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Background: Evidence suggesting adverse drug reactions often emerges 
unsystematically and unpredictably in form of anecdotal reports, case series and survey 
data. Safety trials and observational studies also provide crucial information regarding the 
(un-)safety of drugs. Hence, integrating multiple types of pharmacovigilance evidence is 
key to minimising the risks of harm.

Methods: In previous work, we began the development of a Bayesian framework for 
aggregating multiple types of evidence to assess the probability of a putative causal link 
between drugs and side effects. This framework arose out of a philosophical analysis of 
the Bradford Hill Guidelines. In this article, we expand the Bayesian framework and add 
“evidential modulators,” which bear on the assessment of the reliability of incoming study 
results. The overall framework for evidence synthesis, “E-Synthesis”, is then applied to a 
case study.

Results: Theoretically and computationally, E-Synthesis exploits coherence of partly or 
fully independent evidence converging towards the hypothesis of interest (or of conflicting 
evidence with respect to it), in order to update its posterior probability. With respect to 
other frameworks for evidence synthesis, our Bayesian model has the unique feature of 
grounding its inferential machinery on a consolidated theory of hypothesis confirmation 
(Bayesian epistemology), and in allowing any data from heterogeneous sources (cell-data, 
clinical trials, epidemiological studies), and methods (e.g., frequentist hypothesis testing, 
Bayesian adaptive trials, etc.) to be quantitatively integrated into the same inferential 
framework.

Conclusions: E-Synthesis is highly flexible concerning the allowed input, while at the same 
time relying on a consistent computational system, that is philosophically and statistically 
grounded. Furthermore, by introducing evidential modulators, and thereby breaking up 
the different dimensions of evidence (strength, relevance, reliability), E-Synthesis allows 
them to be explicitly tracked in updating causal hypotheses.

Keywords: adverse drug reaction, drug safety, causal assessment, Bradford Hill Guidelines, statistical evidence, 
evidence synthesis, evidence quality, pharmacovigilance
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BACKGRoUnd
The United States Department of Health and Human Services 
reports that although medications help millions of people live longer 
and healthier lives, they are also the cause of approximately 280,000 
hospital admissions each year and an estimated one-third of all 
adverse events in hospitals (US Department of Health and Human 
Services, Office of Disease Prevention and Health Promotion, 
2014). The problem of adverse drug reactions is obviously not 
confined to the USA, but is a global issue (Edwards and Aronson, 
2000; European Commission, 2008; Wu et al., 2010; Stausberg and 
Hasford, 2011). Evidence facilitating the prediction of adverse drug 
reactions often emerges unsystematically and unpredictably in 
the form of anecdotal reports, case series, and survey data, as well 
as more traditional sources, e.g., clinical trials (Price et al., 2014; 
Onakpoya et al., 2016). Recently, legislators have called for the 
integration of information coming from different sources when 
evaluating safety signals (European Parliament and the European 
Council: Directive 2010/84/EU; Regulation (EU) No 1235/2010; see 
also the 21st Century Cures Act, recently entered into force in the 
US). A similar call has also been issued by researchers (Cooper et al., 
2005, p.249) and (Herxheimer, 2012). However, standard practices 
of evidence assessment are still mainly based on statistical standards 
that encounter significant difficulties with the integration of data 
emerging from observational and experimental studies at times 
on different species as well as from lab experiments and computer 
simulations. Clearly, there is increasing awareness of the need for tools 
that support the assessment of putative causal links between drugs 
and adverse reactions grounded on such heterogeneous evidence.

Indeed, the body of methodological work on post-marketing 
risk management via the aggregation of evidence is rapidly 
growing. The recent focus has been on various aspects of causal 
assessment based on heterogeneous evidence. Some examples 
include work on aggregating human and animal data (European 
Centre for Ecotoxicology and Toxicology of Chemicals 
(ECETOC), 2009), aggregation of spontaneous reports (Caster 
et al., 2017; Watson et al., 2018), Bayesian aggregation of safety 
trial data (Price et al., 2014) and data sets (Landes and Williamson, 
2016), bringing together toxicology and epidemiology (Adami 
et al., 2011), retrieving but not assessing evidence Knowledge 
Base workgroup of the Observational Health Data Sciences and 
Informatics, 2017; Koutkias et al., 2017), assessing the evidential 
force of data in terms of reproducibility and replicability of 
the research (LeBel et al., 2018), grading certainty of evidence 
of effects in studies (Alonso-Coello et al., 2016), grading 
observational studies based on study design (Sanderson et al., 
2007; Sterne et al., 2016; Wells et al., 2018), thematic synthesis 
of qualitative research, decision making (Thomas and Harden, 
2008; Landes, 2018), providing probability bounds for an adverse 
event being drug induced in an individual (Murtas et al., 2017) in 
Pearl’s formal framework for causality (Pearl, 2000) and work on 
aggregating evidence generated by computational tools (Koutkias 
and Jaulent, 2015).

Much work has been devoted to the development of evidence 
synthesis methods testified by a growing number of (systematic) 
reviews and comparisons of evidence synthesis methods (Lucas 
et al., 2007; Greenhalgh et al., 2011; Kastner et al., 2012; Warren 

et al., 2012; van den Berg et al., 2013; Tricco et al., 2016a; Tricco 
et al., 2016b; Kastner et al., 2016; Shinkins et al., 2017). A number 
of studies argue that while there are many approaches and 
standards, it is not at all clear which is best (Greenhalgh et al., 
2011; Warren et al., 2012; van den Berg et al., 2013; Kastner et al., 
2016; Tricco et al., 2016a; Tricco et al., 2016b).

Traditional approaches supporting drug-licensing decisions are 
reviewed in (Puhan et al., 2012) and the changing roles of drug-
licensing agencies in an evolving environment are described in 
(Ehmann et al., 2013). Closest to our approach are those that employ 
Bayesian statistics (Sutton and Abrams, 2001; Sutton et al., 2005).

However, the number of approaches that attempt to tackle the 
issues of aggregating different types of evidence to facilitate causal 
assessment of adverse drug reactions (assessing whether a drug 
causes an adverse reaction) straight on is rather small. One such 
approach is an epistemological framework based on Bradford 
Hill’s well-known guidelines (Hill, 1965), which continue to be 
an active area of research, e.g., see (Swaen and van Amelsvoort, 
2009; Geneletti et al., 2011; Fedak et al., 2015).

Our work is rooted in the tradition that draws on statistical 
information and probabilsitc (in)dependence for the purpose 
of causal assessment. Challenges to Bayesian causal assessment 
have been raised by Dawid et al. (2016) among others.

This paper is a first step towards translating the philosophical 
approach to causal assessment of suspected adverse drug reactions 
of (Landes et al., 2018) towards an applicable framework. The 
rest of the paper is organised as follows. Next, we introduce and 
expand the approach of (Landes et al., 2018) and build a Bayesian 
network model for it. Then we apply the framework and model to 
a case study and conclude.

Here, we are mainly concerned with further developing 
the framework and how to – in principle – operationalise our 
approach. Delineated functional forms and some (conditional) 
probabilities serve only illustrative purposes. The focus is on 
how to determine them in principle and highlight roles and 
interactions of relevant concepts. Hence, significant further work 
is required before the framework is a ready-to-use tool.

MEtHodoLoGy
E-Synthesis is a theoretical framework for causal assessment 
based on (Landes et al., 2018), we briefly present here its main 
components and integrate further dimensions of evidence.

Aims and Scope
The framework in (Landes et al., 2018) aims to support decision 
making in drug regulatory agencies by providing a probability 
that a drug causes an adverse reaction.1

1Note that the framework does not aim to provide utilities of harms, nor 
probabilities of expected benefits, nor utilities of benefits. When utilities of harms 
and benefits, as well as estimation of benefits are provided by further means, a 
drug regulatory agency can perform an expected utility calculation to determine 
whether the expected advantages of a drug exceed the expected dis-advantages. The 
agency will withdraw the drug (or not approve it), if the expected disadvantages 
outweigh the expected benefits, see (Landes et al., 2018, Bayesian Network Model).
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The hypothesis of interest is that “Drug D causes harm E in 
population U.” To facilitate the inference from all the available 
evidence, indicators of causality are used. These indicators are 
based on Hill’s nine viewpoints for causal assessment (Hill, 1965).

Bayesian network Model
The probability of the causal hypothesis © is modelled via a 
Bayesian network of a finite number of propositional variables, 
see (Landes et al., 2018, Discussion) and see (Neapolitan, 2003) 
for a standard introduction to Bayesian networks. There is a 
binary propositional variable for the hypothesis of interest and a 
binary propositional variable for all six indicators of causality. For 
every item of evidence, every source of evidence and every study 
population, we create a report and evidential modulators, see 
Figure 1. The conditional probabilistic (in-)dependencies can be 
gleaned from the graph in terms of (Pearl, 2000)’s d-separation 
criterion. Although, the Bayesian network is used for causal 
assessment, the arrows in the network are not causal arrows in 
(Pearl, 2000)’s sense – they here represent epistemic probabilistic 
(in-)dependencies only. Figure 2 is an example graph with only 
one report. The report is the only child of many parents.

The causal hypothesis represented by © is a root node.2 The causal 
indicator are parents of report nodes which mediate causal inference 
from the concrete data (the reports) towards the causal hypothesis. 

2The abbreviations used in this article are listed in Table 1.

The parents at the two bottom levels are modulators of the evidential 
strength of the data. These incorporate considerations about the 
reliability of the evidence into the assessment of the hypothesis. In 
particular, they take into account the possibility of random error [as a 
function of sample size (SS) and study duration (D)], and systematic 
error; attenuated by adjustment or stratification (A), randomisation 
(R), blinding (B), placebo (Pl) and sponsorship bias (SB).

This framework also allows for the incorporation of evidential 
modulators related to external validity [called “relevance” in 
(Landes et al., 2018)], however we will not treat them here for 
ease of exposition.3

A probability function consistent with the conditional 
independencies of the Bayesian network is selected which 
expresses our uncertainties in the tradition of Bayesian 
epistemology (Bovens and Hartmann, 2003; Howson and 
Urbach, 2006; Talbott, 2011). Unlike in “pure” Bayesian statistics, 
where one conditionalises on statistical models and hence obtains 
conditional probabilities mandated by the particular model 
(parameter), in Bayesian epistemology one may conditionalise 
on any proposition (or event), since probabilities are interpreted 
more widely as one’s uncertainties about general propositions; 
the Bayesian statistician Lindley is sympathetic to this approach 
(Lindley, 2000). In case one does conditionalise on a particular 

3They are extensively addressed in (Poellinger, 2019) and will be the focus of a 
rejoinder to this paper.

FiGURE 1 | Graph of the Bayesian network with one report for every causal indicator variable taken from Landes et al. (2018). The dots indicate that there might be 
further indicators of causality not considered here. As explained in text, we here take it that M (mechanistic knowledge) entails T (temporal precedence) and hence 
introduce an arrow from M to T which is not in Landes et al. (2018). In the original paper, we considered two modulators REL (for “reliability” of study authors) and 
RLV [for “relevance” (external validity)] act as evidential modulators of reports (the REP-nodes). In this paper, we focus exclusively on the REL modulator which we 
split into a number of concepts, see Evidential Modulators: Study Design.
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model, conditional probabilities are (virtually always) set to the 
probabilities of the statistical model.

While a certain degree of subjectivity is undeniable, there is a 
good argument to be made that some subjectivity is unavoidable 
in any approach to statistical/uncertain inference (Gelman and 
Hennig, 2017) and that Bayesian epistemology is in fact objective; 
or objectivity conducing; to some degree (Sprenger, 2019).4

theoretical Entities
Concepts of interest fall into two classes: i) a class of causal 
concepts comprising the hypothesis of interest and the indicators 
of causation and ii) a class of evidential concepts comprising 
evidential modulators and reports (data).

The Causal Hypothesis (©)
We are interested in determining the probability of the causal 
hypothesis that a drug D causes a particular adverse effect E in a 
population U – given the available evidence. Although the hypothesis 
space could be in principle subdivided into three hypotheses: 1) D 
causes E, 2) D hinders E, and 3) D does not cause E, we divide it here 
for simplicity’s sake into two alternative hypotheses: 1) D causes E 
and 2) D does not cause E, which consists of the disjunct of 2 and 3 
above. To shorten notation, we use the symbol © in order to denote 
causation, such as in D©E, or simply ©.5

4What probabilities at a population level may mean to an individual has recently 
been explored in (Dawid, 2017).
5We do not commit here to any specific view or definition of causation [e.g., 
dispositional, probabilistic, counterfactual, manipulationist, etc. see also (Landes 
et al., 2018)]. That’s a question on the ontology of causation that we leave open for 
the moment. Our causal hypothesis allows for the term “causes” to cover any of 
the current definitions of causality to the extent that the evidence used for causal 
inference may be made relevant to them.

Indicators of Causation
Causal inference is mediated in the framework by “indicators of 
causation” in line with the Bradford Hill Guidelines for causation. 
As Hill puts it (Hill, 1965):

“None of my nine viewpoints can bring indisputable 
evidence for or against the cause-and-effect hypothesis 
and none can be required as a sine qua non. What they 
can do, with greater or less strength, is to help us make 
up our minds in the fundamental question – is there any 
other way of explaining the set of facts before us, is there 
any other equally, or more, likely than cause and effect?”6

In epistemic terms, causal indicators can be considered as 
observable and testable consequences of causal hypotheses, 
albeit non-deterministic consequences (with one exception); 
that is, they are more likely to be observed in the presence 
of a causal relationship and less likely in its absence, 
P Ind P Ind P Ind( | ) ( | ) > ( ) >   but they are not entailed by it.

The first indicator “difference-making,” Δ, is a perfect one, in 
that it entails causation. However, note that in our framework 
Δ is not entailed by causation. All other indicators are related 

6Bradford Hill both refers to explanatory power and likelihood as reliable grounds 
to justify causal judgements, and presents the respective criteria as opposed to tests 
of significance: “No formal tests of significance can answer those questions. Such 
tests can, and should, remind us of the effects that the play of chance can create, 
and they will instruct us on the likely magnitude of those effects. Beyond that, they 
contribute nothing to the proof of our hypothesis.” (Hill, 1965).

FiGURE 2 | Graph structure of the Bayesian network for one RCT 
(randomized controlled trial) which informs us about difference making 
(Δ) which in turn informs us about the causal hypothesis. The information 
provided by the reported study is modulated by how well the particular RCT 
guards against random and systematic error. Duration affects systematic and 
random error as explained in Control for Random Error.

tABLE 1 | Abbreviations.

Symbol intended interpretation

A Adjustment for Confounders
avg Average
B Blinding
CI Confidence Interval
D Drug
D Duration
DR Dose-response Relationship
ES Effect Size
M Mechanistic Knowledge
Mi Mechanistic Hypothesis
NAQPI N-acetyl-p-benzoquinone imine
OR Odds Ratio
PD Probabilistic Dependence
Pl Placebo
R Randomisation
RCT Randomized Controlled Trial
Rep Report Variable
RoG Rate of Growth
SB Sponsorship Bias
SS Sample Size
ST Signal-Tracking
T Temporal Precedence
TRPA1 Transient Receptor Potential Ankyrin-1
© Hypothesis of Causation
Δ Difference Making
μi Mechanistic Report Variable
ℝ Set of Real Numbers
Σ Set of Statistical Indicators: PD, DR and RoG
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only probabilistically to the hypothesis of causation, as we 
now explain.

Difference-Making (Δ)
If D and E stand in a difference-making relationship, then changes 
in D make a difference to E (while the reverse might not hold). In 
contrast with mere statistical measures of association, the difference-
making relationship is an asymmetric one. Probabilistic dependence 
can go in both ways (e.g., if Y is probabilistically dependent on X, 
then also X is probabilistically dependent on Y); the same does not 
hold for difference making, which provides information about its 
direction. This explains why experimental evidence is considered 
particularly informative with respect to causation; the reason is 
exactly that in experiments, putative causes are intervened upon, in 
service of establishing whether they make a difference to the effect.7

Consistent with our choice of modelling “positive” causation 
only (that is instances of causation where X fosters rather than 
inhibiting Y), we shall understand this difference-making 
indicator as being true, if and only if the difference made is a 
positive one. Mutatis mutandis, this convention applies to the 
following three indicators as well.

Probabilistic Dependence (PD)
PD encodes whether D and E are probabilistically dependent or 
not – such dependence naturally increases our belief in some 
underlying causal connection (as an indicator of causation; see, 
e.g., Reichenbach, 1956). Probabilistic dependence is an imperfect 
indicator of causation because neither entails the other. There are 
cases in which probabilistic dependence is created by confounding 
factors, as well as cases where two opposite effects of a single cause 
cancel each other out and produce a zero net effect.8

Dose-response Relationship (DR)
Dose-response relationships are taken as strong indicators 
of causation. DR is a stronger indicator than probabilistic 
dependency alone, because it requires the presence of a clear 
pattern of ≥3 data-points relating input and output. Indeed 
DR implies PD. Dose-response relationships can be inferred 
both at the population and at the individual level, and both in 
observational and experimental studies. Dose-response curves 
correspondingly have different scopes (e.g., the time-trend 
coincidence of paracetamol purchase and asthma increase in a 
given population [(Newson et al., 2000) vs. clinical measurements 
of concentration effects of analgesics]. DR abstracts away from 

7In philosophical terms, difference-making is understood as ideal controlled 
variance along the concept of intervention in manipulationist theories of causation 
(see Landes et al., 2018 for a detailed treatment, see also Woodward, 2003 and 
Pearl, 2000)): X is called a cause of Y if Y’s value can be varied by varying X 
(possibly upon controlling for additional variables in the given situation).
8A well-known example of this type of cancellation is Hesslow’s birth control pills 
case (see, e.g., Cartwright, 2001): The contraceptive (directly) causes thrombosis 
but simultaneously (indirectly) prevents thrombosis by preventing pregnancy 
which is a cause of thrombosis. (Cartwright, 2001) discusses this case as one of the 
pitfalls of reducing causal analysis to probabilistic methodology alone. Of course, 
if cancellation is suspected, one might disable certain preventative causal routes to 
check whether the causal relationship actually shows once disabling conditions are 
held fixed. Cartwright however discusses cases where this strategy might not even 
be viable, owing to the complexity of the causal web.

these specifications and means that for dosages in the therapeutic 
range, the adverse effect E shows (approximate) monotonic 
growth for a significant portion of the range (see below, Figure 3, 
for an illustration of important types of dose-response curves).

Rate of Growth (RoG)
This indicator refers to the presence of a steep slope in the dose-
response relationship. Hence, RoG implies a dose-response 
relationship (DR without RoG means either that the rate of growth 
is low, or highly non-linear). The indicators of causality RoG, DR, 
PD are independent of the causal structure, in the sense that they 
could be equally observed either in cases where D causes E, or 
in cases where E causes D, or when D and E have a common 
cause. All that matters is whether there is a (certain) systematic 
relationship between D and E. RoG, DR, PD are semantically and 
epistemically related and we refer to them as statistical “black-
box” indicators, denoted by Σ.

Mechanistic Knowledge (M)
M represents the proposition: “there is a mechanism for D to 
E”: by which we mean a “linkage between a direct molecular 
initiating event [..] and an adverse outcome at a biological level 
of organization relevant to risk assessment” (Ankley et al., 2010, 
Page 731). In the biological realm, a causal relationship obviously 
entails the presence of a biological mechanism connecting the 

FiGURE 3 | Possible functional forms of the relationship between dosage 
and effect. We delineate eight (A–H) exemplary functional forms for this 
relationship.
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cause to the effect. Therefore, © ⇒ M. However, a mechanism 
may not be causally responsible for bringing out the effect due 
to possible inhibitors, back-up mechanisms, feedback loops, etc. 
M ⇒ © does hence not necessarily hold.

Time Course (T)
T encodes whether D and E stand in the right temporal relationship 
(time course), which can refer to temporal order, distance, or 
duration. If D causes E, T must hold (as a necessary condition): 
© ⇒ T . T remains an imperfect indicator, nevertheless, because 
temporal precedence is also compatible with ¬(D causing E) 
when D and E are connected by a common cause or through 
reversed causation. Hence T ⇒ © does not necessarily hold.

Relationships Between Causal Indicators and the 
Causal Hypothesis
As mentioned above, since they are observable consequences of ©, 
the causal indicators (Δ, PD, DR, RoG, M, T) provide support for the 
causal hypothesis © once concrete studies provide concrete evidence 
for these indicators. Figure 4 illustrates the conceptual dependencies 
among these indicators (in Bayes net style). As mentioned above, not 
all indicators have the same strength: Δ is understood as a perfect 
indicator (Δ ⇒ ©) of causality. However, because of the possibility of 
holistic causation the inverse does not hold, that is, it is not the case 
that ©⇒Δ. With holistic causation we refer to cases in which causal 
links are embedded in a causal structure, which does not allow 
surgical interventions on the individual causal links (see Cartwright, 
2007; Mumford and Anjum, 2011).

Landes et al. (2018) explain that although we tend to identify 
causation with a systematic and, possibly, asymmetric relationship 
between two entities or variables, yet, we prefer, in the context of 
causal inference, to remain neutral towards the various definitions 
of causation provided in terms of necessary and sufficient 
conditions in the philosophical literature. We choose to allow 
for “weaker” markers of causation, such as imperfect indicators9 
rather than requiring the satisfaction of necessary and/or 
sufficient conditions of causation. However, since the indicators 
of causation are weaker versions of the requirements for causation 
formulated in the philosophical literature, this framework may 
be considered to generalise these requirements and the distinct 
ways to formulate them. A possible user is allowed to adopt 
(exclusively) any one of them, or to assume a pluralistic stance 
thereby benefiting from various inferential paths.

One reason for not having © ⇒ Δ is precisely to allow our 
framework to incorporate holistic conceptualisations of causation 
in contrast to the modular conceptualization of causes typical of the 
causal graph methodology developed by Pearl (2000) and Glymour 
and colleagues (Spirtes et al., 2000) see also Woodward (2003).10

9That is, indicators that merely make the probability of a causal relationship being 
present more probable than not.
10These approaches are under attack for failing to recognize that causal structures 
may be holistic (that is, synergistic and non-additive vs. modular and additive), 
and therefore may be not adequately captured by a difference making account. 
Strictly speaking this sort of criticism does not deny that ∆ ⊃ ©, but only denies 
the reverse: © ⊃ ∆. However, in the causal graph literature the defining features for 
causality jointly entail that ∆ ⇔ ©. We respect this debate by not collapsing Δ and 
© into a single node.

The presence of a high rate of growth, RoG, in the dose-
response relationship supports causation more strongly than 
the dose-response DR would by itself without being steep. 
PD is the weakest indicator in the Σ set. Note, however, that 
the statistical concepts are unrelated to difference-making 
information, if we have knowledge about the causal link (we 
will make this very fact explicit in Bayes net terms below). This 
reflects our intention to demarcate the conceptual divide between 
purely observational (symmetric) and genuinely interventional 
(asymmetric) indicators. Moreover, M entails T in that if there 
exists a mechanism linking the drug and the side effect, then it 
must be the case that drug administration and side effect stand in 
the right temporal order.

Evolution of our Approach
The model in (Landes et al., 2018) was developed to formalise 
causal inference in pharmacology on a fundamental level. It lacks 
the complexity necessary to capture certain important aspects 
of practical applications. For example, all variables are binary. 
Furthermore, studies are either deemed unreliable and do not 
provide any information whatsoever or they are deemed fully 
reliable and thus prove or disprove causal indicators. Conditional 
probabilities of causal indicators were left unspecified. Mechanistic 
evidence was not given particular attention.

In this paper, we allow for continuous variables taking values 
in the entire unit interval [0,1] ⊂ ℝ, discuss and model in detail 
the inferential roles of evidential modulators and thereby improve 
on the model of reliability (Evidential Modulators: Study Design 
and Supplementary Material), give a method for determining 
conditional probabilities of causal indicators (Supplementary 
Material) and show how mechanistic reasoning may be formalised 
(see Sections devoted to Mechanistic Evidence in the theoretical 
part and in the case study, and Section 4 of the Supplementary 
Material). In Application of the Model: Does Paracetamol Cause 
Asthma?, we show how the current model can be applied to the 
debated causal connection between paracetamol and asthma.

The ultimate goal is to evolve our philosophical perspectives 
on causal inference into a ready-to-use instrument for causal 
assessment supporting actual decision making procedures. This 
paper constitutes a step in this direction.

FiGURE 4 | Indicators of causality, clustered by type: Δ (difference-making), 
Σ (the statistical blackbox) consisting of PD (probabilistic dependence), 
DR (dose response), and RoG (rate of growth), M (the existence of a 
mechanism), and T (temporal precedence).
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Evidential Modulators: Study design
In analogy to (Bogen and Woodward, 1988), we split the inferential 
path into two stages, one leading from data to abstract phenomena 
(here, causal indicators), and one from such phenomena to 
theoretical entities (here, causation). This allows us to distinguish 
theoretical issues related to causation and their consequences for 
the purpose of causal inference, from methodological concerns 
associated with the interpretation of data. At this second stage, we 
model the signal-tracking ability of the reports as a function of 
the instrument (the study) with which the evidence was gathered.

The signal-tracking depends on how much the study design 
is supposed to have controlled for systematic and random error, 
that is minimisation of the chances that a causal effect is wrongly 
attributed to the treatment under investigation, when instead 
the effect is due to other factors or to chance (false positive), 
or vice versa (false negative). Indeed, a plausible interpretation 
of the criterion underpinning the evidence hierarchies is the 
maximisation of internal validity, see also (La Caze, 2009).

However, in our view, study design also determines the kind 
of information that the evidence is able to provide, hence we 
evaluate the evidence also on the level of the kind of information 
it delivers: that is, the causal indicator it is able to “speak to.”

Following point 1, we associate distinct types of study design 
as potential carriers of causal indicators as follows:

1. Randomised Controlled Trials (RCTs) provide information 
about difference making, time course, possibly also dose-
response relationship and rate of growth.

2. Cohort studies provide evidence of time course and statistical 
association (Σ).

3. Case-control studies provide information about Σ only.
4. Individual case studies cannot provide information about 

statistical association, but they provide very detailed information 
about time course and, possibly, difference-making, whenever 
this can be established with confidence [see for instance the 
Karch-Lasagna or Naranjo algorithm (Karch and Lasagna, 
1977; Naranjo et al., 1981; Varallo et al., 2017)]. However, they 
provide very local information, about an individual subject, and 
therefore do not license inferences about the general population.

5. Case series can possibly help delineate a reference class, where 
the putative causal link holds.

6. Basic science studies (in vitro, or in silico), and in vivo studies, 
are generally the main source for evidence on the mechanisms 
underpinning the putative causal link.

The distinction of different dimensions of evidence, beyond 
different lines of evidence, and different inferential levels (main 
hypothesis, indicators, data, modulators) is the innovative point 
of our approach with respect to the standard view, in which these 
aspects are conflated, or, at least, remain implicit, in evaluating 
and using evidence in order to make decisions. The reason for 
adopting such an approach is twofold:

1. To avoid conflation of distinct ways in which the available 
evidence bears on the hypothesis of interest. Among others, 
this characterization, makes more explicit what distinguishes 
one method from another in terms of relevant causal 

information, rather than of the degree to which it avoids 
systematic error;

2. In our framework, evidence supports the causal indicators 
which in turn support the causal hypothesis of interest, each 
to a different degree. Hence, downgrading the evidential value 
of studies that feed into the weaker indicators just because of 
the kind of information they cannot provide, would amount 
to double-downgrading such evidence. For instance, evidence 
coming from observational studies is uninformative with 
respect to the Δ indicator, but may be highly informative with 
respect to statistical association (Σ).

Therefore, the kind of study from which the evidence derives 
is directly specified by the kind of indicators to which it speaks, 
which be found on the right side of the conditional probability 
(see Section 2 in the Supplementary Material).11

Additionally, studies are weighted by their degree to which 
they control for systematic and random error. Control for random 
error is operationalised in terms of Sample Size (SS) and Study 
Duration (D). Control for systematic error is operationalised 
differently for experimental vs. observational studies. We assume 
that for pure observational studies, signal-tracking is limited to 
getting the statistical indicators right. We consider adjustment/
stratification as relevant procedures in this respect.

Instead, for experimental studies, signal-tracking relates to 
getting the causal link right. Therefore, control for systematic 
error also includes attributes connected to excluding alternative 
causal explanation for the observed effect, such as blinding, and 
randomisation. In both cases we add an indication of whether 
the study could have been intentionally biased (because of 
financial interests). In the following, we discuss these evidential 
modulators in more detail.

In the future, we hope to analyse and incorporate further 
modulators such as dropouts, missing data, protocol violations, 
whether analysis was by intent to treat and the presence or absence 
of further biases into our approach. For example, regarding 
harm assessment, which is the focus of the present study and 
the main goal for developing E-Synthesis, sponsorship bias shifts 
probabilities towards reports of greater safety. (Sub-conscious) 
biases may instead push researchers in both directions, with a 
higher prevalence towards reporting more publishable results: 
this means statistically significant evidence and/or counter-
intuitive and surprising results.

Our Bayesian model is sufficiently powerful to capture 
uncertainties arising from inherent difficulties in assessing the 
degree to which studies are controlled for systematic and random 
error.

Control for Random Error
Sample Size (SS)
A large sample size helps to reduce confidence in the hypothesis 
that an observed effect (or lack thereof) is due to chance/noise/

11For instance, P(ES | A, S, D, SB, PD, T) is the conditional probability of observing 
blue whether there is an effect size ES or not in a cohort study; where the 
instantiated indicators on the right side of the conditional probability are PD, and 
theindicator for time course (T), since cohort studies provide information about 
both indicators (that is evidence for or against each of them).
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random error. The larger the sample size, the less defeasible 
the inference one may draw from reported results (modulo 
systematic error).

Study Duration (D)
Most drugs produce their beneficial effects within a time 
horizon that is well-understood at the time of drug prescription. 
Instead, some adverse drug reactions, such as stroke, heart 
attack, and cancer, may be noted only a long time after the 
end of the treatment. A priori, it is not clear after how long the 
adverse effects will materialise. Infamous examples are the DES 
tragedy of causing vaginal adenocarcinoma in pubertal and 
adult children of treated pregnant mothers (Preston, 1988) and 
antipsychotic drugs causing tardive dyskinesia after years of 
treatment (Beasley et al., 1999).

In principle, the longer the follow up, the more likely adverse 
drug events will be detected. Studies with a short follow up 
period may thus fail to detect medium to long term effects of 
drugs, hence they tend to produce false negatives. A study with 
a short follow-up period, which does not detect an adverse 
effect, can only count as very weak evidence against the causal 
hypothesis, since the adverse reaction may occur only after the 
end of the follow-up period (see Vandenbroucke and Psaty, 
2008). However, if the drug does not cause an adverse effect, then 
the study duration does obviously not influence the probability of 
finding it in the studied population.12

So, study duration affects random error but short studies 
lead to a systematic under-reporting of harms. This explains the 
position of the duration node in Figure 2.

Control for Systematic Error
While large sample sizes and long-term studies allow one 
to reduce one’s belief in a chance result, one has thereby not 
excluded other factors that may have caused the results. For 
example, consider a large study that is biased in an important 
respect, then – when evidence is taken at face value – one may 
become even surer that one has nailed down the effect size of 
the phenomenon of interest, erroneously so (this bias tends 
to become “intransigent” the larger the sample size becomes; 
see: Holman and Bruner, 2015). In 1998, the point was made 
thus: “There is a danger that meta-analyses of observational 
data produce very precise but equally spurious results” (Egger 
et al., 1998, p. 140). This point has recently been explored in 
computer simulations for aggregating evidence via frequentist 
statistics (Romero, 2016).13

Blinding, Randomisation and Placebo (B,R,Pl)
The main instruments to isolate the putative causal link D © E 
from all other possible causal effects on E beyond chance. This 

12A study with a long follow up may have measured safety (end-) points only at the 
end of the study or at multiple times. That’s a relevant consideration concerning 
study duration not yet incorporated here.
13However, the probability of imbalance between the two groups decreases with 
increasing N. Hence, very large samples, especially with random sampling, may 
guard not only against random error, but also against some forms of confounding.

happens because, through randomisation, one has a probabilistic 
guarantee (modulo random error), that the treatment and the 
control group are comparable with respect to all these possible 
additional causal influences, and therefore that the observed 
effect is due to the treatment and only to it, see (Fuller, 2019) 
for a philosophical discussion. Double blinding ensures that 
randomisation is not biased by the researcher in order to obtain 
a wishful result, or by the study subjects, through so-called 
placebo effects.

When the experiment has no placebo arm, or none of the 
drugs in the control arms are sufficiently understood, then the 
study cannot deliver any information about Δ (and not even 
about any of the Σ indicators), since evidence for these indicators 
draws on the observed effect difference with and without the 
presence of the putative cause.

In fact, if the effects of distinct putative causes are compared 
against each other, without any knowledge as to their causative 
status, and no absolute benchmark (i.e. absence of all putative 
cause), then such relative comparison against each other only 
provides information about relative difference making, that is, 
one is not able to establish whether e.g. 1) drug A produces an 
improvement of symptoms, 2) or it is drug B that worsens the 
situation by the same amount, 3) or else, both drug A and B 
have opposite effects with respect to such symptoms (the former 
improves them, while the latter worsens them).

There are cases that can be disambiguated though, for instance 
when at least one of the arms but not all of them show a dose-
response relationship. In this case, the very fact that some drugs 
do not exhibit such dose-response relationship, and some do, is 
taken as a sign that the latter do contribute to E in some way, 
while the former can be taken as benchmark(s).

Even when no such disambiguation is feasible, there is still a 
possibility to glean some information about Δ in experimental 
studies, by comparing the study outcomes to the base rate 
incidence of the same outcome measure in the sampled 
population. Like many other steps in causal inference this step 
is fraught with risks. The more tenuous the connection between 
study outcome and the base rate, the more risky the step. In our 
framework, this risk is captured by employing different values 
of the evidential modulator representing the quality of the 
implementation of placebo control.

Adjustment and stratification (A)
Both in experimental and observational studies data may be 
adjusted for covariates both in the design and in the analysis 
phase. This may be done in various ways: factorial design, 
stratification, standardisation, multivariate regression analysis, 
and, more recently with the aid of Propensity Score methods 
(Montgomery et al., 2003; Kurth et al., 2005; Schneeweiss et al., 
2009; Kahlert et al., 2017). This is an important attribute in the 
methodology of causal inference, which is however fraught with 
several diagnostic pitfalls, especially due to the requirement of 
“causal sufficiency” (any causal inference is invalidated, if the 
set of covariates on which it is based misses latent variables). 
Adjusting for the right covariates, in a sufficient causal set leads 
us to detecting non-spurious statistical associations, whereas 
conditioning on the wrong variables leads us astray and increases 
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the chance of false positives and negatives, see, e.g., (McCarron 
et al., 2010).14

Sponsorship Bias (SB)
Evidence hierarchies are one means to order study designs 
in terms of the potential for suffering from systematic error, 
either caused by confounding or by intentional distortion 
of the evidence. While higher level evidence – RCTs, meta-
analyses, systematic reviews of meta-analyses - is in principle less 
manipulable (because of blinding, randomisation, and increased 
accuracy through data pooling), still, well-known incentives to 
the distortion of evidence may arise through vested interests, 
and compromise the reliability of the evidence at different 
stages of evidence collection, interpretation and evaluation quite 
independently of the methodology adopted (Rising et al., 2008; 
Wood et al., 2008; Song et al., 2009; Krauth et al., 2013; Ioannidis, 
2016). Other  things being equal, a sponsored study is more 
likely  to produce results which align with the sponsor’s interest.

One persistent bias in medical research is the sponsorship 
bias due to the interests of the organisations funding medical 
research, see, e.g., (Lundh and Bero, 2017; Lundh et al., 2017). 
One dramatic instance of sponsorship influencing the safety 
evaluation of a drug is the Vioxx disaster (Jüni et al., 2004; Horton, 
2004).15 If a drug causes an adverse reaction, a sponsorship bias 
tends to hide it, and therefore makes it more likely that the study 
delivers no reports about adverse drug events (or reports with 
smaller effect sizes than the drug really induces). Furthermore, 
by tending to distort results in a predefined direction, bias 
“interacts” with random error, in the sense that systematically 
biased procedures, when replicated, lead to increased “artificial” 
accuracy: it may well be that the rate of false negatives is higher 
for non-sponsored studies, hence apparently paradoxically, 
sponsorship bias produces “more accurate” data when no side-
effects are present in reality.16

Regulatory constraints on medical methodology have 
evolved with such sources of bias in mind, see (Teira, 2013; 
Teira and Reiss, 2013). However, as some have recently 
noted, those who intend to manipulate data find ways 
circumventing such regulatory constraints and trigger a race 

14Our treatment of adjustment mirrors the discussion in the causal graph literature, 
where authors insist on proper adjustment for the computation of causal effects from 
observational data. Pearl (2000), e.g., devises his do-calculus precisely for this aim. 
Two graphical criteria (Pearl’s front-door and back-door criteria) help the researcher 
decide whether the observational data at hand suffice tocalculate causal effects without 
supplementing interventional information. If so, the probability-theoretic instruments 
of front-door adjustment and back-door adjustment can be applied to calculate the 
desired measure (see, e.g., Shrier and Platt, 2008 for an application of Pearl’s calculus 
in a medical setting). Despite the power of the calculus, the methodology naturally 
remains statistical (and Bayesian, so to speak), with all its shortcomings – e.g., the 
results must always be assessed relative to the prior choice of variables.
15Other kinds of biases, may also affect the reliability of the evidential reports. 
These regards the interest of researchers to get career advancements, or other 
kinds of incentives for scientific reputation. However, we follow recent suggestions 
(Bero and Grundy, 2016) to clearly distinguish these from the former kind, and 
we model here only the former one, also for the sake of keeping the model simple, 
and the case study manageable. However, our framework can be easily expanded 
to include several sources and types of biases.
16See also (Romero, 2016; Osimani and Landes, under review) for formal analyses of 
the role of bias and random error in hypothesis confirmation through replications.

of arms characterised by epistemic asymmetry (Holman, 
2015; Holman and Geislar, 2019).17

Reports
This section lists three possible evidence types which may be 
observed with respect to causal hypotheses in medicine. A certain 
(statistical) measure as to the effect size, evidence regarding the 
possible mechanisms underpinning the “phenotypic” effect, and 
evidence of time course (which can only come jointly with one 
of the other two).18

Effect Size (ES)
The medical community has developed various popular 
measures of the strength of observed effects: relationships 
between the odds ratio, hazard ratio and the relative risk are 
discussed in (Stare and Maucort-Boulch, 2016; Sprenger and 
Stegenga, 2017).19

These measures all refer to the average observed effect 
difference in the study groups. However, other measures of causal 
strength refer to the systematic pattern that relates treatment 
and effect (dose-response relationship) and to the rate at which 
increase in dosage increases the observed effect (rate of growth).

Mechanistic Evidence (ME)
Evidence speaking for or against a mechanistic hypothesis stems 
from basic science or animal studies, and previously established 
pharmacological/biochemical knowledge. It is rarely the case 
that a study confirms or establishes a complete mechanism of 
action [“a complete and detailed understanding of each and 
every step in the sequence of events that leads to a toxic outcome” 
European Centre for Ecotoxicology and Toxicology of Chemicals 
(ECETOC), 2007, Page 13)] by which a drug causes an adverse 
reaction. Instead, mechanistic knowledge is most often acquired 
piecemeal: incoming evidential reports are put together to 
complete a mechanistic puzzle, and they acquire their meaning 
only within the broader picture.

Time Course
Evidence of time precedence can come from experimental 
studies (e.g., RCTs), from cohort studies, from evidence of 
mechanisms, or from individual case studies (see preceding 

17The statistical literature also offers tools for the detection of publication bias, e.g., 
funnel plots (Duval and Tweedie, 2000).These relate to the representativeness of 
the set of available studies with respect to the population characteristics.
18In individual case studies, time precedence is one of the main indicators of so 
called “token” causation, that is, actual cases of causation happening in individual 
patients. In this case, time precedence is not accompanied by statistical evidence 
of any kind, neither need it to come together with evidence about possible 
mechanisms of action, but rather stands alone.
19In the philosophical literature, the strength of a causal relationship has also been 
conceived as stability, invariance, insensitivity, or non-contingency. (Woodward, 
2003) proposes a conceptualisation of strength of causal relationships in terms 
of invariance: Such relationships are not distorted nor disrupted – even under 
interventions in the system; they invariantly propagate causal influence. This way to 
conceive stability pertains to the relevance dimension (see Landes et al, 2018), that 
is to the context-sensitivity of causation, and has therefore implications for external 
validity (see also: Osimani, 2019). We will not treat these aspects in the present paper.
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section). Longitudinal studies, may provide more data-points in 
time regarding the evolution of a phenomenon.20

A PRoBABiLiStiC inFEREnCE ModEL: 
HyPotHESiS UPdAtinG
We now show how one may model inferences from data to the causal 
hypothesis. Functional forms and concrete numbers are to be read as 
exemplary and can be found in the Supplementary Material.

Causal Variables
The Causal Hypothesis
The prior probability of the binary variable © is one’s assessment 
of the probability that the drug causes the adverse effect after the 
hypothesis has been generated, without looking at any further 
evidence (only the evidence for generating the hypothesis may 
be taken into account here). The choice of a particular prior 
probability, P(©), is hence via case-by-case reasoning.

Causal Indicators
The conditional probabilities of a causal indicator variable, given 
its parent variables, measure how much different types of evidence 
contribute towards confirmation of the causal hypothesis of interest.

The conditional probabilities relating © to the causal indicators are 
relatively stable across applications because they relate a theoretical 
entity, ©, to abstract indicators (Σ, Δ, M, T), see also Swaen and van 
Amelsvoort (2009) p. 272. Determining some of these conditional 
probabilities (see Figure 4) of indicator variables is straight-forward 
due to their entailment relationships. We have

 

P M P T P
P PD DR P DR RoG P T M

( | ) ( | ) ( | )
( | ) ( | ) ( | )

  = = =
= =

∆ 1
== 1,

 

that is, the probability of there being a mechanism given that 
there is a causal relationship between D and E is one, just because 
© ⇒  M. The same holds for time course. Instead, the entailment 
relationship between Δ and © goes in the opposite direction: Δ ⇒ ©. 
Hence,   entails ∆  and consequently the probability of ∆  given 
is  one.

Similarly, the probability of there being probabilistic 
dependence between D and E given that there is a dose-response 
relationship between them is also one. For the same reason, the 
probability of there being a dose-response relationship given that 
there is a high rate of growth is one. Finally, since M entails T, the 
probability of T given M is one.21

20Note that – under the assumption of a causal link between D and E – knowledge 
about the T indicator breaks the symmetric information provided by the PD 
indicator: E.g., if D is known tobe temporally prior to E, then the inference from 
(symmetric) probabilistic dependence between D and E to E causing D is not 
viable (D and E possessing a common cause is still a live option, though). Some 
philosophers of causation have made this explicit in their accounts of cause–effect 
relationships, see (Suppes, 1970).
21Since all causal indicator variables are binary, and probabilities sum to one, we 
only need to specify one half of all conditional probabilities in the Bayesian net.

Statistical Indicators
One may assign the remaining conditional probabilities of the 
other indicators in Σ by first determining a finite number of curves 
relating dosage and adverse effect, which plausibly represent the 
possible dose-response curves. Next, one observes which of these 
curves are compatible with PD, DR, RoG, ©. Then, one assigns prior 
probabilities to these curves conditional on the causal hypothesis 
holding or not. This suffices to compute the remaining conditional 
probabilities. For example, P PD DR( | ),  is the probability of all 
curves when both PD and © hold but there is no dose-response 
relationship ( )DR , divided by the probability of all curves where © 
holds but not DR. So, P PD DR( | )  is equal to:

 

P curves exhibiting PD and DR
P curves exhibiting

( , )
(


 aand DR)  

Difference Making
Since difference making is a very good indicator, we 
adopt “opinionated” conditional probabilities (reflecting 
tight relationships):

 P P( | ) ( | ) .∆ and ∆ ≈ =1 0  

The first probability equals, in essence, 1 minus the probability 
of holistic causation. For the purposes of calculations in our case 
study we here set this value equal to 1.

Time
Time precedence is guaranteed either by there being a mechanism 
that leads from D to E, whether causal or not, or by there being 
a causal connection between D and E. This is because, if there 
exists a mechanism from D to E, then D must be prior to E.22

Also if D causes E, then D must be prior to E as well. So:

 P T M P T M P T M( | , ) ( | , ) ( | , ) . =  =  = 1  

The probability of there being time precedence is one, 
whenever either M or © hold.

In case M and © are false, we have no reasons to think that E 
is prior or posterior to D. We are hence indifferent over whether 
there is time precedence or not. So,

 P T M( | , ) . . = 0 5  

Mechanisms
If a drug causes a side effect, then this must occur via some 
mechanism, so P(M|©)=1. One’s probability that there exists a 
physiological mechanism from drug to adverse effect, which is 
not causally responsible for the effect, is P M | ( ) . Since the 
probability of there being any physiological mechanism that goes 

22The fact that when D causes E, in an individual or at a population level, it must 
come before E, does not obviously entail that the drug D cannot also be taken after 
the event. We thank an anonymous reviewer for pointing this out to us.
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from D to E, even if D does not cause E, is relatively high, see 
Howick (2011), we set this probability to 0.5.

Evidential Variables
Each study may yield evidence for (or against) any of our causal 
indicators. While experimental studies yield information about 
difference making in addition to probabilistic dependence and 
time (as well as, possibly, dose-response and rate of growth), 
observational studies may yield information about any one of the 
Σ indicators only (plus, possibly, information about time). Basic 
science studies or animal studies (or computational methods 
of various kinds) may deliver information about physiological 
mechanisms. See section on evidential mediators and reports 
(Evidential Modulators: Study Design and Reports).

We formalise the notion of incoming evidence as reports 
confirming or (dis- ) confirming any of the indicators. These 
are represented in the Bayesian network as variables called Rep 
(for report). These report variables as well as the modulator 
variables (see Statistical Evidence for the Σ-Indicators, Evidence of 
Difference-Making below) are continuous variables, which, e.g., 
allow for the representation of an effect size, the duration of a 
study in days and the quality of randomisation.

Statistical Evidence for the Σ-Indicators
We assume that every observational study yields information 
about one Σ indicator only: i.e., each Rep node only has one Σ 
parent, graphically speaking. This parent is the strongest indicator 
one has evidence for. For instance, a multiple-exposure study 
delivering information about different effect sizes in the different 
arms with a steep rate of growth feeds into the RoG indicator 
only. Conversely, an observational study that delivers information 
about the outcome of exposed vs. non-exposed subjects only, with 
no graded arms differentiating among diverse dosages, will feed 
its evidence into the weakest Σ indicator only (PD).

For each observational study, the values of the following 
variables are pertinent for the report’s conditional probability: 
adjustment for confounders A, sample size of the study SS, study 
duration SD and sponsorship bias SB.

The variables A, SS and D model how well a study tracks a 
Σ-indicator. The better the tracking the more informative a study 
is, the smaller the uncertainty, ceteris paribus. There may of 
course be other factors for a study ability to track a signal from 
nature that are outside of our model.

The presence of sponsorship bias instead, in the case of drug 
side-effects, is expected to lead to fewer reports of suspected 
adverse drug reactions and smaller effect sizes, i.e., side-effects 
tend to be concealed. The duration of a study is not a signal-
tracking component in case a causal indicator does not hold, 
since whatever the length of the study, this will never detect a 
signal that nature does not send.

Figures 5 and 6 (for positively and negatively instantiated PD, 
respectively) compactly illustrate these shifting tendencies when 
these dimensions interact. The graphs show for a (non-)significant 
effect size, ES ∈ {0, 1}, how the conditional probability of a report 
changes (in tendency) when the sponsorship bias variable SB 
and the signal-tracking (as a composite variable) change. Case 

(a) represents a better signal-tracking and no sponsorship bias, 
case (d) represents a worse signal-tracking and the presence of 
sponsorship bias, that is, the tendency to hide harmful effects. 
For example, for positively instantiated PD (Figure 5), adding the 
presence of sponsorship bias compresses the range. Worsening 
the signal-tracking (e.g., due to reduced sample size) also has this 
compression effect. Consider the case of a study which reports 
no adverse effect: if it is good at signal-tracking and has no 
sponsorship bias, then the probability of reporting such a null 
result is low, but it increases when sponsorship bias is present.

Evidence of Difference-Making
RCTs inform us about the difference-making indicator of 
causation and whether there is time precedence. For each study, 

FiGURE 5 | Conditional probabilities of a report (ES ∈ {0, 1}) for the positively 
instantiated PD (probabilistic dependence) indicator: The four bars illustrate 
the shift in tendency from scenario (a), with better signal-tracking and no 
sponsorship bias, to scenario (d), with worse signal-tracking and sponsorship 
bias. The probability of a report of significant effect size, ES = 1, decreases 
from left to right.

FiGURE 6 | Conditional probabilities of a report (ES ∈ {0, 1}) for the 
negatively instantiated PD (probabilistic dependence) indicator: As above, the 
four bars illustrate the shift in tendency from scenario (a), with better signal-
tracking and no sponsoring bias, to scenario (d), with worse signal-tracking 
and sponsorship bias. In this case, the probability of a report of significant 
effect size, ES = 1, increases with worsening signal-tracking, but decreases 
when sponsorship bias is accounted for.
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the report’s conditional probability depends on the variables we 
used for statistical evidence, (adjustment, sample size, duration, 
sponsorship bias: A, SS, D, SB), plus: blinding B, randomisation 
R and placebo Pl. Ceteris paribus, the better blinding, 
randomisation and placebo implementation the better a study is 
at tracking the signal, or, in case no signal needs to be detected, 
the more it reduces the chances of false positives.

Assessment of Modulators
The assessment of the modulators SS, D is achieved by reading 
off study characteristics of published reports. There is hence 
no uncertainty about these variables. As a result, there is no 
need to explicitly represent these modulators as variables in the 
Bayesian network.

The other modulators may be assessed by the application of 
quality assessment tools (QATs). In case there is uncertainty 
about a particular modulator applying to a study, which may be 
due to disagreement between different QATs Stegenga (2014) 
or to lack of available data, this modulator is represented by a 
variable V. The uncertainty over V then leads to what Bayesian 
statisticians call a hierarchical model. Instead, for a Bayesian 
epistemologists the modulator variable V is a variable like 
any other and she is hence prepared to assign (conditional) 
probabilities to it. Technically, one specifies an unconditional 
probability distribution over V reflecting this uncertainty. In the 
DAG one adds an arrow starting at V which points to the report 
variable. The conditional probabilities of the report variable 
is then specified with respect to all the possible values of all its 
parents (including V).

If an (a group of) author(s) is responsible for multiple reports 
which may affected from sponsorship bias, then one creates only 
a single variable V for this (group of) author(s) which modulates 
all these studies. This construction allows one to reason about the 
sponsorship bias of the (group of) author(s) from data.

Mechanistic Evidence
Studies at the genetic, molecular, or cell level are often considered 
to provide evidence about the mechanisms that underpin the 
putative phenotypic causal relation. This observation motivates 
our choice of introducing a variable Mi for every mechanism 
for which there is evidence. The Mi come as hypotheses about 
mechanisms between D and E. Each mechanism Mi may be 
broken down into further bits of the mechanism; denoted here 
by μi,k. Concrete data about these bits is denoted by Rep

ikµ , see 
Figure 7 for an illustration.

As for the reports feeding into the Σ set or to Δ, also the Rep
i kµ ,

 
reports might be modulated by evidential modulators. However, 
evidential modulators are of a different nature here and deserve 
a separate treatment. Hence, in order to keep this paper self-
contained and not to complicate calculations for the case study 
excessively, we do not model here evidential modulators for 
evidence of mechanisms.

Evidence of the Temporal Structure
Evidence of the temporal structure comes from RCTs, and also 
cohort studies which can reduce the suspicion of reverse causation, 
but not other confounders. Modulo other confounders, a cohort 

study reporting an observed effect provides evidence for a statistical 
correlation and the temporal structure, at the same time.

APPLiCAtion oF tHE ModEL: doES 
PARACEtAMoL CAUSE AStHMA?
In the following, we apply our framework to a case study: the 
debated causal association between paracetamol and asthma. The 
debate is not settled yet (Heintze and Petersen, 2013; Henderson 
and Shaheen, 2013; Martinez-Gimeno and García-Marcos, 2013)23 
and evidence concerning this hypothesis is by now considerably 
vast and varied. For simplicity, we will here consider only 
exemplary studies in the entire body of now available evidence, 
and simulate on the basis of these studies, how hypothesis updating 
could be modelled in our framework. We specified the causal 
variables and their conditional (in-)dependencies in Theoretical 
Entities. The report variables for statistical and difference-making 
evidence and their conditional (in-)dependencies are described in 

23An older reference which also gives an assessment of © along the Bradford Hill 
Criteria is (Farquhar et al., 2009, Page 39).

FiGURE 7 | Illustrative example of the mechanism part of the Bayes net. 
The graph shows the existential claim M (mechanistic knowledge) and its 
relationship with hypothetical, alternative mechanisms M1,M2,…, Mn, their 
constitutive sub-mechanisms (μi,k) and concrete evidence Rep

i kµ ,( ) . Dotted 
edges are present, if and only if two Mi share parts of their mechanisms. 
Sub-mechanisms nodes (μi,k) without children are to be read as hypothesised 
sub-mechanisms for which no evidence is available. Every sub-mechanism 
may have multiple evidence reports as children which may represent basic 
science findings in different species or cell cultures.
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FiGURE 8 | Directed acyclic graph of the Bayesian network used to compute the posterior probability of © (Hypothesis of Causation). Evidential modulators are not 
shown.
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Evidential Variables; their conditional probabilities are specified 
in Section 2 of the Supplementary Material. How to set up the 
mechanistic part of the model is explained in Section 4 of the 
Supplementary Material.

Although, evidence ought to be considered always with 
respect to a given population of interest; we do not make any 
such distinction here for the sake of a compact presentation.

We here present summaries of reported results, for none of 
which we claim any credit.

Hypothesis Generation
The hypothesis of a possible causal association between paracetamol 
intake and asthma first emerged following the observation that the 
“asthma epidemic” in the western population followed the same 
time trend of increase in paracetamol consumption.

The data on which this observation was based initially came 
from a study by Varner et colleagues (Varner et al., 1998). The 
study aimed at explaining this epidemic through the reduction of 
aspirin use in the same period, due to the protective properties of 
aspirin against asthma in virtue of its anti-inflammatory effects. 
Aspirin prescription declined because the drug was discovered to 
be associated with Reye’s syndrome (Varner et al., 1998).

The hypothesis that asthma epidemic could be explained by the 
drop of aspirin prescription, was however undermined by simply 
considering that, if it were true, then one should have observed 
an equal prevalence of asthma before aspirin was introduced 
into the market, and a decrease after its introduction (Shaheen 
et al., 2000). Since in the same study the data-points showed a 
coincidence in time trends not only between asthma increase and 
aspirin decline, but also between increase of paracetamol sales 
and of asthma prevalence, this led researchers to investigate the 
causal hypothesis that paracetamol causes asthma; see Henderson 
and Shaheen (2013); Osimani (2014) for more details.

However, at the time in which this hypothesis was generated, 
there was little belief that the household paracetamol may be 
causing asthma, because of a general assumption of innocuousness. 
Experts at the time of hypothesis generation hence had a low prior 
belief in © begin true. Since we do not have access to a time travel 
machine, we exemplary consider three plausible values of the prior 
probability P(©): 0.01,0.005 and 0.001 for illustrative purposes.

Statistical Evidence
The statistical and mechanistic evidence presented next is a 
small part of all the available evidence concerning the debated 
causal connection between paracetamol and asthma. Studies 
were selected to demonstrate the workings of the model and its 
versatility: some of these studies are shown below, other ones are 
presented in the Supplementary Material; exhaustiveness and 
representativeness were not part of our study selection procedure.

To simplify exposition we here model a state in which there is 
no uncertainty about the modulators applying to evidential reports, 
that is, one is sure whether a study is properly adjusted, blinded and 
so on. Furthermore, we limit ourselves here to binary effect size 
variables ES ∈ {0, 1} and discrete modulator variables in {0, 0.5, 1} 
about which we are certain. In the Supplementary Material 

(Methodology), we explain how to model uncertainty about the 
value of modulators variables via Bayesian hierarchical modelling.

Lesko and Mitchell (1999) reports a practitioner-based, double-
blind, clinical trial, with random assignment of paracetamol and 
Ibuprofen to 27,065 children, without placebo, and with a 4-week 
follow-up period. The aim of the study was to investigate the 
safety of ibuprofen, rather than paracetamol. Relevant outcomes 
were hospitalisation for asthma/bronchiolitis; the relative risk for 
ibuprofen, compared with paracetamol was 0.9 (95% CI, 0.5−1.4). 
Since the confidence interval for the relative risk contains 1, there 
is no evidence of either of the two being more or less harmful to 
children. With regard to a possible sponsorship bias, this study 
was reported to be supported by McNeil Consumer Products 
Company, Fort Washington, Pennsylvania.24 Since the study was run 
without placebo and for a relatively short period, the probability of 
observing a null effect, as in this case, is relatively high. Furthermore, 
the observed null effect may be due to a)  neither the drug being 
harmful or b) both drugs being harmful. However, this latter 
possibility is excluded, through implicit comparison to the base-rate 
incidence in the overall population. Hence, we consider this study, 
notwithstanding its lack of placebo, to feed into the Δ indicator. In 
order to update our hypothesis on this evidence (ES = 0), we need 
to fully specify all conditional probabilities of observing it, when the 
pertinent indicator(s) hold [or not] given the evidential modulators. 
We assess the modulators for this study as follows: A = 0.5, SS = 1, 
D = 0, SB = 1, B = 1, R = 1, Pl = 0.5. We use 



x  to denote the values 
of the pertinent modulators here and in the following formulae.25
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This formula captures the idea that, if a study is good at 
tracking the signal, then the probability of observing the effect, 
given that the related statistical indicator holds, tends to 1. Instead, 
the worse the study is, the smaller the probability becomes. See 
Section 2 of the Supplementary Material for further details.

Shaheen et al. (2002) reports a population based longitudinal 
study (Avon study). Observations are reported at different times, 

24McNeil Consumer Products Company and Whitehall-Robins Healthcare 
(Madison, NJ). The Slone Epidemiology Unit has received or is currently receiving 
research support from the US Food and Drug Administration, the National 
Institutes of Health, and a number of pharmaceutical companies.
25All conditional probabilities of evidential variables are here stated prior to 
normalization (see the Supplementary Material (Section 2) for rationales for 
normalization).
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for a minimum of 9,400 patients: pregnant women and their babies 
of up  to 42 months. After controlling for potential confounders, 
frequent paracetamol use in late pregnancy (20-32 weeks), but not in 
early pregnancy (< 18-20 weeks), was associated with an increased 
risk of wheezing in the offspring at 30-42 months (adjusted odds 
ratio (OR) compared with no use 2.10 (95% CI 1.30 to 3.41); p = 
0.003), particularly if wheezing started before 6 months (OR 2.34 
(95% CI 1.24 to 4.40); p = 0.008). Assuming a causal relation, only 
about 1% of wheezing at 30-42 months was attributable to this 
exposure. Two authors of this study (SOS and RBN) report funding 
from the UK Department of Health. Core funding for the long term 
follow up of the cohort came from the Medical Research Council, 
the Wellcome Trust, the UK Department of Health, the Department 
of the Environment, DfEE, the National Institutes of Health, a 
variety of medical research charities and commercial sponsors, 
including Stirling-Winthrop who enabled the original collection of 
data on paracetamol use. We model this as evidence pertaining to 
DR and T (since only two different non-zero dosages – never, some 
days, most days– were reported). For the modulators we have SS = 1, 
D = 1, SB = 0, A = 1 and thus
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Mechanistic Evidence
To focus the exposition, we only consider two possible mechanisms 
(M1 and M2) by which paracetamol may cause asthma.

M1: Paracetamol is metabolised to NAPQI (N-acetyl-p-
benzoquinone imine) (μ1,1), NAPQI stimulates transient receptor 
potential ankyrin-1 (TRPA1) (μ1,2) [reported in Nassini et al. 
(2010)] and TRPA1 causes airway neurogenic inflammation 
(μ1,3) [reported in Nassini et al. (2010)].

M2: Paracetamol depletes Gluthatione (μ2,1) [reported in 
Micheli et al. (1994); Kourounakis et al. (1997)], low levels of 
Gluthatione cause oxidative stress hyperresponsiveness in the 
airways (μ2,2) [reported in Smith et al. (1990); Kelly (1999)].

We set the conditional probabilities of a mechanism given M to:
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We assessed M1 and M2 to be likely, if M holds; M1 was assessed 
to be the more likely of the two. If M does not hold, then all Mi 
have to fail to hold and are hence assigned zero probability.

We now turn to setting conditional probabilities of the μ1,k given 
M1 and given M1  First, recall that Mi entails μi,k and hence
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μ1,1, μ1,2, μ1,3 and M1 are, when taken together, logically 
inconsistent. So,

 P M( | , , ) ., , ,µ µ µ1 3 1 1 1 1 2 0=  

If M1 fails to hold, then we are indifferent about μ1,3 and μ1,2 – 
independently of μ1,1 (respectively μ1,2).
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In general, almost all effective drugs have toxic metabolites. 

We here take it as established that paracetamol is metabolised to 
NAPQI (independently of whether M1 holds or not) and hence put

 P M( | ) .,µ1 1 1 1=  

Conditional probabilities of considered evidence reports in 
(Nassini et al., 2010) for M1 are set to:
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We take the quotient P p P p( | )/ ( | )
, ,, ,Re Reµ µµ µ

1 2 1 21 2 1 2  to be a 
measure of the strength of evidence in accordance with the literature 
on Bayes factors. It expresses how much more (or less) likely the 
received evidence is under μ than under µ  A Bayes factor of 91/9 ≈ 
10 was chosen to model confident claims in the primary literature, 
while a Bayes factor of 75/25 = 3 was adopted for cautious claims. 
Conditional probabilities of considered evidence reports for M2:
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P M( | , ), ,µ µ2 2 2 2 1  is zero for the same reasons as 
P M( | , , ), , ,µ µ µ1 3 1 1 1 1 2  is equal to zero. Conditional probabilities 
of considered evidence reports (Smith et al., 1990; Micheli et al., 
1994; Kourounakis et al., 1997; Kelly, 1999) are set to
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The first three reports are assessed as confident claims, the 
fourth claim as cautious. The graph of the Bayesian network is 
displayed in Figure 8.

Posterior Probability of ©
The body of evidence incorporated here was assembled to show 
the versatility of the E-Synthesis framework and by no way 
represents a systematic review of the available evidence. The 
posterior probability is thus best understood as an illustration 
of how the framework computes the posterior without attaching 
too much weight to the actual computed value. We present 
the posteriors for the three different priors (0.01, 0.005, 0.001) 
as an example of a sensitivity analysis investigating the output 
(posterior probability of ©) on the input parameters.

We computed the posterior probability of © using the 
Bayes Net Toolbox in Matlab R2012a and report the posterior 
probabilities in Table 2.26 Formally, computing the posterior 
probability of © is a Bayesian network inference problem which 
can be solved by repeated applications of the Chain Rule and 
Bayes’ Theorem, see (Neapolitan, 2003).

diSCUSSion

Learning Probabilities From data
The (conditional) probabilities introduced above are a general 
example which may reflect the judgements of expert opinions. In 
concrete applications, these probabilities can and should heavily 
draw on real-world evidence and data. There is some work on how 
to determine such probabilities in this way, as we now briefly outline.

De Pretis and Osimani (2019) suggest an approach to compute 
the following:

26The underlying DAG is displayed in Figure 8. The Matlab R2012a .m-file used 
to compute the poterior probability can be found in the Supplementary Material.

 P DR DR( | )  

i.e., the probability of DR, given the available dose-response 
evidence and its related modulators. The MCP-Mod algorithm 
(see Bretz et al., 2005) and similar Bayesian approaches (Shao 
and Shapiro, 2019) have been proposed to tackle the problem 
of dose-finding in pre-clinical studies aiming to determine the 
(optimal) efficacy of a drug. These algorithms consider a finite 
number of dose-response curves, which is similar to our approach 
(Figure 3). Unfortunately, the approach of De Pretis and Osimani 
(2019) does not yet involve the role of modulators, that is, they do 
not compute P DR xDR( | , )



. We hence cannot simply incorporate 
their results.

Stewart et al. (2015) presents a Bayesian network approach to 
judge the quality of studies within the GRADE framework, see 
Alonso-Coello et al. (2016). “The approach also lends itself to 
automation, where nodes can be parameterised either using data 
mining software.” (Stewart et al., 2015, Page 9).

Ryan et al. (2013) determines a conditional probability of © 
given a statistical association. Unfortunately, we cannot use this 
probability here because the conditional probabilities of PD we 
require here are also conditionalised on the (non-) existence of 
a dose-response.

Evidence Synthesis in Context
Theoretically and computationally, E-Synthesis exploits coherence 
of partly or fully independent evidence converging towards the 
hypothesis (or of conflicting evidence with respect to it), in order 
to update its posterior probability. Propagation of probabilities 
hence work in a totally different sense than for causal DAGs (Pearl, 
2000; Spirtes et al., 2000). Probabilities reflect here epistemic 
uncertainty and, loci of uncertainty are made transparent in terms 
of articulated (conditional) probabilities, as well as graphically 
traceable in terms of a DAG.

With respect to other frameworks for evidence synthesis 
(Greenhalgh et al., 2011; Kastner et al., 2012; Warren et al., 

tABLE 2 | Posterior Probability of © (Hypothesis of Causation) with accumulating evidence. Every row indicates the probability of © given the body of evidence up to 
and including this row. Nassini et al. (2010) reports evidence for two different nodes in the Bayesian network and is hence listed twice here.

No Evidence Prior Probability of © 0.0100 0.0050 0.0010
Mechanistic Evidence Smith et al. (1990) 0.0175 0.0088 0.0018

Micheli et al. (1994) 0.0193 0.0097 0.0019
Kourounakis et al. (1997) 0.0195 0.0098 0.0020
Kelly (1999) 0.0196 0.0098 0.0020
Nassini et al. (2010)a 0.0196 0.0099 0.0020
Nassini et al. (2010)b 0.0198 0.0099 0.0020

Statistical Evidence discussed above Lesko and Mitchell (1999) 0.0072 0.0036 0.0007
Shaheen et al. (2002) 0.1534 0.0827 0.0176

Statistical Evidence discussed in the Supplementary Material Shaheen et al. (2000) 0.2238 0.1254 0.0278
Newson et al. (2000) 0.0997 0.0522 0.0109
Lesko et al. (2002) 0.3686 0.2250 0.0547
Barr et al. (2004) 0.6397 0.4690 0.1496
McKeever et al. (2005) 0.6445 0.4742 0.1523
Karimi et al. (2006) 0.6446 0.4743 0.1523
Shaheen et al. (2008) 0.6446 0.4743 0.1523
Amberbir et al. (2011) 0.7055 0.5437 0.1918
Beasley et al. (2011) 0.7160 0.5564 0.1999

All evidence discussed here Posterior Probability of © 0.7160 0.5564 0.1999

Frontiers in Pharmacology | www.frontiersin.org December 2019 | Volume 10 | Article 1317

https://www.frontiersin.org/journals/pharmacology/
http://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


E-Synthesis for PharmacosurveillanceDe Pretis et al.

17

2012; van den Berg et al., 2013; Kastner et al., 2016; Tricco et al., 
2016a; Tricco et al., 2016b; Shinkins et al., 2017), our Bayesian 
model has the unique feature of grounding its inferential 
machinery on a consolidated theory of hypothesis confirmation 
(Bayesian epistemology), and in allowing any data from the most 
heterogeneous sources (cell-data, clinical trials, epidemiological 
studies), and methods (e.g. frequentist hypothesis testing, 
Bayesian adaptive trials, etc.) to be quantitatively integrated 
into the same inferential framework. E-Synthesis is thus at the 
same time highly flexible concerning the allowed input, while 
at the same time relying on a consistent computational system, 
philosophically and statistically grounded.

By introducing evidential modulators, and thereby breaking 
up the different dimensions of evidence (strength, relevance, 
reliability) E-Synthesis allows them to be explicitly tracked in the 
body of evidence. This makes it possible to parcel out the strength 
of evidence from the method with which it was obtained.27 
With this, E-Synthesis provides a higher order perspective 
on evidential support by effectively embedding these various 
epistemic dimensions in a concrete topology.

ConCLUSionS
This paper focuses on inference within one model, rooting in one 
hypothesis, but E-Synthesis allows for going beyond the network 
limits and for embedding it in an even larger network to trace the 
hypothesis relation with other potentially concurring hypotheses. 
The mechanics of Bayesian epistemology are flexible enough 
to permit such an augmentation for the purposes of tracing 
further inference patterns.28 For simplicity’s sake we have not 
presented in the current paper dimensions of evidence relating 
to external validity and extrapolation; however the framework 
itself already incorporates also this sort of evidential modulators 
[see (Landes et al., 2018)]. We will illustrate the functioning of 
these modulators in a separate paper. Further limitations are 
that all causal indicator variables and © (in particular, there is 
no way to express and reason about the strength of causation in 
©), conditional probabilities were not set via expert elicitation 
and the general formulae for the conditional probabilities of 
evidential variables (Section 2 in the Supplementary Materials) 
for illustrative purposes.

Future work may take a number of directions such as 
developing scoring methods learned from data (Discussion) and/
or based on expert opinions, applications to further case studies 
to demonstrate the versatility of the framework, analysis and 
incorporation of further evidential modulators (those mentioned 
at the end of Evidential Modulators: Study Design as well as 
modulators of external validity), analysis and incorporation of 
further biases (a catalogue of biases is currently developed at 

27Osimani and Landes investigate in (Osimani and Landes, under review) various 
concepts of reliability involved in such considerations.
28Even if one is unenthusiastic with respect to the Bayesian approach: s/he 
can take our framework as a way to consistently structure the aggregation of 
evidence – as it is implicitly carried out in systematic reviews of quantitative 
and qualitative studies.

the Oxford Centre for EBM), comparing E-Synthesis to other 
frameworks of causal assessment via applications to the same 
case study (Abdin et al., 2019) and formally modelling and 
incorporating (spontaneous) case reports, evidence obtained 
via text mining and/or data base search into the framework. 
Finally, applying non-binary report variables to capture odds 
ratios, relative risks and/or confidence intervals are subject to 
future study.
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