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Objectives: Antimicrobial resistance (AMR) has become a One Health problem in which 
fluoroquinolone resistance has caused great concern. The aim of this study is to estimate 
factors related to fluoroquinolone resistance involving the professionals and antimicrobial 
consumption (AMC) in human and animal fields.

Methods: A country-level panel data set in Europe from 2005 to 2016 was constructed. 
The dependent variables were measured by Escherichia coli (E. coli) and Pseudomonas 
aeruginosa (P. aeruginosa) resistance rates to fluoroquinolones. Both the static and 
dynamic panel data models were employed to estimate the above factors associated with 
the resistance rates.

Results: The 10% increase in the number of medical staff and veterinary professionals 
per 100,000 population were significantly correlated with the 32.44% decrease of 
P.  aeruginosa and 0.57% decrease of E. coli resistance rates to fluoroquinolones 
(Coef. = −3.244, −0.057; p = 0.000, 0.030, respectively). The 10% increase in the human 
AMC was correlated with 10.06% and 8.04% increase of P. aeruginosa resistance rates 
to fluoroquinolones in static and dynamic models (Coef. = 1.006, 0.804; p = 0.006, 0.001, 
respectively). The 10% increase in veterinary AMC was related to a 1.65% decrease of 
P. aeruginosa resistance rates to fluoroquinolones (Coef. = −0.165, p = 0.019).

Conclusions: The increases in medical and veterinary professionals are respectively 
associated with the decrease of P. aeruginosa and E. coli resistance rates to 
fluoroquinolones. The increase in human AMC is also associated with increase of 
P. aeruginosa resistance rates, while the increase in veterinary AMC was found to be 
associated with a decrease in resistance rate for P. aeruginosa.

Keywords: fluoroquinolone resistance, One Health, antimicrobial consumption, medical staff, veterinarians, panel 
data, Europe
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INTRODUCTION

Antimicrobial resistance (AMR) has become a global health 
crisis. Deaths attributed to drug-resistant infections will surpass 
10 million in 2050, resulting in an estimated $US100 trillion 
loss in global economic output if the rising trend is not properly 
contained from the current level of 700,000 deaths annually 
(Muller et al., 2003; O’Neill, 2016). Widespread antimicrobial 
consumption (AMC) in humans and animals is considered to be 
the major trigger for the severity of AMR. Additionally, there are 
other main drivers promoting the spread of resistant bacteria and 
their genes locally and globally, such as severe hospital infection, 
environmental contamination, and geographical movement of 
infected humans and animals (Holmes et al., 2016). Antibiotic-
resistant bacteria and genes could move relatively easily within 
and between different reservoirs. Therefore, it is necessary to 
address the resistance problem by taking the complexity and 
ecological nature into account from a comprehensive, multi-
sectoral perspective, such as One Health (Kahn, 2017).

The concept of “One Health,” introduced at the beginning of 
the 2000s, was defined and highly emphasized as a collaborative 
and trans-disciplinary approach of multiple disciplines working 
together to achieve optimal health for people, animals, and 
environment (Robinson et al., 2016). The 71st session of 
the United Nations General Assembly identified AMR as a 
dominant global health concern, encouraging national policy 
makers, international organizations, and financial institutions 
in developed and developing countries to take action towards 
reducing AMC in both human medicine and agriculture as soon 
as possible. In general, the initiatives of combating AMR based on 
the One Health perspective revolve around guiding principles of 
improving the awareness of antimicrobial use and consequences, 
reducing the incidence of AMR, encouraging developing new 
antimicrobials, and taking measures to control AMC in farming 
and livestock (Yang and Buttery, 2018).

Although many studies have explored AMR and its related 
factors, most of them use cross-sectional regression in specific 
settings or countries without considering the emergence of 
AMR as a continuous dynamic process in practice. This could 
perhaps be an indication that the effect of influencing factors 
on AMR may well require panel data analysis. Panel studies are 
fast displacing their cross-sectional counterpart in sociological 
research (Halaby, 2004). For research aimed at variation across 
large-scale social units, panel data proliferate on subjects ranging 
from welfare spending and poverty (Huber and Stephens, 2000; 
Moller et al., 2003) to political violence (Villarreal, 2002). In 
recent years, quantitative studies explored the issue of AMR by 
constructing panel data analysis, which is acknowledged for 
its ability to mitigate unobserved heterogeneity. Evidence from 
studies analyzing AMR by macro country-level thinking was 
gradually enriched. Within this context, Liu et al. employed 
a provincial-level panel data set from 2009 to 2016 to estimate 
the relationship between medical staffing and antimicrobial 
stewardship performance in China (Liu et al., 2018). Cui et al. 
used annual national-level penal data from the EU to establish 
the relationship between AMR and laboratory capabilities by 
conventional static panel data analysis (Cui et al., 2019).

Based on this existing research, we employed static and 
dynamic models in panel studies to explore factors related to 
the resistance of fluoroquinolones (FQs), which are regarded 
as a critically important antimicrobial for human medicine 
and one of the antibiotic groups most frequently administered 
in veterinary medicine (Van et al., 2019). Consequently, the 
emergence of resistance to FQs has also become a major public 
health concern (Almalki et al., 2017). The study is expected 
to produce new evidence or knowledge to understand the 
relationship between FQ resistance and its influencing factors 
in the One Health perspective.

MATERIALS AND METHODS

Study Design and Data Sources
We created an annual national-level panel data set on AMR and 
its factors in human and animal fields covering 29 countries in the 
EU from 2005 to 2016, due to the data availability. Description 
of data availability and included countries are exhibited in 
Supplementary Table 1. The variables in the data set included: 
the AMR rates, the number of medical staff and veterinary 
professionals per 100,000 population, and AMC in humans and 
animals.

The AMR rates were collected from the European Antimicrobial 
Resistance Surveillance Network (EARS-Net), which included 
Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. Aeruginosa) 
resistance rates to FQs. They were selected as the dependent 
variables for the following reasons: E. coli is a ubiquitous enteric 
commensal in both human and veterinary species. P. aeruginosa, an 
important causative agent of food infection, also has high mortality 
and morbidity rates compared with other pathogens of healthcare-
associated infections (Driscoll et al., 2007). Moreover, increased use 
of FQs for the treatment of infections caused by Enterobacteriaceae 
and P. aeruginosa has led to an increase in the resistance rates over 
time (Dalhoff, 2012).

The numbers of medical staff including physicians, 
pharmacists, and nurses in practice were extracted from the 
Eurostat Database. The numbers of veterinary professionals 
were originated from database of World Organization for 
Animal Health (OIE). The numbers of professionals in human 
and veterinary fields were then converted into the numbers per 
100,000 population by dividing the total annual population of 
each country from the Eurostat Database.

The AMC in humans was originated from the European 
Surveillance of Antimicrobial Consumption Net (ESAC-Net). 
The AMC in humans was the sum of AMC from the community 
(primary care) and hospitals. The community AMC, which 
represents around 90% of the total AMC, was used as a surrogate 
for the total consumption when hospitals’ AMCs were not 
available (European Centre for Disease Prevention and Control 
et al., 2015). Human AMC was reported in defined daily doses 
(DDDs) per 1,000 inhabitants and per day. The ESAC-Net data 
set allowed recalculation of the weight of the antimicrobial at the 
substance level based on the numbers of DDD. According to the 
Anatomical Therapeutic Chemical (ATC) classification and the 
ATC/DDD index defined by the World Health Organization 
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(WHO) Collaborating Centre for Drug Statistics Methodology 
(WHO CC), every substance of a specific ATC code had its own 
weight. The weight sums were expressed in mg/kg human biomass 
by using the standard human body weight 62.5 kg (European 
Centre for Disease Prevention and Control et al., 2015).

The AMC in animals was extracted from the European 
Surveillance of Veterinary Antimicrobial Consumption Net 
(ESVAC-Net). It was measured by the overall sales in food-
producing animals, including horses by country, and typically 
reported in milligrams of active substance per kilogram of 
estimated biomass and per year. Detailed information on 
the variable definitions and sources are shown in Table 1. 
All variables were transformed into the natural logarithm in 
the analysis.

Empirical Analysis
The hypothesis of our study based on the One Health perspective 
was that the increasing number of healthcare professionals and 
the decreasing amount of AMC in both human and animal fields 
may be significant factors of lower AMR rates in the EU. To verify 
our hypothesis and compare the impacts of factors on AMR 
rates, the static and dynamic panel data models were employed. 
We constructed the static model in Equation (1):

 
ln , , , ,AMR MS VP HAMCi t i t i t i t= + + +

+
β β β β

β
0 1 2 3

4

ln ln ln
lnnVAMCi t i t i t, ,+ + +µ θ ε

 (1)

where i denotes country (i = 1, 2,…, 29) and t denotes time 
(t = 1, 2,…, 12). The disturbance term µi was assumed to be the 
unobserved country-specific fixed effect, θt was a time-specific 
intercept, and εi,t was random disturbance. The β terms were 
partial correlation coefficients.

This static model can be estimated through a fixed-effects 
(FE) or random-effects (RE) approach. Panel robust standard 
errors clustered at the country were used in all analyses of 
our paper (Bertrand et al., 2004). The RE models assumed 
that time-invariant variables were uncorrelated with the time-
varying covariates, while the FE models allowed these variables 
to freely correlate (Halaby, 2004). The choice between the RE 
and FE estimators was based upon the standard Hausman test, 
whose null hypothesis was that µi was uncorrelated with time-
varying variables and the observed time-invariant variables 

(Gardiner et  al., 2009). The FE estimator was preferred if the 
null hypothesis was rejected (Bramati and Croux, 2007; Bell 
and Jones, 2014).

The dynamic models introduced a lagged variable as an 
explanatory variable and introduced instrumental variables by 
setting moment conditions to handle the autocorrelation of the 
dependent variables (Blundell and Bond, 1998), which could 
explore the possible endogeneity of the dependent variables 
(da Silva and Cerqueira, 2017). The dynamic model used for 
explaining AMR is shown in Equation (2):

 ln ln ln ln, , , ,AMR AMR MS VPi t k
k

m

i t i t i t= + + +
=∑β γ β β0

1
1 2

++ + + + +β β µ θ ε3 4ln ln, , ,HAMC VAMCi t i t i t i t
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where m represents the maximum lag order of the dependent 
variable. Previous studies had suggested that two lags are 
sufficient to ensure dynamic completeness (Wintoki et al., 2012). 
Therefore, we set m = 1 and m = 2 in this study.

Stata 12.0 was used for all the data analysis. The dynamic panel 
data models were analyzed by the system generalized method 
of moments (GMM) estimator. This technique consistently 
estimated the equation even in the presence of endogenous 
explanatory variables and measurement error and thus allowed 
us to be more confident in inferring causality (Roodman, 
2009). In order to avoid the limitation of weak instrumental 
variables and the finite-sample bias to a large extent, one-step 
robust variants of the system GMM estimator were employed 
(Arellano and Bond, 1991). The applicability of system GMM 
was examined by Arellano–Bond test and Sargan test. The 
former test was established on the hypothesis that there is no 
autocorrelation of disturbance terms, and the latter examines 
whether all instrument variables are valid. The dynamic model 
was supposed to be valid if the null hypotheses of these two tests 
were not rejected.

RESULTS

Summary Statistics
The time series of average rates of E. coli and P. aeruginosa in Figure 1 
showed that the E. coli resistance rates were higher than P. aeruginosa 
since 2010. During the period, the average rate of E. coli was 21.03%, 

TABLE 1 | Variable definitions and sources.

Variable name Definitions Unit of measure Sources

E. coli resistance rates Escherichia coli resistance rates to fluoroquinolones % European Antimicrobial Resistance 
Surveillance Network (EARS-Net)P. aeruginosa

resistance rates
Pseudomonas aeruginosa resistance rates to 
fluoroquinolones

MS The number of medical staff Number per 100,000 population Eurostat Database
VP The number of veterinary professionals Number per 100,000 population World Organization for Animal Health 

(OIE)
HAMC Fluoroquinolone consumption in humans mg/kg European Surveillance of Antimicrobial 

Consumption Net (ESAC-Net)
VAMC Fluoroquinolone consumption in food-producing 

animals
mg/kg European Surveillance of Veterinary 

Antimicrobial Consumption Net 
(ESVAC-Net)
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the minimum being 4.68% for Norway and the maximum being 
51.85% for Cyprus. The average rate of P. aeruginosa was 17.91%, 
with the maximum and the minimum values being 0 for Iceland and 
61.96% for Romania, respectively (Table 2).

The scatter plots in Figures 2 and 3 showed the linear 
relationships between FQ resistance rates and their related factors. 
The human and veterinary AMC were positively associated with 
the FQ resistance (all p = 0.0000), and the number of medical staff 
was negatively correlated with FQ resistance (both p = 0.000), 
while the positive correlation between veterinary professionals 
and FQ resistance (P = 0.0485) was only found in Figure 3.

Relationship Between Resistance of  
E. Coli and Its Related Factors
In Table 3, based on the Hausman test (Coef. = 12.23, p = 
0.016), the FE model was preferred because the null hypothesis 
was rejected. However, the FE model in column (1) was not 
statistically significant (F = 2.19, P > 0.05). The dynamic model 
of one lag in column (3) was supposed to be invalid, as the null 
hypothesis of the Sargan test was rejected (P = 0.000). The two-lag 
result of the dynamic model in column (4) displayed that the 10% 
increase in veterinary professionals was significantly correlated 
with the 0.57% decrease of E. coli resistance rates (Coef. = −0.057, 
p = 0.030). The coefficient for the first lag of the E. coli resistance 
rates in column (4) indicated a positive tendency of persistence 
in resistance over time (Coef. = 0.769, p = 0.000).

Relationship Between Resistance of 
P. Aeruginosa and Its Related Factors
Similarly, in Table 4, the FE model was preferred based on the 
Hausman test (Coef. = 23.01, p = 0.000). The FE model in column 

(1) showed that a 10% increase of medical staff was associated 
with 32.44% decline of P. aeruginosa resistance rates (Coef. =  
−3.244, p = 0.000). And the 10% increase in the human and 
veterinary AMCs were related to a 10.06% increase and 1.65% 
decrease of P. aeruginosa resistance rates, respectively (Coef. = 
1.006, −0.165; p = 0.006, 0.019, respectively). In the dynamic 
models, the results in column (3) denote that 10% human AMC 
was positively correlated with an 8.04% increase of P. aeruginosa 
resistance rates (Coef. = 0.804, p = 0.001). The dynamic model 
of two lags in column (4) was supposed to be invalid, as the null 
hypothesis of the Sargan test was rejected (P = 0.088).

DISCUSSION

The panel data set allows us to further explain related factors to 
FQ resistance rates in the EU from the One Health perspective; 
both human and veterinary factors were included in each 
analytical model. And several points are worth discussing.

Healthcare Staff in Both Human and 
Animal Fields Are Closely Associated 
With FQ Resistance
The results indicate that the increasing number of medical staff 
is a significant factor of lower P. aeruginosa resistance rates to 
FQs. This One Health perspective finding is consistent with 
prior studies, which have exemplified that the AMR rates are 
significantly associated with the multi-disciplinary antimicrobial 
stewardship teams (ASPs) (Ansari et al., 2003; Carling et 
al., 2003). For example, Wu et al. found that the extensive 
implementation of the ASPs by specialized staff was effective in 

FIGURE 1 | Trends in antimicrobial resistance (AMR) rates among 29 countries from 2005 to 2016.
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reducing AMR of Gram-positive bacteria (p = 0.013) and Gram-
negative bacteria (p < 0.001), and predominant species included 
E. coli and P.  aeruginosa (both p < 0.05) (Wu et al., 2017). 
Compared with experts in animal husbandry or agriculture, 
medical staff have been recommended and required more for 
minimizing AMR (Pflomm, 2002). Their knowledge, attitude, 
and prescribing habits could determine antimicrobial use, 
which eventually influences AMR rates. Our study provides the 
ecological evidence to confirm that the number of medical staff 
could be an important factor of FQ resistance.

The increase of veterinary staff was correlated with a limited 
but significant decline of E. coli resistance rates to FQs. That 
is, a large increase of veterinary professionals is associated 
with a little decrease of FQ resistance. Present studies have 
explored the relationship between veterinary professionals 
and AMR in the animal field (Sadiq et al., 2018). These 
studies found that veterinarians’ knowledge, beliefs, and 
practices played important role in combating AMR in animals 
(Cattaneo et al., 2009). This finding highlights the significant 
relationship between the number of veterinary professionals 
and FQ resistance. As veterinarians are considered as highly 
influential referents combating AMR, there might be a huge 
role for veterinarians in motivating and advising farmers to 
take preventive control measures (Ellis-Iversen et al., 2010). 
Moreover, One Health AMR inter-agency ASPs have been 
described and advocated by many EU countries to control the 
development of AMR. The local One Health AMR groups in 
Sweden made great contributions to a reduction in AMC and 
lowered AMR rates over 10 years, without measurable negative 
consequences (Moelstad et al., 2008). Hence, our findings 
implicate that the closer medico-veterinary collaboration 
based on One Health approach may be needed to effectively 

FIGURE 2 | Linear relationships between attributable risk factors and Escherichia coli resistance. Notes: The trend line in each plot denotes the fitted line. (A) The 
linear relationship between the human antimicrobial consumption and the E. coli resistance rates to FQs (n = 220, P = 0.0000). (B) The linear relationship between 
the veterinary antimicrobial consumption and the E. coli resistance rates to FQs (n = 211, P = 0.0000). (C) The linear relationship between the medical staff and the 
E. coli resistance rates to FQs (n = 185, P = 0.0000). (D) The linear relationship between the veterinary professionals and the E. coli resistance rates to FQs (n = 210, 
P = 0.0000).

TABLE 2 | Summary statistics of variables.

Variable name Mean Std Min Max

E. coli resistance 
rates

21.03  10.40  4.68 51.85

P. aeruginosa
resistance rates

17.91 12.63 0 61.96

MS 1,359.76 412.50 418.22 2,258.34
VP 54.40 25.24 2.44 160.63
HAMC 7.55 4.08 2.23 26.95
VAMC 1.99 2.86 0 11.29

Std refers to standard deviation.
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control the development of AMR or to create comprehensive 
guidelines to promote prudent use and careful restriction of 
antimicrobial drugs.

The Relationships Between AMC in 
Human and Animal Fields and FQ 
Resistance are Mixed
Additionally, the increase of human AMC is also an important 
influencing factor associated with higher FQ resistance. The 
results presented in this paper are in line with those presented 
in several other papers (Mutnick et al., 2004; Dalhoff, 2012). 
For instance, high correlations were found between the 
use of meropenem (r = 0.98), ciprofloxacin (r = 0.92), and 
ceftazidime (r = 0.83) and the resistance of P. aeruginosa to 
these agents by linear regression analysis over a period of 
3 years in 10–15 medical centers (Mutnick et al., 2004). In 
contrast, Livermore et al. noticed that the rates of FQ resistance 
among E. coli isolates increased, despite the decline in the 
rates of prescription of FQs in the community (Livermore et 
al., 2002). In addition, an association between consumption 
and resistance may not be found if there is a delay between 
the reduction of AMC and the subsequent decrease of AMR 

(Bergman et al., 2009). In recent years, a few studies have 
started exploring the relationship between AMC and AMR 
through a macro perspective, which overcomes details of 
the behavior of individual units. The EU second joint report 
showed a 1 mg/kg increase in the human consumption of FQs 
resulted an increase of the risk of invasive E. coli resistance to 
FQs of around 56%, 48%, and 53% for the years 2013, 2014, 
and 2015, respectively (OR = 1.56, 1.48, 1.53) (European 
Centre for Disease Prevention and Control et al., 2017). The 
results of our panel data analysis, which could go beyond 
the effect of delay and individual behavior, provide reliable 
evidence to support the positive association between human 
AMC and FQ resistance.

However, the result that the decrease of AMC in food-
producing animals was associated with the increase of P. 
aeruginosa resistance rates was contrary to our hypothesis. 
We speculate that this result may be influenced by the 
increasing proportion of therapeutic antibiotic use in total 
AMC and the food trade worldwide. Evidence showed that 
the ban of antimicrobial growth promoters (AGPs) reduced 
the food animal reservoir of AMR. And total veterinary 
AMC in Denmark dropped by more than 50% from 1992 to 

FIGURE 3 | Linear relationships between attributable risk factors and Pseudomonas aeruginosa resistance. Notes: The trend line in each plot denotes the fitted 
line. (A) The linear relationship between the human antimicrobial consumption and the P. aeruginosa resistance rates to FQs (n = 215, P = 0.0000). (B) The linear 
relationship between the veterinary antimicrobial consumption and the P. aeruginosa resistance rates to FQs (n = 207, P = 0.0000). (C) The linear relationship 
between the medical staff and the P. aeruginosa resistance rates to FQs (n = 181, P = 0.0000). (D) The linear relationship between the veterinary professionals and 
the P. aeruginosa resistance rates to FQs (n = 207, P = 0.0485).
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2008 after the termination of use of AGPs was implemented 
(Levy, 2014). Nevertheless, increased therapeutic use of 
antimicrobials and meat imports make contributions to 
continuing resistance (Aarestrup et al., 2001; Alban et al., 
2008). In low- and middle-income countries, some production 
systems still use antimicrobials to keep animals healthy and 
maintain productivity for an unprecedented growth in demand 
for animal protein (Tilman et al., 2011). Besides, it is worth 
noting that food animals and foods of animal origin are traded 
worldwide. Rasmussen et al. revealed that Campylobacter jejuni 
resistance to ciprofloxacin, nalidixic acid, and tetracycline was 
significantly higher in imported chicken meat compared to 
Danish broiler meat in years during the 2002-through-2007 
period (Skjot-Rasmussen et al., 2009). Therefore, the resistant 
genes in imported food animals may also bring an influence 
on local AMR. Better surveillance of international trade and 
movement of these animals and animal products may be 
required so that their impact on the development of AMR could 
be more accurately assessed (Queenan et al., 2016). On the 
other hand, from a methodological perspective, such findings 

may be influenced by the model specification, as statistical 
significance is only found in the static model, and more studies 
should be encouraged to further explain the relationship when 
more detailed data are obtained.

CONCLUSIONS

The professional resources and AMC in both human and 
animal fields are the significant factors for AMR rates from 
the One Health perspective based on the main results. The 
increase of medical and veterinary staff is closely associated 
with a decrease of AMR rates. The increase of human AMC 
is associated with an increase of P. aeruginosa resistance 
rates, but the increase of veterinary AMC is correlated with 
a decrease of P. aeruginosa resistance rates to FQs. Several 
limitations of our study and models deserve mentioning. 
Firstly, food animals are not the only reservoir of antibiotic-
resistant bacteria; pets, birds, insects, wild rodents, and other 
animals should be included if they are available. Secondly, 
the present study does not consider environmental factors, 
behavioral factors, and other determinants of AMR. Thirdly, 
regardless of other antimicrobials, our study only included the 
FQ resistance rates due to the data availability. Hence, more 
studies should be undertaken to provide further evidence and 

TABLE 3 | Static and dynamic models of related factors to E. coli resistance 
rates.

Variables Static Dynamic

FE model
(1)

RE model
(2)

SYS-GMM
(3)

SYS-GMM
(4)

One lag of 
the dependent 

variable

Two lags of 
the dependent 

variable

lnAMR(t-1) 0.292*** 0.769***
(0.085) (0.059)

lnAMR(t-2) 0.022
(0.052)

lnMS 0.008 −0.275 −0.762** −0.296
(0.609) (0.236) (0.374) (0.236)

lnVP −0.098 −0.073 −0.190 −0.057**
(0.061) (0.049) (0.029) (0.026)

lnHAMC 0.491 0.382** 0.332 0.095
(0.294) (0.150) (0.221) (0.094)

lnVAMC −0.090 0.032 0.023 −0.005
(0.057) (0.040) (0.046) (0.027)

Constant 3.993 4.411** 6.960** 2.783
(4.285) (1.710) (2.829) (1.852)

No. obs. 131 131 108 88
F 2.19 44.90***
Hausman 
test

12.23**

Wald χ2 287.74*** 1,025.10***
Arellano–
Bond test
AR (1) 
(p-value)

[0.147] [0.011]**

AR (2) 
(p-value)

[0.171] [0.354]

Sargan test 
(p-value)

[0.000]*** [0.849]

FE model = fixed-effect model; RE model = random-effect model; SYS- GMM = system 
generalized method of moments; AMR = antimicrobial resistance; numbers inside () are 
robust standard errors; numbers inside [] are p-values; AR (1) = autocorrelation test of 
order 1; AR (2) = autocorrelation test of order 2; *, **, and *** represent, respectively, 
10%, 5%, and 1% significance levels.

TABLE 4 | Static and dynamic models of related factors to P. aeruginosa 
resistance rates.

Variables Static Dynamic

FE model
(1)

RE model
(2)

SYS-GMM
(3)

SYS-GMM
(4)

One lag of the 
dependent 

variable

Two lags 
of the 

dependent 
variable

lnAMR(t-1) 0.136 0.189
(0.199) (0.221)

lnAMR(t-2) 0.108
(0.075)

lnMS −3.244*** −0.394 −0.439 −0.549
(0.784) (0.449) (0.651) (0.693)

lnVP −0.001 0.020 0.037 −0.036
(0.061) (0.070) (0.045) (0.040)

lnHAMC 1.006*** 0.478** 0.804*** 0.754***
(0.331) (0.211) (0.252) (0.253)

lnVAMC −0.165** 0.050 0.085 0.050
(0.065) (0.049) (0.148) (0.149)

Constant 23.752*** 4.420 4.072 4.522
(5.629) (3.192) (4.207) (4.451)

No. obs. 130 130 105 84
F 7.84*** 25.08***
Hausman test 23.01***
Wald χ2 90.63*** 146.59***
Arellano–Bond 
test
AP (1) (p-value) [0.013]** [0.342]
AP (2) (p-value) [0.421] [0.322]
Sargan test 
(p-value)

[0.195] [0.088]*

*, **, and *** represent, respectively, 10%, 5%, and 1% significance levels.
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guidance on the relationship between AMR and these main 
factors if more data are available.
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