggers of TdP (Yan et al., 
2001). In this paper, we apply global sensitivity analysis (GSA) to 
the existing CiPA in silico framework to identify the key model 
components that derived metrics are most sensitive to. We also 
identify the inputs that are important for classifying virtual drugs 
into different risk groups based either on an EAD metric or on 
qNet. In agreement with a recent report (McMillan et al., 2017) 
showing better performance of classifiers built on simple metrics 
such as APD90, we find that qNet performs better than the EAD 
metric in classifying torsadogenic risk. Our results indicate that, 
despite being well correlated to metrics directly based on EADs, 
qNet also depends on additional parameters that seem to confer 
its better performance. Hence, our results highlight the need 
for a better mechanistic understanding of promising model-
derived metrics. In addition, our sensitivity analysis provides 
an explanation for the similar risk classification performances 
achieved by direct and derived features.

METHODS

The CiPAORd Model and Input Parameters section describes the 
in silico model used in the paper. To perform GSA, we generated 

TABLE 1 | Previously proposed derived features. 

Feature In silico model # Compounds tested Reference

APD90 Ventricular myocyte models of rabbit, rat and 
human

31 Mirams et al. (2011)

Cdrug,EAD/EFTPC Human ventricular myocyte model 31 from Mirams et al. (2011) Christophe (2013)
TDR Human ventricular myocyte model 55 from Kramer et al. (2013) Christophe (2015)
Cdrug,Arrhythmia/EFTPC 3D FEM model of human heart 12 Okada et al. (2015)
APD50 & DiastolicCa2+ Human ventricular myocyte model 86 from Mirams et al. (2011); Kramer et al. (2013) Lancaster and Sobie (2016)
cqInward Human ventricular myocyte model 12 Li et al. (2017)
TdPpopulation,score Human ventricular myocyte model 62 (55 from Kramer et al. (2013)) Passini et al. (2017)
qNet Human ventricular myocyte model 12 Dutta et al. (2017)

Cdrug,EAD - concentration of the drug that produces EAD.
Cdrug,Arrhythmia - concentration of the drug that produces arrhythmia in the model.
TDR - Transmural dispersion.
cqInward - metric that quantifies the change in the amount of charge carried by INaL and ICaL.
APD90 - Action potential duration at 90% amplitude,
APD50 - Action potential duration at 50% amplitude,
DiastolicCa2+ - Diastolic calcium concentration, and
TdPpopulation,score - The fraction of models developing repolarization abnormalities (RA) multiplied by a factor inversely related to the drug concentration at which those RA occur.
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large sets of virtual drugs, i.e., sets of perturbations to the ion 
channels parameters of the model. The details of the input 
parameters considered for generating the virtual drug population 
are presented in Sampling Virtual Drug Populations section. 
Responses to the virtual drugs were examined, and several 
model-derived features such as APD90, qNet, and peak calcium 
concentration (peakCa) were estimated. The section In Silico 
Simulations and Derived Features presents details on the derived 
features extracted from the in silico model. Virtual drugs were 
also tested for their ability to induce EADs. In the section EAD 
protocol we discuss the protocol used to test for EAD generation 
in the model. The methods used for GSA are described in the GSA 
section. Finally, the methods for classifying the 28 drugs selected 
under the CiPA initiative, which we refer to as “CiPA drugs,” with 
respect to their defined torsadogenic risk are described in the 
section Tertiary Risk Stratification of “CiPA Drugs.”

CiPAORd Model and Input Parameters
In this study, we perform GSA on the CiPAORdv1.0 endo-cell 
model type, i.e., the optimized model from Dutta et al. (2017). 
The CiPAORd model was developed at the FDA by modifying 
the O’Hara-Rudy ventricular myocyte model (O’Hara et al., 
2011) to include dynamic drug-hERG interactions for improved 
proarrhythmic risk assessment (Li et al., 2017). To simulate virtual 
drug effects, we varied nine input parameters (Table 2). Metric 
sensitivity to hERG current was evaluated by modulating three 
parameters (Li et al., 2017): Emax, which describes the concentration 
response of the drug; Ku, which indicates the unbinding reaction 
rate; and Vhalf, which represents the membrane voltage at which 
half of the drug-bound channels are open. In this paper, we refer 
to the Emax parameter that represents the static component of the 
hERG block as sbIKr, which is given by

 
sbIKr K

C
IC C

drug
h

h
drug
h=

+max
50

,  (1)

where Cdrug is the drug concentration, Kmax is the maximum drug 
effect at saturating concentrations, h is the Hill coefficient, and 
IC50 is the concentration where half maximum effect is achieved. 
Figure 1 shows the relationship between the sbIKr parameter and 

the peak IKr current for two pacing rates, 1,000 ms (panel A) and 
2,000 ms (panel B). The minimum reduction in peak IKr current 
was obtained for Ku = 1e−5 and Vhalf = −200 (see solid line with 
square markers), while the maximum reduction was observed for 
Ku = 1 and Vhalf = −1 (see solid line with circle markers). The 
ranges of Ku (1e−5 to 1) and Vhalf (−1 to 200) were set based on 
the bounds of the parameters in the 28 “CiPA drugs.”

As for the other channel currents (i.e., fast sodium current 
INa, late sodium current INaL, L-type calcium channel current 
ICaL, slow-rectifying potassium channel current IKs, inward 
rectifier potassium current IK1, and transient outward current 
Ito), we used the general Hill equation of channel block,
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where current = {INa, INaL, ICaL, IKs, IK1, Ito}, IC50,current is the 
drug concentration at which a current is reduced by half, Cdrug is 
the drug concentration, and h is the Hill coefficient. The drug-
induced blocks of channel currents bcurrent,drug are used to scale the 
maximum conductance of the current gcurrent in the in silico model 
calculated as
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We perform GSA explicitly with respect to bcurrent,drug rather 
than IC50,current, Cdrug, and h. In this study, we refer to the parameters 
of the block of INa, INaL, ICaL, IKs, IK1, and Ito as bINa, bINaL, 
bICaL, bIKs, bIK1, and bIto, respectively. Equation (2) is used in 
classification of real compounds.

Sampling Virtual Drug Populations
A first population of virtual drugs (n = 10,000) was generated via 
Saltelli’s sampling scheme (Saltelli, 2002) over a nine-dimensional 
input parametric space describing drug binding and blocks of 
ionic currents, which we refer to in the manuscript as Virtual 
Drug Population I. The Saltelli’s scheme extends Sobol sequences 
resulting in samples that are almost uniformly distributed over 
the parameter space (see the Supplemental Material for the 
marginal and joint probability distributions of virtual drug 
parameters). The parameter ranges considered for generation of 
Virtual Drug Population I are listed in Table 2.

Since parameter ranges were conservatively chosen to cover 
many possible combinations of current blocks, the actions induced 
by known drugs were located within small subregions of the larger 
parametric space. To gain further insights on the drugs belonging 
to these subregions of interest, we then generated a second virtual 
drug population (n = 10,000) based on the prior distribution of 
each of the nine parameters for the 28 “CiPA drugs” [calculated at 
1–4× effective free therapeutic plasma concentration (EFTPC)], 
which we refer to as Virtual Drug Population II. Samples were 
generated via kernel density estimation under the assumption 
of independent ion channel blocks. Kernel density estimation 
allows to approximate the probability density function of any 

TABLE 2 | Ranges of input parameters.

Parameters Min Max Description

bINa, % 0 80 Percent block of fast sodium current
bINaL, % 0 80 Percent block of late sodium current
bIto, % 0 80 Percent block of transient outward current
bIKs, % 0 80 Percent block of slowly activating delayed 

rectifier potassium current
bICaL, % 0 80 Percent block of L-type calcium channel 

current
bIK1, % 0 80 Percent block of inward rectifier potassium 

current
sbIKr 0 4 Static component of the hERG channel current
Vhalf, mV −200 −1 Degree of drug trapping for the hERG channel
Ku, ms−1 0 1 Unbinding reaction rate for the hERG channel
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random variable given a finite data sample. For the procedure, 
we performed MinMax normalization for each of the parameters 
and used a Gaussian kernel with a standard deviation of 0.08. The 
samples (virtual drugs) with parameter values outside the range 
prescribed by the “CiPA drugs” were discarded. The marginal 
distribution of the hERG channel parameters of the “CiPA drugs” 
and the marginal distribution of the hERG channel parameters of 
the virtual drugs generated by kernel density estimation are shown 
in Figure 2. The marginal and joint probability distributions 
for each of the nine examined parameters are reported in the 
Supplemental Material.

In Silico Simulations and Derived Features
The cell action potential and calcium transients were simulated 
for the two virtual populations of drugs generated for GSA and, 
separately, for the CiPA training (12 drugs) and validation (16 
drugs) datasets (Dutta et al., 2017; Li et al., 2017). Simulations 
were run on the CiPAORd endo cell model. Model simulations 
were run for 1,000 beats to achieve a steady state. The simulations 
were initialized from control (no drug) steady-state values 
and were carried out at a pacing rate of 2,000 ms to simulate 
bradycardia unless explicitly specified. The CiPAORdv1.0 model 
code accessible at https://github.com/FDA/CiPA (Chang et 
al., 2017) was used with minor modifications introduced at the 

interface level to perform simulations in the study. Briefly, model 
equations were written in C and compiled for access by the R 
programming language (version 3.2.3). The system of ordinary 
differential equations (ODEs) was then solved using the lsoda 
solver from the deSolve R package (version 1.21) with both 
relative and absolute error tolerances set to 10–6. Model-derived 
metrics listed in Table 3 were calculated from the action potential 
and the Ca2+ transients. The last five beats of a simulation were 
analyzed to extract derived features. Note that the metric qNet was 
calculated as the area under the curve traced by the net current 
(Inet = ICaL+INaL+IKr+IKs+IK1+Ito) from the beginning to the 
end of the last simulated beat as defined in Dutta et al. (2017).

EAD Protocol
Drug-induced EAD risk (i.e., the sensitivity of a cell model against 
EAD generation) was evaluated for both virtual drug populations 
and for the “CiPA drugs” in the endo cell model. The EAD risk of a 
drug was evaluated via estimation of the amount of hERG channel 
perturbation (i.e., reduction in its maximum conductance) 
required to generate EADs in addition to the drug-induced 
parameter changes. This protocol of EAD risk estimation was 
previously proposed in Dutta et al. (2017). In the paper, we refer 
to the estimate of additional perturbation as ThEAD,hERG metric. 
Simulations were run for varying degrees of IKr conductance 

FIGURE 1 | Reduction in peak IKr current for the CiPAORd model at a fixed value of the sbIKr parameter while allowing the dynamic parameters Ku and Vhalf to 
vary across the ranges 1e−5 to 1, and −200 to −1, respectively. Changes in peak IKr current after 1,000 beats of simulation at (A) a basic cycle length of 1,000 ms 
and (B) a basic cycle length of 2,000 ms. The solid line with square markers shows the minimum reduction in peak IKr current obtained at parameter values of 1e−5 
for Ku and −200 for Vhalf. The maximum reduction in peak IKr current was plotted as a solid line with circular markers. The red line indicates the difference between 
the maximum and the minimum extremes. The variations in sbIKr parameter for each of the 28 “CiPA drugs” at 1–4× EFTPC values is also shown as gray bars.

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org
https://github.com/FDA/CiPA


Global Sensitivity Analysis of Model-Derived MetricsParikh et al.

5 October 2019 | Volume 10 | Article 1054Frontiers in Pharmacology | www.frontiersin.org

reduction ranging from 0% to 100% with steps of 0.5%. The 
occurrence of EADs in a simulation was determined by analyzing 
the voltage trace of the last five beats. Beats with positive voltage 
differential (dV/dt) during the plateau phase of the AP were 
defined as carrying EADs and were detected by the code provided 
at https://github.com/FDA/CiPA (Chang et al., 2017).

GSA
GSA was performed using a variance-based sensitivity method 
(Sobol’, 2001; Saltelli et al., 2008), and Monte Carlo filtering 
(MCF) (Hornberger and Spear, 1981; Saltelli et al., 2008).

Variance-Based GSA
Sobol sensitivity analysis method (Sobol’, 2001) is a model-
independent GSA method that is based on variance 
decomposition. It relies on an all-at-a-time sampling strategy 
where output variations are induced by varying all the input factors 

simultaneously. Let a derived-metric Y from a computational 
model be represented by a function f of the input parameters,

 Y f f X X Xk= =( ) ( , , , ),X 1 2   (4)

where X={X1,X2⋯Xk} is the input parameter set. The function 
can then be decomposed into a sum of elementary functions of 
increasing dimensions,

Y f f X f X X f X Xi i
i

ij i j k k
j ii

= + + + +∑ ∑∑
>

0 12 1( ) ( , ) ( , , ) 



..

 
  (5)

The input parameters are assumed to be random variables 
that are uncorrelated and mutually independent. The functional 
decomposition can be translated into a variance decomposition. 
This allows to quantify the variance contribution to the total 
output of individual parameters and the parameter interactions,

 

V Y V V Vi ij k
j iii

( ) ,= + + +
>

∑∑∑ 
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where V V E Y Xi X X ii i
=

∼
[ ( | )]  is the first-

order effect for a given model input Xi, 
V V E Y X X V E Y X Vij X X X i j X X i Xi j ij i i j

= − −
∼ ∼, [ ( | , )] [ ( | )] [EE Y XX jj∼

( | )]
, and so on are the higher-order effects. Here, EXi

, VXi
 are 

expectation and variance taken over Xi; X∼i denotes all factors 
but Xi. The Sobol sensitivity indices are obtained as the ratio of 
partial variance to the total output variance,
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FIGURE 2 | Kernel density estimate of the hERG channel parameters Ku, sbIKr, and Vhalf (solid red curve) constructed based on the distribution of the 28 “CiPA 
drug” parameters (gray bars) (Dutta et al., 2017; Li et al., 2017). MinMax normalization was performed for each input parameter prior to kernel density estimation. 
The x axis on the top of each plot indicates the actual (denormalized) parameter ranges for each of three hERG channel parameters.

TABLE 3 | Derived features extracted from CiPAORd model. 

Derived 
Feature

Description Units

qNet Net electronic charge carried by IKr, INaL, ICaL, 
IKs, IK1, Ito currents

nC/µF

APD90 Action potential duration at 90% repolarization ms
APD50 Action potential duration at 50% repolarization ms
peakVm Peak voltage mV
diastolicCa Diastolic calcium level nM
peakCa Peak value of intracellular calcium nM
CaTD50 Calcium transient duration at 50% return to 

baseline
ms

CaTD90 Calcium transient duration at 90% return to 
baseline

ms
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The number of sensitivity indices in (7) grow exponentially 
with k, and typically only sensitivity indices of up to order 2 (S1i 
and S2i) and the total-effect indices (STi) are estimated (Iooss and 
Lemaître, 2014). The total-effect index

 
ST

E V Y X
V Y

V E Y X
V Yi

X i X i X i X ii i= = −∼ ∼ ∼ ∼[ ( | )]
( )

[ ( | )]
( )

1  (8)

measures the impact of the main effect of Xi and all its higher-
order effects (Homma and Saltelli, 1996). The Python SALib 
package was employed to perform the variance-based sensitivity 
analysis (Herman and Usher, 2017). The calculations of S1i, 
STi, and S2ij require n×(2k+2) model evaluations using Saltelli’s 
sampling scheme (Saltelli, 2002) where n is the sample size and k 
is the number of input parameters. In this study, we considered 
n  = 500 unless otherwise specified, resulting in 10,000 Monte 
Carlo samples (virtual drugs) for k = 9.

Multivariate linear regression has been used in the past (Sobie, 
2009) to identify sensitivity of outputs from cardiac cell models 
to changes in input parameters. In the Supplemental Material, 
we compare this standard linear regression technique 1 to the 
variance-based sensitivity analysis adopted in this paper.

MCF
MCF is generally used in factor-mapping tasks to identify key input 
parameters responsible for driving model outputs within or outside 
predefined target regions [refer to Saltelli et al. (2008) for a detailed 
description of the methodology]. Here, we present a brief overview 
of the MCF technique in the context of EAD sensitivity analysis of 
the CiPAORd endo cell model. After carrying out model simulations 
for the two virtual drug populations under the additional hERG 
perturbations required to induce EADs (see section EAD Protocol), 
samples were classified as either “Behavioral” (EAD−) or “Non-
behavioral” (EAD+) based on the absence or presence of EADs 
in their simulated outputs, respectively. In other words, for each 
virtual drug population, the n samples were distributed between a 
“Behavioral” subset of n1 elements and a “Non-behavioral” subset 
of n2 = n − n1 elements. For each input parameter, Xi, we then 
constructed empirical cumulative distribution functions (CDFs) 
of “Behavioral,” F X EADn i1

( | )− , and “Non-behavioral” samples, 
F X EADn i2

( | )+ . The distance between these two empirical CDFs 
provides an estimate of the sensitivity of EAD generation to 
variations in Xi. We used the Kolmogorov-Smirnov two-sample 
test statistic to quantify a D-statistic for the CDF distance and a 
p-value for the confidence of the estimate (Saltelli et al., 2008). The 
D-statistic is defined as

 d F X EAD F X EADn n n n i1 2 1 21, || ( | ) ( | )|| .= − − +maximum  (9)

The larger the D-statistic (or equivalently the smaller 
the p-value), the more important the input parameter is in 
driving the behavior of the model towards EAD (Saltelli 

1 Here and further in the paper, we discuss linear regressions with input 
features typically used in the sensitivity analysis of cell models, i.e., regressions 
with only linear combinations of features constructed from the input parameters.

et  al., 2008). The sensitivity of EADs to the different input 
parameters has been recently analyzed using multivariate 
logistic regression (Morotti and Grandi, 2016). Unlike logistic 
regression, which provides an accurate sensitivity measure 
when a hyperplane is able to separate the sub-regions of 
interest in the parameter space, the MCF method is valid 
even in more general cases, where the sub-regions of interest 
can be delineated only by highly non-linear or discontinuous 
surfaces (see Supplemental Material for comparison of the 
MCF and logistic regression methods on simple examples). 
In the absence of prior knowledge about the linearity of the 
surfaces separating the low, high, and intermediate drugs, we 
thought that the MCF method would be more appropriate. 
Moreover, MCF presents a better choice for estimating 
sensitivity indices for non-uniformly distributed data such 
as our Virtual Drug Population II. EAD sensitivity of the 
endo cell model was estimated at two different thresholds of 
additional hERG perturbations, which were inferred from the 
analysis of the 28 “CiPA drugs.” This helped us identifying 
the critical channels that allow separating the virtual drugs 
into high-, intermediate-, and low-risk groups. Further details 
of the analysis and threshold values used are provided in the 
Results section.

In addition, we also applied MCF to identify key input 
parameters responsible for separating virtual drugs into low-, 
intermediate-, and high-risk groups based on the qNet metric. 
Briefly, for each virtual drug population, the n samples were 
categorized into low- (qNet < th1), intermediate- (th1 ≤ qNet 
< th2), and high-risk (qNet ≥ th2) groups, based on the output 
qNet value. Empirical CDFs were then estimated for all input 
parameters and for all three categories of samples. Measures 
of distance between the low- and high-risk subset CDFs and 
between the high- and intermediate-risk subset CDFs were 
estimated using the Kolmogorov-Smirnov test as was also 
performed for the EAD sensitivity analysis.

Mean Decrease Accuracy
We also applied the Mean Decrease Accuracy (MDA) method 
for estimation of sensitivity. MDA or permutation feature 
importance is a commonly used machine-learning technique 
to rank the features. MDA is a model-agnostic method that 
can be applied to both classification and regression models. 
It was originally introduced to identify feature importance 
in random forest (Breiman, 2001). The importance of the 
features is evaluated individually by measuring the decrease 
in performance of the classifier/regression model after 
random permutation of the particular feature. In the context 
of sensitivity analysis of model-derived metrics, we first build 
a surrogate of the model-derived metric by fitting a linear or 
non-linear machine learning regression model (e.g., linear 
regression model, random forest regressor model, etc.) between 
the input parameters (Table 2) and the model-derived metric. 
Once trained, the model is fixed, and the performance (e.g., by 
R2 score in case of linear regression and random forest regressor 
models) is re-evaluated on modified input datasets obtained 
by randomly shuffling value entries of each of the parameters 
one at a time. Model performance is most sensitive to random 
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permutations of important parameters. In this case, the method 
is used as an alternative to Sobol sensitivity. Similarly, for 
metrics with categorical values, we build a surface separating the 
different classes by fitting a machine-learning classifier model 
(e.g., logistic regression, random forest classifier model, etc.). 
The sensitivity of metrics with categorical values is estimated by 
calculating the decrease in classification accuracy on random 
shuffling of input parameters. In this case, the method is used 
as an alternative to MCF. We used Python’s scikit-learn package 
(Pedregosa et al., 2011) to train/test the different machine-
learning models. In the Supplemental Material, we provide 
comparison of the sensitivity estimates obtained by the different 
methods in evaluation of simple hypothetical examples.

Tertiary Risk Stratification of “CiPA Drugs”
In silico simulations of blocks with the 28 “CiPA drugs” were 
carried out using the in vivo manual patch clamp measurements 
collected on the pharmacological effects of these compounds 
reported in Li et al. (2017, 2018). The effective therapeutic 
concentrations, the IC50 values, the Hill coefficient values, the 
drug binding parameters, and the defined torsadogenic risk of 
the “CiPA drugs” are listed in the Supplemental Material. “CiPA 
drugs” were simulated at four different concentrations ranging 
from 1×to 4× EFTPC. “CiPA drugs” were also simulated using 
protocols described in the EAD Protocol section at progressively 
increasing hERG channel perturbations (0–100% block). The 
“CiPA drugs” were classified based on the amount of additional 

hERG channel perturbations required to induce EADs in 
the CiPAORd endo cell model as in Dutta et al. (2017). The 
classification of the “CiPA drugs” based on the qNet, APD90, 
and peakCa metrics was also performed for comparison. The 
threshold values necessary to optimally separate the drugs into 
different groups were estimated via logistic regression.

RESULTS

GSA of Model-Derived Metrics: APD90, 
qNet, and peakCa
Variance-Based Analysis
Figure 3 shows the 2D histogram distribution of qNet, APD90, 
and peakCa values collected from the 10,000 simulations 
corresponding to the first (uniformly distributed) population 
of virtual drugs (Virtual Drug Population I). The estimated 
qNet, APD90, and peakCa values are plotted against individual 
input parameters to show their relative influence. In general, 
comparable blocks of a particular ion channel could result in 
significantly different output responses due to concomitant 
effects from other input parameters, as shown by the variability 
along the Y axis. Best-fit regression lines modeling relationship 
between the output metrics and the individual parameters are 
also added to the plots. We observed clear trends such as the 
increase in APD90 with the sbIKr parameter, the decrease in 
peakCa with the increase in the bICaL parameter, and increase in 
qNet with block of late sodium current.

FIGURE 3 | 2D histogram plot of (A) qNet, (B) APD90, and (C) peak Ca metrics as a function of different input parameters (direct features) for the 10,000 drugs of 
Virtual Population I simulated in the endo cell model.
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The Sobol sensitivity indices quantify the influence of 
individual parameters on the derived metrics. Figure 4 shows 
values of the first-order Sobol sensitivity indices (S1, solid bars) 
and total sensitivity indices (ST, transparent bars with circular 
patches) for the same three output responses: APD90, qNet, and 
peakCa simulated in the CiPAORd endo cell model. The Sobol 
sensitivity indices indicate that APD90 is the most sensitive to 
sbIKr block, qNet to sbINaL, and peakCa to bICaL. The effect of 
sbIKr on APD90 as quantified by S1 indicates that sbIKr contributes 
more than 70% of the variation observed in APD90 across the 
observed input space. qNet was found to be most sensitive to 
bINaL, sbIKr, bICaL, and bINa with contributions to the output 
variation of 40%, 26%, 16%, and 13%, respectively. bICaL had 
the strongest impact on the variability of peakCa concentrations 
with an S1 index of around 0.6. Among the different drug effects 
evaluated via in vitro ion-channel screening, the changes in the 
block of transient outward current and dynamic hERG kinetic 
parameters showed relatively minor influences on the tested 
model-derived metrics. Small differences between S1 and ST for 
several derived metrics such as APD90 and qNet suggest minor 
influence of higher-order effects (Figure 4). The S1 and ST 
sensitivity indices obtained for the other model-derived features 
(Table 3) are reported in the Supplemental Material. The 
Supplemental Material also presents sensitivity analysis results 
obtained using multivariate linear regression methods.

The R2 value of a linear regression fit indicates the proportion 
of the variance in the dependent variable that is predictable from 
a linear combination of the independent variables. The estimated 
R2 values of multivariate linear regression fits for different 
model-derived metrics are listed in Table 4. The observed values 
indicate that >90% of the variance in qNet, APD90, and peakCa 

can be attributed to the linear combination of input parameters. 
Nonlinear terms explain less than 10% of the variance of these 
derived metrics. Moreover, metrics such as qNet, APD50, APD90, 
and diastolicCa exhibited R2 values greater than 0.94. The 
CaTD90 and peakCa were the only features that had R2 values 
of less than 0.91. This was in agreement with our Sobol analysis 
where the ST index showed relatively higher values compared to 
the S1 index for both these features, indicating the role of higher-
order terms. Further analysis suggested that the role of second-
degree interactions is minimal (results not shown), thus pointing 
towards discrepancies between S1 and ST attributable to even 
higher-order terms.

Importantly, we identified key differences among most 
influential parameters regulating different model-derived 
metrics. Specifically, qNet was the only metric sensitive to the 
block of late sodium current.

MDA Method
Next, we analyzed the sensitivity of APD90, qNet, and peakCa 
for a second virtual population of 10,000 drugs (Virtual Drug 
Population II), which mimic more closely the “CiPA drugs.” 
However, estimation of Sobol indices in non-rectangular 
restricted domains is difficult and a topic of ongoing research 
(Kucherenko et al., 2017). Here, we used the MDA method to 
calculate the sensitivity indices of model-derived metrics for 
Virtual Drug Population II. A random forest regressor model 
(with hyperparameters nestimator = 100 and maxdepth = 12) was fit 
to each of the APD90, qNet, and peakCa metrics. The decrease in 
performance of the random forest regressor model was calculated 
on permutation of each input parameter. The trained models 
exhibited an excellent performance with a R2 value >0.99 for each 

FIGURE 4 | Sensitivity of APD90, qNet, and peakCa output responses to blocks of different cardiac ion channels and drug binding parameters in the CiPAORd 
endo cell model estimated via the Sobol method. The solid bars indicate the first-order sensitivity Sobol index, S1, and the transparent bars with circular patches 
show the estimated total sensitivity Sobol index, ST.

TABLE 4 | Proportion of the variance in derived metrics explained by the first order terms (i.e. the input parameters) as estimated by R2 value of multivariate linear 
regression.

qNet APD90 peakCa APD50 diastolicCa CaTD50 CaTD90 peakVm

R2 0.97 0.94 0.90 0.94 0.96 0.83 0.92 0.88
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of the APD90, qNet, and peakCa metrics. Figures 5A and B show 
the sensitivity indices obtained for Virtual Drug Population I and 
Virtual Drug Population II, respectively. The sensitivity estimates 
obtained via the MDA method were similar to Sobol ST indices 
for the Virtual Drug Population I. We observed a modest 
difference in sensitivity profile of qNet between the two virtual 
populations. For example, the qNet metric was most influenced 
by sbIKr in the second virtual population. In contrast, bINaL was 
the most influential parameter for the Virtual Drug Population I. 
The sensitivity of peakCa to bINa was negligible for Virtual Drug 
Population II. Minor changes were observed in the sensitivity 
profile of APD90 across the two populations.

Classification of CiPA Training/Validation 
Drugs Using Metric Based on EADs
Here, we wanted to examine how the findings from the GSA on 
the virtual drug population would translate for the actual “CiPA 
drugs.” Moreover, we wanted to compare the performance of 
the simpler metrics qNet, APD90, and peakCa with respect to a 
metric based directly on EAD propensity. We evaluated the EAD 
development at drug concentrations between 1× and 4× EFTPC 
while increasing the additional block of hERG channels from 
0% to 100%. Figure 6 shows action potential traces obtained by 
simulating the EAD generation protocol for four representative 
“CiPA drugs” at 4× EFTPC. We observed that high-risk drug 

dofetilide is associated with EADs in the presence of relatively 
small additional perturbations of hERG current (84.5% 
block) compared to the low- and intermediate-risk drugs. The 
intermediate-risk drug clarithromycin and the low-risk drug 
loratadine resulted in generation of EADs in the presence of 
additional perturbations of hERG block around 94%. Verapamil 
did not generate EADs under any of the tested conditions.

Using the above described protocol, we estimated the EAD 
metric (ThEAD,hERG) for all the 28 “CiPA drugs.” We also evaluated 
the qNet, APD90, and peakCa metrics for all the drugs at 1× 
to 4× EFTPC drug concentrations. The ThEAD,hERG metric was 
also estimated at 1× to 4× EFPTC drug concentrations. The 
mean metric values (average of the metric value estimated 
at 1–4× EFTPC) for each of the drugs is reported in Table 5. 
Next, we examined the correlations between these estimated 
metrics (qNet, APD90, peakCa, and ThEAD,hERG for the 28 “CiPA 
drugs” (Figure 7). In spite of the significant differences in the 
sensitivity profiles revealed by our GSA analysis, we observed 
that the metrics qNet and APD90 were highly correlated for 
the small dataset of 28 drugs. Moreover, we observed that the 
metrics qNet and APD90 also showed strong correlation with 
the ThEAD,hERG metric.

Next, we carried out classification of the 28 “CiPA drugs” 
into tertiary risk categories using the estimated qNet, APD90, 
peakCa, and ThEAD,hERG metrics. The two thresholds separating 
the drugs in the high-, intermediate-, and low-risk categories 

FIGURE 5 | Sensitivity of APD90, qNet, and peakCa output responses to blocks of different cardiac ion channels and drug-binding parameters in the CiPAORd 
endo cell model estimated via the MDA method. (A) Virtual Drug Population I—10,000 virtual drugs sampled almost uniformly over the parametric space according 
to Saltelli’s scheme and (B) Virtual Drug Population II—10,000 virtual drugs sampled from a prior distribution based on the parameters for the 28 CiPA drugs.
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were obtained by applying logistic regression. The threshold 
values of 57 and 70 for the qNet metric were estimated for 
separation of the 28 “CiPA drugs” into three risk categories. 
These values are similar to those reported in Li et al. (2018) for 
the 16 CiPA training drugs. For the ThEAD,hERG metric, the two 

threshold values of 90 and 95 separated the “CiPA drugs” into 
high-, intermediate-, and low-risk groups. Threshold values of 
307 and 367 were obtained for APD90. A threshold value of 
204 was estimated for classification of low- and intermediate-
risk drugs based on peakCa, which was not able to differentiate 
at all between intermediate- and high-risk drugs. We also built 
the ThEAD,hERG metric accounting only for the sbIKr and bICaL 
parameters (see Table 5).

Our EAD analysis shows that the drugs in the high-risk 
category consistently have a threshold value smaller than 90 
for ThEAD,hERG, even when considering only drug effects on two 
parameters, sbIKr and bICaL. The addition of dynamic hERG 
channel current parameters as well as of other input parameters 
resulted in no significant changes in the observed thresholds 
for EAD generation. The high-risk drug disopyramide from 
the CiPA validation dataset did not induce EAD in the model 
under any of the tested conditions. Similarly, ranolazine and 
metoprolol drugs that are defined as low-risk under the CiPA 
initiative had a threshold value of less than 91 for ThEAD,hERG. 
The low-risk drugs diltiazem, verapamil, nifedipine, and 
nitrendipine resulted in EADs in the model only at threshold 
values greater than 95 under all of the tested conditions. 
Intermediate-risk drugs chlorpromazine, ondansetron, 
droperidol, astemizole, clozapine, clarithromycin, and 
risperidone resulted in EADs at relatively larger thresholds 
than high-risk drugs, >90 ThEAD,hERG but lower than the low-
risk drugs, <95 ThEAD,hERG. The low-risk drug tamoxifen 
consistently resulted in EADs in the model at threshold values 
similar to intermediate-risk drugs. Pimozide, mexiletine, and 
terfenadine were among the only few drugs that switched risk 
category when the drug-induced changes of parameters other 
than sbIKr and bICaL were not considered.

Despite the high correlation among APD90, qNet, and 
ThEAD,hERG, we observed that qNet performed the best by 
classifying 24 of the 28 “CiPA drugs” correctly. APD90 correctly 
classified only 18 of the 28 drugs. The classifier based on EADs 
(ThEAD,hERG) alone instead correctly ranked only 21 drugs 
(Table 5). Figure 8 shows a scatter plot of the best performing 
metric, qNet, against the metric directly based on simulated 
EADs, ThEAD,hERG, for the 28 “CiPA drugs.” The plot again shows 
the strong correlation between the two metrics and highlights 
out some of the misclassified drugs. Ranolazine, cisapride, 
domperidone, and loratadine were not correctly ranked based 
on the EAD metric but were instead correctly classified by qNet. 
On the contrary, only risperidone was correctly classified by 
ThEAD,hERG while also being narrowly misclassified based on qNet. 
Finally, the drugs metoprolol, tamoxifen, and disopyramide were 
not correctly classified by both metrics.

Classification of Virtual Drugs via MCF
Here, we determine the most influential model parameters that 
allow separation of the virtual drug population into low-, high-, 
and intermediate-risk groups. The two populations of virtual 
drugs were partitioned into three different subsets based on the 
qNet and ThEAD,hERG thresholds obtained from analysis of the 28 
“CiPA drugs.” For MCF, we constructed CDFs for each of the 

FIGURE 6 | Typical action potential transients observed after the increase of 
additional block of hERG channel currents at a fixed drug concentration of 
4× EFPTC in the endo cell model.

FIGURE 7 | Heatmap of correlation between qNet, APD90, peakCa, and 
ThEAD,hERG metrics.
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input parameters Xi and for the low- (Xi|qNet ≥ 70) intermediate- 
(Xi|57 < qNet < 70), and high-risk (Xi|qNet ≤ 70) subsets 
partitioned based on the estimated qNet metric. Similarly, the 
CDFs for each input parameter Xi were calculated for the low- 
(Xi|ThEAD,hERG ≥ 95), intermediate- (Xi|90ThEAD,hERG < 95), and 
high-risk (Xi|ThEAD,hERG ≤ 90) subsets based on the estimated 
ThEAD,hERG metric. The distance between the CDFs of the low- 
and intermediate-risk group and high- and intermediate-risk 
groups were estimated using Kolmogorov-Smirnov statistic. The 
estimated CDFs are shown in the Supplemental Material.

Figure 9 shows the D-statistic of the sensitivity estimates. For 
the first (uniformly distributed) virtual drug population (Virtual 
Drug Population I), our results show that the parameters bINaL, 

sbIKr, bICaL, and bINa had the highest influence in separating 
between the low- and intermediate-risk groups based on the qNet 
metric (Figure 9A left). Similarly, the parameters bINaL, sbIKr, 
bINa, bICaL, and Vhalf had the highest influence in separating the 
high- and intermediate-risk drugs (Figure 9A right). Both these 
results were in agreement with our Sobol sensitivity analysis (see 
Figure 4). On the contrary, bICaL, sbIKr, and bIKs (Figure 9B) 
were the most influential parameters in categorizing the drugs into 
low-, intermediate-, and high-risk groups based on the ThEAD,hERG.

We also analyzed a second virtual population (Virtual Drug 
Population II) of 10,000 drugs sampled from a distribution based 
on the 28 “CiPA drugs” (see Sampling Virtual Drug Populations 
section for further details). The parameters bICaL, sbIKr, and 

TABLE 5 | Estimated values of the metric based on EADs, qNet, APD90, and peakCa for CiPA training (12 drugs) and validation (16 drugs) datasets.

Drug ThEAD,hERG qNet (nC/µF) APD90 (ms) peakCa (nM) TdP risk

endo cell endo cell endo cell endo cell

C1 C2 C1 C1 C1

Ibutilide 22.25 19.375 7.17 734 227 High
Quinidine* 15.62 28.12 20.80 775 206 High
Bepridil 87.625 84.25 44.59 424 229 High
Vandetanib 89.75 90.875 48.82 432 215 High
Azimilide 85.625 89.125 49.03 409 242 High
Dofetilide 87.5 88.87 51.83 376 242 High
Sotalol 89.375 90.0 56.05 363 248 High
Metoprolol 91.00 90.5 56.48 352 281 Low
Domperidone 99.625 99.625 59.91 382 163 Medium
Terfenadine 91.25 89.125 59.99 382 230 Medium
Cisapride 89.75 86.5 60.28 332 243 Medium
Droperidol 91.25 90.5 61.89 326 245 Medium
Ondansetron 91.00 91.125 62.10 340 238 Medium
Pimozide 92.75 89.625 62.14 334 215 Medium
Astemizole 92.00 92.125 62.97 318 243 Medium
Chlorpromazine 92.25 92.75 65.93 316 238 Medium
Clozapine 93.375 93.5 67.55 303 234 Medium
Tamoxifen 93.5 93.5 69.41 294 234 Low
Clarithromycin 94.00 93.875 69.56 302 220 Medium
Risperidone 93.75 93.5 70.23 290 232 Medium
Loratadine 93.75 93.75 70.44 289 233 Low
Disopyramide 95.000 95.0 72.64 288 213 High
Ranolazine 90.125 86.875 74.23 348 253 Low
Verapamil 99.25 99.125 74.85 320 157 Low
Nitrendipine 98.5 98.5 79.00 276 178 Low
Nifedipine No EAD @ 100 98.5 87.77 261 142 Low
Diltiazem No EAD @100 No EAD @ 100.0 92.05 257 130 Low
Mexiletine 97.625 94.75 92.26 304 200 Low

TdP risk classification summary

No. correctly
classified

No. correctly
classified

No. correctly
classified

No. correctly
classified

Total number 
of Drugs

Category C1 C2 C1 C1 C1

High 7 (4, 3) 6 (4, 2) 7 (4, 3) 6 (3, 3) 0 (0, 0) 8 (4, 4)
Intermediate 9 (3, 6) 7 (2, 5) 10 (4, 6) 6 (3, 3) 10 (4, 6) 11 (4, 7)
Low 5 (3, 2) 4 (2, 2) 7 (4, 3) 7 (4, 3) 5 (3, 2) 9 (4, 5)
Total 21 (10, 11) 17 (8, 9) 24 (12, 12) 18 (9, 9) 15 (7, 8) 28 (12, 16)

C1 Drug-induced modulation of nine parameters (sbIKr, Ku, Vhalf, bINa, bINaL, bICaL, bIKs, bIK1, and bIto) is considered.
C2 Only drug-induced changes in sbIKr and bICaL is considered (Vhalf = 100, Ku = 0.05).
* Quinidine resulted in EADs at drug concentrations greater than 2× EFTPC in the endo cell model. Hence, the qNet, ThEAD,hERG, APD90, and peakCa metric value reported for 
quinidine is average of the estimated metric at 1× and 2× EFTPC.
The red, yellow, and green colors in the drug column denote the high, intermediate, and low TdP risk drugs, respectively, as classified under the CiPA initiative. The metric values are 
colored red, yellow, and green depending on which risk group (high, intermediate, and low risk) the drug is classified into using the estimated metric.
Numbers in parentheses are number of drugs from training and validation set.
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bINaL had the highest influence in separating the low- and 
intermediate-risk drugs based on the qNet metric (Figure 9A left). 
The parameter bICaL played the biggest role in separating the 
low- and intermediate-risk drugs based on the ThEAD,hERG metric 
(Figure 9B left). The most influential parameters for separation of 
high- and intermediate-risk drugs based on the qNet metric were 
sbIKr and Vhalf (Figure 9A right). The parameters Ku and bICaL 
also showed some influence in addition to the sbIKr and Vhalf 
parameters for separating between the high- and intermediate-risk 
drugs based on ThEAD,hERG (Figure 9B right).

In summary, the MCF analysis highlighted significant 
differences in the relative importance of input parameters 
depending on whether drugs were categorized according to qNet 
or to ThEAD,hERG. Interestingly, late sodium current block played an 
important role in risk discrimination based on the qNet metric, 
while its influence was only minor when the ThEAD,hERG metric 
was considered (Figure 9). This provides a possible explanation 
for the different risk categorization of ranolazine, a hERG and 
late sodium blocker, by the two metrics (Figure 8). Moreover, 
differences between results for the two virtual populations 
emphasize the importance of input parameter distribution in 
determining the sensitivity profiles (Figure 9).

DISCUSSION

Uncertainties in in vitro measurements of drug-induced effects 
on ionic currents present an important concern in evaluating the 
torsadogenic risk of compounds by interrogating in silico biophysical 
models. Discrepancies in estimates for model parameters based 
on available in vitro assay data have been recently highlighted in 
uncertainty quantification studies (Johnstone et al., 2016; Chang 

et al., 2017). High uncertainty in model parameters leads to low 
confidence in model predicted risk, and thus, not surprisingly, risk 
stratification of the CiPA training drugs proved to be unreliable 
especially at high drug concentrations (Chang et al., 2017), where 
model parameter estimates are inherently less accurate. However, 
it is important to emphasize that the relative contributions of drug-
induced modulation of ion channels on output features differ 
significantly. Uncertainties in model input parameters that are 
highly influential (e.g., as revealed by sensitivity analysis) result, 
therefore, in lower confidence in the predicted risk, while errors 
in estimating less influential model parameters are better tolerated 
by risk measures (Mirams et al., 2016; Loucks et al., 2017). In this 
paper, we present a study that applies GSA within the context 
of in silico prediction of pharmacological toxicity. The target of 
GSA was the latest version of the in silico model of an isolated 
cardiac cell (Dutta et al., 2017), CiPAORd, which was developed 
under the CiPA initiative and incorporates dynamic hERG-drug 
interactions (Li et al., 2017). Our analysis explored the effects of a 
large population of virtual drugs on the seven major cardiac ion-
channel currents thought to be important in regulation of TdP. 
GSA provided a systematic understanding of the model input-
output relationships and allowed for the identification of the most 
influential parameters that regulate model-derived features used 
for proarrhythmic risk classification. The knowledge gained from 
GSA could help further improve the model structure and increase 
reliability of model-predicted risk.

GSA of Output Metrics and Risk 
Classification
Different methods and tools, each with their own advantages and 
disadvantages, allow for the analysis of the sensitivity of complex 

FIGURE 8 | Scatter plot of qNet vs ThEAD,hERG metrics. (A) For all the 28 “CiPA drugs” a high correlation of 0.92 was observed. A region of interest is expanded in (B) 
to show details of separation among the drugs across the independently determined ranges for low, intermediate, and high risk based on qNet (solid black lines) and 
ThEAD,hERG (dotted black lines) metrics. Blue regions show where both the qNet and ThEAD,hERG metric agree. The high-, intermediate-, and low-risk drugs are colored in 
red, yellow, and green, respectively, based on their torsadogenic risk. See the Supplemental Material for an additional plot of APD90 vs ThEAD,hERG metrics.
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systems to the input parameters [e.g., refer to (Saltelli et al., 2008; 
Iooss and Lemaître, 2014; Pianosi et al., 2016) for thorough reviews 
on the subject]. Simple sensitivity analyses performed by varying 
one parameter at a time have been carried out to asses the impact 
of changes in ionic currents on cardiac cellular electrophysiology 
(Romero et al., 2009; Chang et al., 2014). This type of sensitivity 
analysis, although computationally inexpensive, only quantifies the 
impact on model outputs of changes in a single input parameter 
relative to the point estimates chosen for the rest of the parameters 
that are held constant. On the contrary, GSA quantifies the effects of 
global variations over the entire input parameter space. Multivariate 
linear regression models that rely on all-at-a-time sampling 
approaches have been used in the past on the cardiac cellular models 
(Sobie, 2009) to identify how changes in model parameters affect 
different outputs of the model, to address different physiological 
questions, to improve model structure, and to suggest novel 
experiments (Sarkar and Sobie, 2010; Britton et al., 2013; Lee et al., 
2013; Sadrieh et al., 2013; Cummins et al., 2014; Devenyi and Sobie, 
2016; Devenyi et al., 2017). Recently,  application of multivariate 

logistic regression has been reported to relate perturbations in 
model parameters to the presence/absence of EADs (Morotti and 
Grandi, 2016). The multivariate linear regression is suitable and 
accurate for models with almost linear input-output relationship. 
Similarly, the logistic regression applied to determine EAD 
sensitivity is accurate if a surface separating EAD and non-EAD 
regions is close to a hyperplane.

The prior distribution of model inputs is a critical factor 
that determines sensitivity of a model-derived metric to the 
inputs. Therefore, we tested two populations of virtual drugs, 
one sampled from a uniform distribution of blocks (Virtual 
Drug Population I) and another sampled from a non-uniform 
distribution representative of the blocks of the “CiPA drugs” 
(Virtual Drug Population II). Given the lack of prior knowledge 
about the behavior of certain model-derived metrics (e.g., qNet 
and EAD-based indices), we opted for using general forms of 
GSA that are suitable for non-linear input-output relationships 
(Saltelli et al., 2008). In particular, we used the Sobol variance-
based sensitivity method (Sobol’, 2001; Saltelli et al., 2008) to 

FIGURE 9 | Ranking of the most influential model parameters for separating the virtual drugs into low-, high-, and intermediate-risk groups by MCF analysis. (A) 
Sensitivity measures for the separation of virtual drugs based on the qNet metric, and (B) based on ThEAD,hERG metric. Virtual Drug Population I—10,000 virtual drugs 
sampled almost uniformly over the parametric space according to Saltelli’s scheme. Virtual Drug Population II—10,000 virtual drugs sampled from a prior distribution 
based on the parameters for the 28 CiPA drugs.
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rank cardiac ion-channel currents. However, we found that the 
S1 and ST indices are similar for most metrics, which indicates 
that these derived features can be almost fully recovered as linear 
combinations of channel blocks (see Figure 4 and Table 4). Not 
surprisingly then, our sensitivity indices were similar to analogue 
coefficients computed via multivariate linear regression (see the 
Supplemental Material for comparison of the indices obtained 
with both methods).

The computation of Sobol ST indices is non-trivial when input 
parameters are not uniformly distributed (as for Virtual Drug 
Population II). Therefore, we employed an alternative GSA method, 
MDA, that gives a clear interpretation of feature ranking even for 
non-uniform distributions. In the Supplemental Material, we also 
show how, for a simple 2D case, MDA provides similar sensitivity 
estimates to the Sobol ST indices. To apply MDA, we first 
approximated the derived metrics by random forest metamodels. 
Then, we evaluated the accuracy of the metarepresentation upon 
random permutations of the values of a given feature. Losses in 

accuracy measured for each of the permutations provided us with 
global sensitivity estimates (Figure 5). Limitations of this method 
are (1) sensitivity estimates obtained via MDA rely on accuracy 
of the surrogate metamodel and (2) the performance of MDA 
methods suffers in case of strong correlation between inputs. 
For further comparison of different GSA methods on simple 
hypothetical examples, refer to the Supplemental Material.

For GSA of categorical outputs, we performed MCF 
(Hornberger and Spear, 1981; Saltelli et al., 2008). In particular, 
MCF was used to determine the cardiac ion channels that are 
most critical in drug classification. D-statistics from MCF were 
compared to sensitivity measures from logistic regression and 
MDA. For Virtual Drug Population I, which uniformly covers 
the entire parameter space, the results from all techniques were 
almost identical (Figure 10A). However, sensitivity estimates 
obtained for Virtual Drug Population II diverged (Figure 10B). In 
particular, for the non-uniformly distributed data, the sensitivity 
measures obtained by MCF and MDA methods were similar but 

FIGURE 10 | Ranking the most influential model parameters for separating the virtual drugs into low-, high-, and intermediate-risk groups by qNet via four different 
methods: M1—logistic regression method, M2—MDA of logistic regression, M3—MDA of random forest classifier, and M4—MCF. Sensitivity measures were 
estimated for (A) Virtual Drug Population I—10,000 virtual drugs sampled almost uniformly over the parametric space according to Saltelli’s scheme and (B) Virtual 
Drug Population II—10,000 virtual drugs sampled from a prior distribution based on the parameters for the 28 CiPA drugs.
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differed significantly from the sensitivity estimates obtained from 
logistic regression. Differences in results are likely attributable to 
how these methods respond to biases introduced by nonuniform 
distributions, such as our second virtual population of drugs.

Critical Inputs Regulating qNet, APD90, 
and peakCa
Our Sobol sensitivity analysis of the first virtual population of 
drugs identified critical input parameters for the variability of 
the different model-derived features used for TdP risk assessment 
(see Figures 4 and 5 and data in the Supplemental Material). 
More specifically, we observed that the recently proposed qNet 
metric is most sensitive to modulations in sodium currents and 
to the sbIKr parameter. sbIKr was the most influential parameter 
regulating APD90 (Figure 4). In the past, APD90 has also been 
shown, by varying one parameter at a time in the original ORd 
model (O’Hara et al., 2011), to be most sensitive to a block of 
hERG current. Furthermore, the QT interval measured in 3D 
human heart simulations (Costabal et al., 2019) with original 
ORd model (O’Hara et al., 2011) at the cellular level exhibits a 
similar sensitivity profile to APD90. This is in agreement with 
previous observations of high correlation between APD90 and 
QT interval in the cardiac model simulations (Beattie et al., 
2013). In our study, features derived from the calcium transient 
such as peakCa were found, as expected, to be most sensitive 
to the bICaL parameter. Interestingly, the recently introduced 
dynamic-hERG block parameters Vhalf and Ku (Li et al., 2017), 
which are measured using challenging experimental protocols 
(Milnes et al., 2010; Veroli et al., 2014), exhibit relatively small 
contribution to the variance of the qNet, APD90, and peakCa 
(Figure 4 and data in the Supplemental Material). Moreover, 
several cardiac ion channels/parameters that are thought to be 
important for improved drug-induced TdP risk assessments 
and measured experimentally via in vitro ion-channel screening 
(Crumb et al., 2016) showed minor influence in regulation of 
the model-derived features. For example, the block of Ito and 
IK1 showed relatively minor influence on majority of the tested 
metrics (Figures 4 and 5 and the Supplemental Material)

In spite of the above described differences in sensitivity 
profiles, several combinations of derived metrics have been 
reported to perform equally well in classifying the proarrhythmic 
risk of different drug datasets. For example, APD90 (Mirams 
et al., 2011), a metric based on APD50 and diastolicCa (Lancaster 
and Sobie, 2016) and a metric based on EADs (Christophe, 2013) 
have all been shown to provide good risk discrimination of drugs 
on the same dataset (Mirams et al., 2011). In addition, we have 
also shown previously that different derived features extracted 
from the original ORd model (O’Hara et al., 2011) show similar 
performance in TdP risk discrimination when tested on the 
combination of several datasets (Parikh et al., 2017). Overall, the 
similarity in performance might be due to measurements of drug 
effects being mainly limited to only three channel currents (i.e., 
fast sodium current, L-type calcium channel current, and hERG 
current), to the small size of the datasets, and to the differences in 
the myocyte model structure used to obtain the derived features. 
Indeed, APD50, APD90, peakCa, and CaD90 have been shown to 

provide the best classification when varying the computational 
model of interest (Mirams et al., 2011).

As a further analysis of the metric behaviors, we computed 
the intercorrelations between qNet, APD90, and peakCa for 
the 28 “CiPA drugs” (Figures 7 and 8). These compounds have 
been extensively characterized, and their actions on seven 
ion channels has been experimentally measured. To link the 
derived metrics to the physiological mechanism underlying 
arrhythmia, we also computed for each drug the additional hERG 
perturbation required to induce EADs (ThEAD,hERG). Our results 
indicate a strong correspondence between qNet and APD90, with 
a Pearson coefficient of −0.9. Both metrics, qNet and APD90, 
also correlated well with ThEAD,hERG (Pearson coefficient >0.9 
and <−0.9, respectively). Not surprisingly, the correlations with 
peakCa and between peakCa and ThEAD,hERG were significantly 
lower (i.e., less than 0.4 in absolute value). In spite of strong 
correlation, the metrics showed different performance in drug 
classification. In particular, as in recent studies (Dutta et al., 
2017; Li et al., 2018), qNet metric provided the most accurate 
proarrhythmic risk prediction (i.e, 24/28 correctly classified 
drugs) for the compounds in the CiPA dataset. We observed 
that ThEAD,hERG (21/28 correctly classified drugs), APD90 (18/28 
correctly classified drugs), and peakCa (15/28 correctly classified 
drugs) performed worse than qNet (Table 5). While the worse 
classification performance of peakCa might have been expected 
given that it presents negligible sensitivity to sbIkr, the differences 
in performance among the other three metrics were not directly 
explainable. Therefore, we extended the classification analysis to 
a second virtual population of drugs chosen to be representative 
of the CiPA dataset as discussed in the sections below.

Classification of Virtual Drugs Based on 
EAD Metric
MCF analysis revealed that the bICaL and the sbIKr parameters 
are the most influential for accurate classification of both 
populations of virtual drugs using the EAD-related metric 
(ThEAD,hERG) (Figure 9). The critical role of hERG channels in 
generation of EADs and eventually TdP (Redfern et al., 2003) 
is well established, and IKr is the primary current responsible 
for generation of EADs in the original ORd model (Christophe, 
2013). The role of L-type calcium channel currents in regulation 
of EADs has been highlighted across different studies (January 
and Riddle, 1989; Zeng and Rudy, 1995; Weiss et al., 2010). The 
third most important parameter for EAD generation in the 
Virtual Drug Population I was bIKs. IKs has been previously 
shown to play an important role in EAD regulation (Devenyi 
et al., 2017). bIKs effects were instead almost negligible when 
considering the Virtual Drug Population II, which does not 
include many samples with blocked IKs. Note that APD90 
and qNet were minimally sensitive to IKs for both virtual drug 
populations, suggesting that these metrics might be less suitable 
than ThEAD,hERG to categorize drugs with IKs block. Furthermore, 
drug-induced block of other cellular components such as 
sodium-calcium exchanger (INaCa) and sodium-potassium 
ATPase pump (INaK) currents could play an important role in 
accurate risk stratification of drugs using EAD-related metric. 
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As previously found, these currents are important regulators of 
drug-induced repolarization abnormalities (Lancaster and Sobie, 
2016; Passini et al., 2017). The analysis carried out in this study 
could be potentially updated to identify sensitivity of different 
metrics to the block of additional cellular components when 
experimental measurements for these additional parameters 
become available.

The dynamic hERG parameters (i.e., Vhalf and Ku) showed 
relatively minor contributions to classification of the Virtual 
Drug Population I. However, an increased role of the parameters 
was evident when tested on the Virtual Drug Population II, 
which mimics more closely the “CiPA drugs.” In addition, for 
both drug populations, the dynamic hERG parameters mainly 
improved the classification of high- and intermediate-risk drugs. 
These results support the finding of a previous study where the 
dynamic hERG parameters were introduced to achieve better 
risk discrimination between high- and intermediate-risk drugs 
Li et al. (2017). The results also highlight how MCF allows to 
individuate parameters that play an important role on restricted 
populations, while Sobol sensitivity tends to highlight those 
parameters that preserve importance throughout the entire 
sample population. For example, Vhalf affects only slightly 
the variability of qNet over the first virtual drug population as 
shown by Sobol sensitivity analysis (see Figure 4, where Vhalf 
is the fifth most important parameter), while the same input 
ranks as the second most important one when tested via MCF 
on classification of high- and intermediate-risk drugs from the 
second virtual population (Figure 9). It should also be noted 
that in cases where the majority of the primary regulating 
parameters are similar between drugs, accounting for changes 
in the modestly influential parameters can allow for improved 
predictions. On classifying CiPA drugs based on EADs, we 
observed that prediction improves by correctly classifying four 
more drugs when accounting for drug-induced effects of other 
parameters in addition to the sbIKr and bICaL parameters 
(Table 5). However, our results also point towards the important 
consideration that errors in measuring the most influential 
parameters regulating a particular metric have a bigger impact 
on the predicted classification compared to neglecting some of 
the less influential parameters. GSA allows us to determine and 
rank most of the critical model components.

Mechanistic Insight From Model-Derived 
Metrics
Simple statistical classifiers based on direct feature from our group 
and others have been shown previously to provide equivalent 
performance as biophysically detailed models for TdP (Kramer 
et al., 2013; Mistry et al., 2015; Parikh et al., 2017; Mistry, 2018). Our 
sensitivity analysis results also highlight strong linearity between 
the inputs and different model-derived metrics (such as qNet, 
APD90, etc.) that are proposed for TdP risk stratification (Table 4). 
The metric linearity suggests that the model-derived metrics can 
be well captured as a linear combination of the set of direct features 
and provides a plausible explanation for equivalent performance 
of the simple statistical methods. Almost linear input-output 
relationship in different cardiac models has also been observed 

in several previous studies (Sobie, 2009; Sarkar and Sobie, 2010). 
However, one of the most appealing features for the biophysical 
models is that of interpretability, i.e., the model-derived features 
attempt to capture the aspects of the underlying physiological 
phenomena such as action potential duration (APD) prolongation 
or increase in calcium levels to provide a mechanism-based 
classifier. Being biophysically motivated, classifiers built on model-
derived features are thought to allow generalizable assessments also 
in cases where the training datasets are small and hence the effects 
on targets of interest might need to be extrapolated. A promising 
metric qNet, proposed by the modeling team at FDA (Dutta et al., 
2017), has recently been shown to provide excellent classification 
of drugs in the CiPA training and validation data, a result thought 
to be linked to EAD generation (Dutta et al., 2017; Li et al., 2018). 
However, our GSA results demonstrate that qNet and ThEAD,hERG 
have different sensitivity profiles (Figure 9) despite being highly 
correlated (Figure 7). While both metrics were sensitive to sbIKr 
and bICaL, only qNet was influenced by bINaL, a result maintained 
for both virtual populations of drugs. Moreover, we observed that 
the categorization of “CiPA drugs” based on analysis of EADs 
was not as predictive as qNet (Table 5). We found that drugs like 
ranolazine, cisapride, and domperidone, which were not correctly 
ranked by the EAD metric, were instead correctly classified by qNet 
(Table 5 and Figure 7). Our analysis supports that qNet is able to 
classify ranolazine by accounting for the reduced TDR (Shimizu 
and Antzelevitch, 1998), which is affected by the block of the late 
sodium current. On the other hand, possible explanations for the 
poor performance of the EAD metric compared to qNet might 
include inaccurate reproduction of EADs in the current model, the 
type of EAD perturbations considered, the small size of the tested 
datasets, biases in the target, or the need to test EADs on coupled 
cells/tissue models.

Summary
The proarrhythmic risk assessment based on simulated drug 
responses in isolated cell model (Mirams et al., 2011; Christophe, 
2013; Trenor et al., 2013; Christophe, 2015; Lancaster and Sobie, 
2016; Li et al., 2017; Dutta et al., 2017; Parikh et al., 2017; Passini 
et al., 2017; Li et al., 2018), tissue models (Kubo et al., 2017), or 
organ-level computational models (Okada et al., 2015; Costabal 
et al., 2018; Costabal et al., 2019) provide important physiological 
and mechanistic insights. Moreover, in silico models serve as an 
excellent tool for evaluation of drug safety in diseased conditions 
(Trenor et al., 2013; Kubo et al., 2017). However, the uncertainties 
in pharmacological data used for model-driven predictions 
and in the intrinsic structures of biophysical models used for 
cardiotoxic risk predictions present fundamental challenges. In 
this study, we showed potential application of sensitivity analysis 
for improved model-based proarrhythmic risk predictions. The 
critical model inputs regulating the model-derived metrics such 
as APD90 and qNet proposed for evaluation of proarrhythmic 
risk were identified. The analysis highlighted the need for better 
mechanistic understanding of promising metrics such as qNet 
and provided possible explanation for equivalent performance 
of the simple statistical-based classifiers and complex model-
driven risk predictions. In conclusion, the sensitivity analysis 
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method together with uncertainty quantification approaches can 
form an important component of the model-based cardiotoxic 
risk prediction pipeline. An improved pipeline would ultimately 
allow for refinement of existing biophysical models to achieve 
increased confidence in the model-driven proarrhythmic 
risk predictions.
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