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Concomitant use of multiple drugs for therapeutic purposes is known as “polypharmacy 
situations,” which has been recognized as an important social problem recently. In 
polypharmacy situations, each drug not only induces adverse events (AEs) but also 
increases the risk of AEs due to drug–drug interactions (DDIs). The proportion of AEs 
caused by DDIs is estimated to be around 30% of unexpected AEs. The randomized 
clinical trials in pre-marketing typically focus emphasis on the verification of single drug 
safety and efficacy rather than the surveys of DDI, and therefore, patients on multiple drugs 
are usually excluded. However, unlike pre-marketing randomized clinical trials, in clinical 
practice (= post marketing), many patients use multiple drugs. The spontaneous reporting 
system is one of the significant sources drug safety surveillance in post-marketing. 
Commonly, signals of potential drug-induced AEs detected from this source are validated 
in real-world settings. Recently, not only methodological studies on signal detection of 
“single” drug, but also on several methodological studies on signal detection of DDIs have 
been conducted. On the other hand, there are few articles that systematically summarize 
the statistical methodology for signal detection of DDIs. Therefore, this article reviews the 
studies on the latest statistical methodologies from classical methodologies for signal 
detection of DDIs using spontaneous reporting system. This article describes how to 
calculate for each detection method and the major findings from the published literatures 
about DDIs. Finally, this article presented several limitations related to the currently used 
methodologies for signal detection of DDIs and suggestions for further studies.

Keywords: pharmacovigilance, statistical methodology, signal detection, spontaneous reporting systems, drug–
drug interaction

INTRODUCTION
For safety surveillance of a drug, several data-mining algorithms are used to detect quantitative 
signals from spontaneous reporting systems. The data-mining algorithms include the frequency 
statistical models are the proportional reporting ratio (PRR) (Evans et al., 2001) and the reporting odds 
ratio (ROR) (van, Puijenbroek et al. 2002), and the Bayesian statistical models are [the information 
component (IC) as the Bayesian Confidence Propagation Neural Network (BCPNN) (Bate et al., 1998) 
and the gamma-Poisson shrinker (GPS) (Szarfman et al., 2002) used as the empirical Bayes geometric 
mean (EBGM)].
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Although, the recent extension of the IC and the GPS can 
accommodate signals of high-order interactions (Almenoff et al., 
2003; Yang and Fram, 2004; Norén et al., 2006; DuMouchel and 
Harpaz, 2012), generally, the PRR and the ROR are exploited for 
early signal detection of unknown “single” drug-induced adverse 
events (AEs). And these detection models might detect potential 
drug-induced AEs that could not be found clinical trials of pre-
marketing using spontaneous reporting systems including post-
marketing data.

The randomized clinical trials in pre-marketing typically focus 
emphasis on the verification of single drug safety and efficacy 
rather than the surveys of drug–drug interactions (DDIs), and 
therefore patients on multiple drugs are usually excluded from 
the clinical trial. However, unlike pre-marketing randomized 
clinical trials, in clinical practice (= post marketing), many 
patients use multiple drugs, as in polypharmacy situations.

Concomitant use of multiple drugs can affect the biological 
action of the related drugs. The main types of DDIs include 
pharmacokinetic and pharmacodynamic interactions (Aronson, 
2004). Of them, the pharmacokinetic interactions might affect 
the metabolism of drug that determine bioavailability. On 
the other hand, there is no change in blood levels of drugs 
in  the pharmacodynamic interactions, which can occur either 
competitively or non-competitively at the pharmacological 
receptor level.

In concomitant use of multiple drugs, each drug not only 
induces AEs but also increases the risk of AEs due to DDIs. 
The proportion of AEs caused by DDI has been estimated to be 
around 30% of unexpected AEs (Pirmohamed and Orme, 1998).

Adverse events caused by DDIs can also be prevented if 
discovered early like single drug-induced AEs, and it is practically 
difficult to examine the interactions of all drug combinations in 
the pre-marketing stage (Banda et al., 2016). Therefore, post-
marketing surveys will help early detection of unknown AEs not 
only caused by single drug but also DDIs.

Recently, several methodological studies on signal detection 
of DDIs have been conducted. Herein, we review studies on 
the statistical methodologies for signal detection of DDIs using 
spontaneous reporting systems.

STATISTICAL MeTHODOLOGY

Logistic Regression Model
van Puijenbroek et al. proposed a statistical method using the 
logistic regression model for detecting signals of DDIs from a 
spontaneous reporting system (van, Puijenbroek et al. 1999; van, 
Puijenbroek et al. 2002).

The ROR is a statistical model similar to odds ratio (van, 
Puijenbroek et al. 2002), and using the logistic regression model 
shown in Eq. 1, the ROR adjusted for age, gender, and concomitant 
drugs (drug D1 and drug D2) is used as the adjusted ROR.

 
log odds a G x x x x( ) = + + + + +β β β β β β0 1 2 3 1 4 2 5 1 2                (1)

where, a = age, G = gender, x1 = drug D1, x2 = drug D2, and x1 
x2 = the concomitant use of drug D1 and drug D2.

In their first study, the authors showed that concomitant use 
of oral contraceptives and the antifungal itraconazole resulted 
in the occurrence of withdrawal bleeding. In the second study, 
the authors showed that the efficacy of diuretics decreased 
with the concomitant use of diuretics and non-steroidal anti-
inflammatory drugs, resulting in worsening of congestive heart 
failure (van, Puijenbroek et al., 1999).

Signal detection using the logistic regression model has some 
limitations (e.g., ignoring dependencies/associations between 
AEs and regression analysis of more than 10,000 drugs as 
included in a spontaneous reporting system).

To overcome the limitations of the classical logistic 
regression model, a new statistical model; the Bayesian logistic 
regression model, which extended the logistic regression model 
corresponding to data of very large dimensions, was proposed. 
The Bayesian logistic regression model can perform regression 
analysis using millions of predictors contained in a spontaneous 
reporting system. (Genkin et al., 2007).

Using the Bayesian logistic regression model, Caster et al. also 
addressed masking effect (cf. Limitation) that affects background 
reporting of AEs (Wang et al., 2010) and confounding caused by 
the concomitant use of multiple drugs (Caster et al., 2010).

extended Gamma-Poisson Shrinker Model
Multi-Item Gamma-Poisson Shrinker Model
The multi-item gamma-Poisson shrinker (MGPS) model is 
currently used by the US Food and Drug Administration (FDA) 
and is a statistical model that extended the GPS model for 
detecting signals of potential DDIs (Almenoff et al., 2003; Yang 
and Fram, 2004).

The MGPS model can calculate the score of “Drug–Drug–
Event” or “Drug–Event–Event” (including that of with higher-
order interactions such as “Drug–Drug–Drug–Event” or 
“Drug–Drug–Event–Event”). Moreover, the MGPS model can be 
applied to the itemsets of size 3 or more, but as the number of 
items increases, the calculation amount explosively increases.

In the MGPS model, Excess2 is used an indicator value. The 
signal detection threshold value is not set, and as the value of 
Excess2 is relatively large, the influence of interaction caused by 
concomitant drugs is predominantly suspected.

For an arbitrary itemset, it is desirable to estimate the 
expectation λ = E [N/E]. Where, N is the observed frequency of 
the itemset (= number of reports) and E is the count predicted 
from an assumption that items are independent, that is, the 
baseline count.

The observed frequency of itemset is defined by i, j, k,…, as 
Ni, Nj, Nk…, E and other variables are defined as subscript letters 
as well as N. For example, Eij is the baseline prediction for the 
number of involving items i and j.

As a common model, baseline counts are calculated based on 
the assumption of within-stratum independence. E calculated 
under this assumption is often expressed as E0.

If all reports are assigned to the strata denoted by s = 1, 2,…, 
S, the proportion of reports in stratum s that contain the item i is 
expressed by Pi

s, and the total number of reports in stratum s is 
expressed by ns.
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Here, the frequency of baseline for triple itemset (i, j, and k) is 
defined under independence as:

 
E n P P Pijk s i

s
j
s

k
s0 = ∑    (2)

For itemsets of size 3 or more, an “all-2-factor” loglinear 
model can be defined as the frequency E2 for the itemsets that 
match all the estimated pairwise two-way marginal frequencies 
but contain no high-order dependencies.

For itemsets of size 3 (e.g., DDI: drug D1 and drug D2, and AE), 
the estimated frequency of the all-2-factor loglinear model can 
be defined as the frequency E2 prediction by simple subtraction 
is compared.

For example:

 Excess E Eijk ijk ijk ijk2 0 2= −   λ  (3)

The parameter λ is estimated by the geometric means, denoted 
as EBGM, of their empirical Bayes posterior distributions.

Detecting the signals of DDIs using the MGPS model is based 
on the EBGM value of the two drugs and the lower of the 90% 
confidence interval (CI) being larger than the upper of the 90% 
CI estimates for each of the two drugs.

Example, in one of the reports the signals of potential DDIs 
detected using the MGPS model is the AE profile of verapamil 
(the calcium channel blocker) and the combination of three 
classes of cardiovascular drugs (Almenoff et al., 2003).

This result revealed that the MGPS model for disproportionality 
measure is a promising statistical model for detecting signals of 
potential DDIs in polypharmacy situations.

Regression-Adjusted Gamma-Poisson 
Shrinkage Model
The GPS model proposed by DuMouchel is worse than the logistic 
regression model (Harpaz et al., 2013). However, unlike the GPS 
model, signal detection using t-tests in logistic regression models 
is not suitable for small samples such as rare AEs (DuMouchel 
and Pregibon, 2001).

DuMouchel et al. proposed the Regression-adjusted gamma-
Poisson shrinkage (RGPS) model, which integrated the GPS model 
and the logistic regression model into a hybrid detection model 
with the advantages of both, to overcome the disadvantages of 
the GPS model (DuMouchel and Harpaz, 2012).

The RGPS model is similar to the MGPS model (cf. Multi-item 
Gamma-Poisson Shrinker Model) in that the relative reporting 
rate (RRR) is entered into the Bayesian gamma-Poisson shrinking 
algorithm, and a reliable estimate rate and CI are obtained.

On the contrary, the major difference between the RGPS 
model and the MGPS model is that the MGPS model do not 
consider the effects for polypharmacy, and thus may lead to the 
underestimation of disproportionality estimate for the drug of 
interest. In addition, the RGPS model can handle this question.

Additionally, the values of the adjusted expected value (E) in 
the RGPS model is not calculated by standard logistic regression 
but instead the extended logistic regression.

It is recommended to replace EBGM as the posterior geometric 
mean with the empirical Bayes relative reporting ratio (EBRRR) as 
the posterior mean in the RGPS model.

For each response, the (Nj, Ej) pairs from the previous step 
are input into a gamma-Poisson shrinkage algorithm. The prior 
distributions are assumed to be simple gamma distributions 
rather than a mixture of two gamma distributions as is done in 
the MGPS model. Specifically, a two-parameter gamma Poisson 
model is used to produce shrinkage estimates, where the prior 
distribution of the relative reporting ratios is assumed to be 
Gamma (γ, δ) and where the (Nj, Ej) pairs are used to estimate the 
hyperparameters γ and δ. The posterior mean of a drug relative 
reporting ratio is then EBRRRj = (Nj + γ)/(Ej + δ), and RRR05 and 
RRR95 are computed using the appropriate gamma distribution 
Gamma(Nj + γ, Ej + δ) (DuMouchel and Harpaz, 2012).

In the RGPS model of DDIs, njk is defined as the number of 
reports including both drugj and drugk, and Njk is defined as the 
number of reports related to expected AEs. Then, EBRRRj and 
EBRRRk are defined as the corresponding disproportionality 
estimates for the two drugs in report i.

 

p P Xi i ij jg i
= = +











( ) ∑       α µ β β0  (4)

where Pα is the function that links the linear predictor μi to the 
probability scale and βj and β0g(i) are the estimated coefficients for 
the drugs and intercepts, where the intercept depends on which 
grouped-stratum g(i) report i belong to. Additionally, Let Xij = 1 
if drug j is included in report i, Xij = 0 otherwise, and let Nj be the 
number of events reported with drug j.

Ejk is defined as the expected value (E) of Njk under the null 
hypothesis that both drugj and drugk have no effect of the RRR.

 
E X X P jjk ij ik i j k= − −( ) ≤( )∑ α µ β β    int1 < ≤k J  (5)

where, βj or βk is considered as 0 if the suspected drug was not 
in the logistic regression model.

“No interaction” indicates that the disproportionality measure 
for both the drugs (= Njk/Ejk) is expected to be higher for the 
EBRRRj and EBRRRk. Therefore, the no-interaction expected 
count is defined as follows:

 
E E EBRRR EBRRRjk jk j k

* * ,   = ( )max  (6)

There will be Jint (Jint – 1)/2 raw interaction ratio (INTRRjk) of 
the form:

 
INTRR

N
Ejk

jk

jk

= *  (7)

DuMouchel et al. proposed a method to use one-parameter 
prior gamma distribution (γ1, γ1), of mean 1, as a model for the 
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mean of INTRRjk, and estimate γ1 by inputting the set (Njk, E*
jk) 

into the empirical Bayes estimation.
As a result, the posterior mean of the interaction ratio is 

expressed as follows:

 
INTEB

N
Ejk

jk

jk

=
+
+

 
 

 *

γ
γ

1

1
 (8)

The posterior 5% limit (INTEB05jk) and posterior 95% limit 
(INTEB95jk) are the corresponding quantiles of the gamma 
distribution (Njk + γ1, E*

jk + γ1).
The proposed RGPS model only presents interaction estimates 

if INTEB05 > INTEB05min or INTEB95 < INTEB95max with the default 
values INTEB05min = 1 and INTEB95max = 1/3 by DuMouchel and 
Harpaz (2012).

If the INTEB is very low, it has not yet been completely verified 
whether it are the signals of potential DDIs. However, because such 
results are often obtained, the further verification will be necessary.

extended Information Component Model
The IC is a measure of association of pairs of drug and AEs only, 
but there is often an interest in high-order interactions as DDIs 
(= itemsets of size 3).

Although, an extension of the IC to 3rd-order associations 
including 3 itemset as DDIs was proposed by Orre et al. (2000), the 
proposed method did not compensate for pairwise associations. 
Therefore, Norén et al. (2006) proposed the following definition 
for the extended IC model:

 IC IC IC IC ICxyz xy z xy yz x yz= − = −| |  (9)

where,

 
IC log

P xy z
P x z P y zxy z|

|
| |

=
( )

( ) ( )2  (10)

As with simple algebraic operations, ICxyz can be re-expressed 
as follows:

 

IC log
P yz x

P y x P z x
log

P y P z

P y zxyz =
( )

( ) ( ) −
( ) ( )

2 2

|

| |
 

,(( ) =

( ) ( ) ( ) ( )
( ) ( ) ( )

 

, ,

, , ,
log

P x y z P x P y P z

P x y P x z P y z2

 (11)

Although arbitrarily accurate estimates for the posterior 
mean of IC distribution can be used (Koski and Orre, 1998), the 
maximum a posteriori (m.à.p.) estimates can be used for central 
estimates instead, because IC distribution is generally unimodal.

There are three main advantages of the m.à.p. estimate.
First, it is well suited for use in stratified IC. Second, it has the 

intuitive property of being equal to 0 when the estimated joint 

probability is equal to the product of the estimated marginal 
probabilities. Third, the concept of most likely value for an 
unknown parameter is perhaps more natural than that of the 
expected value.

These are important aspects in drug safety applications, and 
the results must be interpretable not only by statisticians but also 
by non-statisticians such as medical professionals.

Norén et al. (2006) proposed the following m.à.p. estimate. 
Most of the theory developed for the pairwise IC model (ICm.à.p. 
model) holds approximately the IC model for higher order.

In one of the reports, the signals of potential DDIs detected 
using the extended IC model was terfenadine and ketoconazole-
induced ventricular fibrillation. There were five reports of 
ventricular fibrillation due to the combination of terfenadine 
and ketoconazole in the VigiBase® as a spontaneous reporting 
system, and the extended IC (ICxyz m.à.p.) value is 2.40 with the 
lower of the 95% CI of 1.08 (Norén et al., 2006).

Ω Shrinkage Measure Model
The Ω shrinkage measure model was proposed to calculate the 
observed-to-expected ratio as a spontaneous reporting system 
for detecting the signals of potential DDIs (Norén et al., 2008).

Norén et al. criticized the logistic regression model in missing 
out on several signals that strongly suggestive of potential 
DDIs, additionally, they demonstrated that after conducting 
comparative studies using the World Health Organization 
database, the Ω shrinkage measure model is a refined method 
compared to the logistic regression model.

For the Ω shrinkage measure model, the observed reporting 
ratio was f11 of AE caused by concomitant use of 2 drugs: drug D1 
and drug D2, in addition, its expected value was E[f11].

 
f n

n
f n

n
f n

n
f00

001

00
10

101

10
01

011

01
1= = =

+ + +
,   ,   ,   11

111

11
=

+

n
n  (12)

where, n is the number of reports shown in Figure 1. For 
example, n111 is the number of reported target AEs caused by 
drug D1 and drug D2.

E[f11] is unknown. However, f11 can be compared with the 
estimator g11 of E[f11], g11 is given as follows:

 

g
f

f
f

f
f

f

11
00

00

10

10

00

00

1 1

1 1 1

= −

− −






+
−

max ,   max ,,       
 

f
f

f
f

01

01

00

001 1
1

−






−
−

+

 (13)

When f10 < f00 (which denote no risk of AE caused by drug D1), 
the most sensible estimator g11 = max (f00, f01) is yielded and the 
vice versa when f01 < f00.

Norén et al. defined a non-shrinkage measure for detecting 
AEs caused by drug D1 and drug D2 as follows:

 
Ω0 2

11

11
= log f

g  (14)
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However, since the occurrence of AE is rare, g11 might show 
very small, and therefore, Ω0 is sensitive to spurious relationship 
and tends to falsely detect a signal.

This is a well-known phenomenon in screening pairwise 
drug-AE excessive reporting rates in a spontaneous reporting 
system, and shrinkage has been proven to be an effective 
approach in reducing the sensitivity to random fluctuations in 
disproportionality measures based on rare cases. The models 
such as the BCPNN and EBGM also used pairwise measures of 
disproportionality as shrinkage measures.

To construct a similar shrinkage measure from Eq. 14, Norén 
et al. re-expressed the observed and expected RRR f11 and g11 
in terms of the observed number of reports n111 and expected 
numbers of reports E111 = g11×n11+, respectively:

 

f
g

n n
E n

n
E

11

11

111 11

111 11

111

111
= =+

+

/
/  (15)

and proposed the Ω shrinkage measure:

 
Ω = +

+
log n

E2
111

111

α
α  (16)

α is the tuning parameter that determines the shrinkage 
strength. When α = 0, Ω = Ω0. The effect of α is equivalent to 
that of α additional expected reports, and exactly matches the 
increase in the observed number.

Shrinkage regression can be set as the value of tuning 
parameter based on cross-validation estimates for classifier 
performance. However, in a disproportionality analysis, there is 
no objective basis for selecting a particular value for α. Therefore, 
in the Ω shrinkage measure model, α = 0.5 was set to provide 
sufficient shrinkage for avoiding disproportional highlighting 
based on rare reports.

In the frequentist method, Ω differs slightly from Ω0 for large 
n111 and E111, and the variance of Ω0 is given as follows:

 

Var Ω Var0 2
111

111 111
2

1

2
( ) =







≈
( )

log n
E n log  (17)

Using Eq. 17, the lower of the 95% CI for Ω can be estimated 
using the following equation:

 
Ω Ω025

111

0 975

2
= −

( )
( )

φ .

log n  (18)

where, ϕ(0.975) is 97.5% of the standard normal distribution.
On the contrary, in Bayesian method, the exact CI for µ can be 

obtained as solutions to the following equation, for appropriate 
posterior quantiles µq:

 0

111

111

1
111

111 111

µ α

α αα
α

q
E

n
u e

n

n n u∫
+( )

+( )
+

+ − − +( )
Γ

ddu q=  (19)

where, α is the tuning parameter. n111 and E111 are the number 
of reported target AEs caused by drug D1 and drug D2 and their 
expected values.

Here, the logarithm of the solution to Eq. 19 for q = 0.025 and 
0.975 provides Ω025 (the lower limits of 95% CI) and Ω075 (the 
upper limits of 95% CI), respectively.

In both frequentist and Bayesian methods, Ω025 > 0 is used as 
a threshold for detecting the signals of the concomitant use with 
drug D1 and drug D2.

Qian et al. built a computerized system in which data acquisition 
and placement are automated. The signals of potential DDIs were then 
detected using this system. (Qian et al., 2010). This study detected 
the signals of potential DDIs using three different models; the Ω 
shrinkage measure model, the logistic regression model (cf. Logistic 
Regression Model), and the additive model and multiplicative models 

FIGURe 1 | Four-by-two contingency table for the evaluation of drug–drug 
interaction.

FIGURe 2 | Two-by-two contingency table for the evaluation of drug–drug 
interaction.
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(cf. Additive and Multiplicative Models). A comparison of signals 
detected using the three models revealed that the signals of potential 
DDIs detected on average by at least two models could reflect the fact 
that the 3 models are highly correlated (Qian et al., 2010).

Additive and Multiplicative Models
Thakrar et al. (2007) proposed the additive model and 
multiplicative model for detecting the signals of potential DDIs. 
For two models, Thakrar et al. (2007) conducted the retrospective 
study for detecting the signals of known DDIs using the FDA 
Adverse Event Reporting System.

The additive model assumes that drug related risks increase 
additively, on the contrary, the multiplicative model assumes that 
drug related risks increase synergistically. Additive Model and 
Multiplicative Model provide the details of each model using 
Figure 2.

Additive Model
In the additive model, if the risk associated with drug D1 without 
drug D2 is the same as the risk associated with drug D1 and drug 
D2 together, then there is no signal of DDI. In other words, there 
are potential DDIs if the combination risk is high compared to 
what is expected based on the individual drug:

 
p p p p p p11 00 10 00 01 00− = −( ) + −( )  

(20)

This equality implies (RD: risk difference):

 
RD RD RD

drug D drug D only drug D only drug D             
1 2 1∩

= +
22

 
(21)

That is, when RD drug D1∩drug D2 – RD only drug D1 + RD only drug D2 > 0 
(p11 − p10 − p01 + p00 > 0), the signal of the additive model is detected.

The formal statistical test for DDIs is performed within the 
framework of binomial distribution linear regression:

 risk of event x x x x             = + + + +α α α α ε0 1 1 2 2 12 1 2

 
α12 11 10 01 00= − − +( )  p p p p

 
(22)

Multiplicative Model
In the multiplicative model, under the assumption that the null 
hypothesis is true (i.e., no interaction), the proportion of an AE 
associated with the concomitant use of drug D1 and drug D2 is the 
same as the proportional risks of individual drugs in the absence 
of either drug D1 or drug D2.
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This equality implies:

 
PRR PRR PRR

drug D drug D only drug D only dru           
1 2 1∩

= × gg D  2  (25)

or

 
ROR ROR ROR

drug D drug D only drug D only dru           
1 2 1∩

= × gg D  2  (26)

Therefore, if the measure shown in Eq. 27 or Eq. 28 exceeds 1 
it can be determined that the signals of potential DDIs are 
detected. In modeling terminology, the following multiplicative 
model (Eqs. 25 and 26) can be applied for log-linear regressions 
and logistic regressions:

log-linear regressions

 
log risk of event x x x x             ( ) = + + + +β β β β ε0 1 1 2 2 12 1 2

 

e
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PRR PRR
drug D drug D

only drug D only

β12 1 2

1

= ∩
×

     

        drug D2











  (27)

logistic regressions

 
logit risk of event x x x x             ( ) = + + + +γ γ γ γ0 1 1 2 2 12 1 2 εε

 

e
ROR

ROR ROR
drug D drug D

only drug D only

γ 12 1 2

1

= ∩
×

     

        drug D2











  (28)

FIGURe 3 | Venn diagram for the evaluation of drug–drug interaction.
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where, x1 = drug D1, x2 = drug D2, x1 x2 = the concomitant use 
of drug D1 and drug D2.

Thakrar et al. (2007) showed that the additive model has higher 
sensitivity than that of the multiplicative model in detecting the 
signals of potential DDIs. Therefore, Noguchi et al. compared the 
power of the additive model with that of the multiplicative model 
for the combined risk ratio model (cf. Combination Risk Ratio 
Model). Similar to the result of Takagi et al., the additive model 
presented higher detection power than that of the multiplicative 
model (sensitivity: 95.62 vs. 65.46%, specificity: 96.92 vs. 98.78%, 
Youden’s index: 0.925 vs. 0.642, positive predictive value: 89.47% 
vs. 93.64%, negative predictive value: 98.78 vs. 91.26% F-score: 
0.924 vs. 0.771) (Noguchi et al., 2018a).

Combination Risk Ratio Model
To estimate the degree of potential safety risk in combination, 
Susuta and Takahashi (2014) proposed a risk assessment 
method for combined use of drugs at a frequency where two 
or more drugs are reported simultaneously, assuming that 
the possibility of drug interaction is a combined risk in the 
occurrence of AEs.

The concomitant use risk was determined when the ratio 
between the concomitant use indicator and the indicator (e.g., 
PRR, ROR) obtained separately for both agents exceeded 2. The 
following is an expression using the PRR as the indicator.

 
Combination risk ratio

PRR

PR
drug D drug D         = ∩1 2

max RR PRRdrug D drug D   , 
1 2( )  (29)

When n111 ≥ 3, PRRdrug D1 ∩ drugD2 > 2, χ2 drug D1 ∩ drugD2 > 4, 
Combination risk ratio > 2, it was a signal of DDIs.

The formula for calculating PRR and χ2 is as follows:

 
PRR

N N
N N

=
( )
( )

+

+

11 1

01 0

/
/

 (30)
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1 1 0

2
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+ + + +
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/

00

 (31)

Additionally, to calculate the PRR and the χ2 of drug D1 ∩ 
drugD2, drug D1 and drug D2, replace it as follows.

drug D1 ∩ drugD2: N11 = n111, N00 = n000 + n010 + n100, N10 = n110, 
N01 = n001 + n011 + n101, N1+ = n11+, N+1 = n++1, N0+ = n00+ + n01+ + 
n10+, N+0 = n++0.

drug D1: N11 = n111 + n101, N00 = n000 + n010, N10 = n110 + n100, 
N01 = n001 + n011, N1+ = n11++ n10+, N+1 = n++1, N0+ = n00+ + n01+, 
N+0 = n++0.

drug D2: N11 = n111 + n011, N00 = n000 + n100, N10 = n110 + n010, 
N01 = n001 + n101, N1+ = n11++ n01+, N+1 = n++1, N0+ = n00+ + n10+, 
N+0 = n++0.

To check the validity of the combination risk ratio model, the 
reports of Stevens–Jonson syndrome (SJS) or toxic epidermal 

necrolysis caused by the DDIs were analyzed using the Japanese 
Adverse Drug Event Report database.

As for the concomitant use of suspected drugs, which fulfill 
the situations of concomitant use risk, SJS: 10 candidates out of 
159 combinations and toxic epidermal necrolysis: 22 candidates 
out of 111 combinations were detected.

In addition, this method proposed by Susuta et al. has 
been used to search for the DDIs related to the concomitant 
use of angiotensin receptor blockers and thiazide diuretics 
combination therapy by Noguchi et al. (2015) and for detecting 
signals of the concomitant use of deferasirox with other drugs 
by Mizuno et al. (2016) in Japan.

Chi-Square Statistics Model
Gosho et al. (2017) proposed the chi-square statistics model for 
detecting the signals of potential DDIs.

First, they developed the following measure (χ0) to estimate 
the discrepancy between the observed and expected numbers of 
AEs with drug combinations:

 
 χ0

111 111

111

= −n E
E  (32)

The expected number of AEs (E111) can be estimated using 
E111  = g11·n11·, presented in Ω Shrinkage Measure Model. The 
measure χN, which is the square root of the chi-square test 
statistic, is based on the normal approximation of the Poisson 
model, and therefore, χN is not suitable for the evaluation of 
rare events. Thus, when evaluating rare events, it is generally 
considered more appropriate to use the chi-square test with Yate’s 
correction than the standard chi-square test (Yates, 1934), hence, 
χ was also corrected with the correction term “0.5” based on the 
chi-square test with Yate’s correction:

 
  .χ = − −n E

E
111 111

111

0 5
 (33)

Gosho et al. (2017) set χ > 2 and χ > 2.6 as thresholds for 
detecting the signals of AEs caused by DDIs in a simulation 
study. These cutoff values are specified based on 95% and 99% of 
chi-square distribution with one degree of freedom. According to 
this simulation study, with the criterion: χ > 2, false positives are 
controlled within acceptable ranges, additionally the chi-square 
statistics model showed higher sensitivity and AUC than those 
of both frequentist and Bayesian methods of the Ω shrinkage 
measure model (Gosho et al., 2017).

Similar to the Ω shrinkage measure model, the detection of 
signal using the chi-square statistics model is designed to focus 
on the detection of synergistic rather than antagonism among 
some DDIs.

Gosho (2018) used the chi-square statistics model and he Ω 
shrinkage measure model to examine the clinical drug–drug 
interactions that cause hypoglycemia and rhabdomyolysis 
(Gosho, 2019).
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Association Rule Mining Model
To comprehensively search for the signals of potential DDIs, if a 
calculation using the conventional methods that simply create 
combinations from a large database such as a spontaneous 
reporting system is used, the considered number of the 
concomitant use would be enormous. Therefore, it would be 
difficult to detect the signals of potential DDIs at an early stage.

Contrarily, the association rule mining model is frequently 
used to find interesting combinations hidden in large databases, 
and not just medical databases. In the association rule mining 
model, the “a priori algorithm” can be used to reduce the number 
of calculations (Agrawal et al., 1993; Agrawal and Srikant,1994).

If the association rule mining model was used, it is unnecessary 
to calculate indicators for all combinations of the concomitant 
use, as the previous models.

An indicator of a general association rule model is shown below.
Among the transaction T as a set of items, an association rule 

can be expressed as the antecedent of rule X → the consequent of 
rule Y; where, X and Y are mutually exclusive sets of items.

There are several indicators of the association rule mining model. 
First, the support is defined as the percentage of all items in both X 
and Y to transaction T in the data. That is, how frequently the rules 
(X → Y) occur within transaction T. The support is as follows:

 
support X Y

X Y
T

 
 

→( ) =
→{ }

{ }  (34)

Second, the confidence is the conditional probability P(Y|X), 
and measures the reliability of the interference made by the rules 
(X → Y). The confidence is as follows:

 
confidence X Y

support X Y
support X

 
 

 
→( ) =

→( )
( )  (35)

Third, the lift of an association rule represents the ratio of 
probability. It is the ratio between the confidence of the rule and 
the support of the itemset in the consequent of the rule. The lift 
is as follows:

 
lift X Y

confidence X Y
support Y

support
 

 
 

 
→( ) =

→( )
( ) =

XX Y
support X support Y

→( )
( ) × ( )   

 (36)

If the lift is > 1, it shows the degree to which those two 
occurrences depend on each other. Therefore, the lift is often 
used frequently to assess the interest of a rule.

Finally, the conviction of an association rule can be interpreted 
as the ratio of the expected frequency that X occurs without Y if 
X and Y are independent and divided by the observed frequency 
of incorrect predictions. The conviction is as follows:

 
conviction X Y

support Y
confidence X Y

 
 

 
→( ) =

− ( )
− →(

1
1 ))  (37)

In the lift, even if X and Y are interchanged, the value of the 
indicator is the same. On the contrary, in the conviction, when 
X and Y are interchanged, the value of the indicator is different. 
This indicates that the lift cannot be evaluated correctly if Y is 
actually the antecedent of rule and X is actually the consequent 
of rule, and the conviction can be also evaluated correctly in such 
a situation.

So far, we have introduced four indicators that are particularly 
commonly used in the association rule mining model. Next, 
three search models of the signals of potential DDIs using these 
indicators are shown using Figure 3.

Shirakuni’s Method of Association Rule Mining 
Model
Shirakuni et al. (2009) examined the combined use and discrete 
use of 2 drugs using association rule mining model.

In the combined use of two drugs model, the antecedent of 
rule X was defined as drugs D1 and D2, and the consequent of rule 
Y was defined as the target AE (AE).

 

support drug D and drug D AE

drug D and dr

         

     
1 2

1

→( ) =

uug D AE

T

  2 →{ }
{ }

 (38)

 

confidence drug
support drug

( )
( D

D anddrug D AE
an

1 2

1

→ =
dd D AE

drug D
drug

support drug and
2

1 2

→ )
( D )

 (39)

In the discrete use of 2 drugs model, the antecedent of rule X 
was defined as drugs D1 (or 2)-induced AE, and the consequent of 
rule Y was defined as drugs D2 (or 1). In this rule, both hypotheses 
and conclusions are relevant to the AE, and therefore, signals can 
be detected from drugs D1 and drugs D2 individually.

The support and confidence of each drug is calculated for both 
drugs D1 and drugs D2 based on the cases of patients presenting 
AEs included in the dataset.

 

support drug D induced AE drug Dor or            1 2 2 1( ) ( )→( ))
=

→{ }
{ }

( ) ( )drug D induced AE drug D

T
or or          1 2 2 1  (40)

 

confidence drug D and drug D AE
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1 2

1

→

=
support rr or
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2 2 1

1 2

)

( )

)
(

→
support cced AE)

 (41)

Kubota purposed that because the PRR show the generation 
ratio of AEs, the result is evaluated regardless of sample size and 
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χ2 is important when examining the total sample size (Kubota, 
2001). Therefore, the drugs with high log PRR and log χ2 values 
are considered to have a strong signal.

To evaluate Shirakuni’s method, the signal score obtained by 
adding the log PRR and log χ2 was used as the strength of the 
signal. This signal score is also used to compare signals for sex 
and age differences (Noguchi et al., 2018b; Noguchi et al., 2018c).

 Signal score log PRR log         = + χ 2  (42)

The FDA Adverse Event Reporting System dataset had 
sufficient information to apply the association rule mining 
model. In the association rule mining model, high indicators of 
the support and confidence are generally evaluated as a strong 
relationship. Next, Shirakuni et al. (2009) compared each signal 
score of the SJS caused by DDIs with the results of the association 
rule mining model to evaluate the performance of the proposed 
model.

In this result, the correlation between “discrete use of 2 drugs” 
and the signal score was weaker than that of “combined use of 2 
drugs.” Therefore, it was concluded that, among the two methods 
of the association rule mining model proposed by Shirakuni 
et al. (2009), the method focused on “combined use of 2 drugs” 
detected such important signals at an early stage.

Harpaz’s Method of Association Rule Mining Model
In Harpaz’s method (Harpaz et al., 2010), like the combined use 
of two drugs model suggested by Shirakuni et al. (Shirakuni et al., 
2009), the antecedent of rule X was defined as drugs D1 and D2, 
and the consequent of rule Y was defined as the AE.

However, in the association rule mining model, it is sometimes 
inappropriate to evaluate using the confidence value. For example, 
frequently reported AEs (e.g., nausea) produce large confidence 
values   regardless of the drug associated with AEs. Whereas, rarely 
reported AEs may produce small confidence values, although 
AEs are strongly associated with certain drugs.

Therefore, in Harpaz’s method, the RRR was used instead of 
confidence as the second parameter to qualify the worthiness or 
strength of an association rule (Harpaz et al., 2010).

The RRR is defined as the ratio of the observation frequency of 
the rule to the prediction frequency of the baseline, and is shown 
as Eq. 43.

The other disproportionality analysis methods are based 
on the RRR, namely the BCPNN and the EBGM in the signal 
detection of a single drug.

 
RRR Observed

Expected
confidence drug D and dru= =        1 gg D AE N   2 →( ) × 

 (43)

N is the total number of records in the data.
Extrapolating from Harpaz’s evaluation sample, the full set of 

potential DDIs identified by the method can be described by the 
taxonomy and proportions shown below.

Drugs are divided into the following three categories; (1) 
drugs known to be administered together or treat the same 

indication: 57%; (2) drugs with the same active ingredient: 2%; 
and (3) supposedly unrelated drugs: 41%.

AEs are divided into the following four categories: (1) one of 
the drugs is known to cause effect: 22%; (2) all drugs are known 
to cause effect: 21%; (3) none of the drugs is known to cause 
effect: 27%; and (4) confounded association, where drugs are 
administered to treat the AE: 30%.

The DDIs are divided into the following two categories: 
(1) known drug interaction: 35% and (2) unknown drug 
interaction: 65%.

In evaluations using Harpaz’s method, the results demonstrate 
that a significant number of DDIs can be identified. Additionally, 
the very low p-value indicates that it is extremely unlikely that 
Harpaz’s method detected them just by chance, and thus is a valid 
statistical model for signal detection.

Noguchi’s Method of Association Rule Mining Model
We proposed Noguchi’s method using the association rule mining 
model (Noguchi et al., 2018a). In Noguchi’s method, the antecedent 
of rule X was defined as drug D2 (or 1) and the consequent of rule 
Y was defined as drug D1 (or 2)-induced AE. That is, Noguchi’s 
method focuses on how much additional drug D2 (or 1) contributes 
to drug D1 (or 2)-induced AE.

 

lift drug D drug D induced AE
confiden

or or( )( ) ( )2 1 1 2→

=
cce drug D drug D induced AEor or( )

(
( ) ( )2 1 1 2→

support druug D1 2( ) )or induced AE
 (44)

The lift according to this model indicates that the presence of 
drug D2 (or 1) influences the probability of drug D1 (or 2)-induced 
AE. Furthermore, in this method, it was confirmed by conviction 
that the DDIs obtained are not a false prediction.

 

conviction drug D drug D induced AEor or( )( ) ( )2 1 1 2

1
→

=
− ssupport( )

(
( )drug D induced AE

confidence drug
or1 2

1− DD drug D induced AEor or2 1 1 2( ) ( ) )→
 (45)

In the study by Noguchi et al., lift of >1 and conviction of >1 
were used as the criterion for detection using the association rule 
mining model. As the risk data for verification was created by the 
combination risk ratio model presented in Section 2.6, there is no 
combination of n < 3 in the risk data for verification. Therefore, 
in the verification, the combination of n111 < 3 was excluded from 
the signal and n111 ≥ 3 was added to the criterion for detection.

Noguchi’s method has high detection power (sensitivity: 
99.05%, specificity: 92.60%, Youden’s index: 0.917, positive 
predictive value: 78.57%, negative predictive value: 99.72% 
F-score: 0.876) like the additive model and multiplicative model 
(Noguchi et al., 2018a).

In Noguchi’s method, to compare the detection power, all 
combinations of DDIs were calculated using the association rule 
mining model. Therefore, it has not been determined how much 
computation time could be reduced compared to the previous 
methods using the a priori algorithm.
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However, given the number of drugs registered in the 
spontaneous reporting systems, there are several potential 
combinations of DDIs. As Noguchi’s method simplifies the 
computation, it is expected that the time for signal detection will 
be reduced as well as statistical models using other association 
rule mining model in actual search.

The association rule mining model is easy to extend to higher-
order interactions. However, among the three methods presented 
in this review, the gold-standard has not been determined.

The chi-squared statistics is useful to determine the statistical 
significance level. Alvarez showed that chi-square statistics can 
be calculated directly using confidence, support, and lift with Eq. 
46 (Alvarez, 2003).

 
χ 2 2

= × ( ) × ×
−

T lift support confidence
confidence supporrt lift confidence( ) × −( )

 (46)

The chi-squared statistics make it easy to validate combinations 
obtained using the standard association rule mining model (e.g., 
Shirakuni’s method and Noguchi’s method), and can identify 
statistically significant signals of DDIs that might be false positives.

Causal Association Rule Discovery Model
As described in Association Rule Mining Model, the association rule 
mining model is often used to discover the signals of potential DDIs 
in the spontaneous reporting system. However, the main limitation 
of the traditional association rule mining model is that the strength 
of signals is measured based on correlation, not causality.

Several studies have been reported on the concept of causality, 
such as inductive causality models (Pearl, 2000), causal Bayesian 
network based methods (Spirtes et al., 2001), an additive noise 
model (Hoyer et al., 2008), and a hybrid approach (Cai et al., 
2013), however causal discovery on high-order and sparse data 
of DDIs is still unsolved.

To solve this problem, instead of reconstructing a causal 
Bayesian network, Cai et al. proposed the causal association rule 
discovery (CARD) model with the aim to detect the true causal 
relationship between the concomitant use of two drugs and AEs 
(Cai et al., 2017).

For the rule X → Y with X ≥ 3, any sub-rules containing two 
antecedents must also form the V-structure with the AE: drugs 
D1 → AE ← drugs D2 (e.g., aspirin → Bleeding ← warfarin).

Because the interesting of rule X (drugs D1, drugs D2) → Y (AE) 
is dependent on the weakness of its sub-rules, and the causal 
association interesting measure (CAIM) is defined as follows:

 
CAIM X Y CAIM X X Y

X X Y
i i

i i
  min  

, 
→( ) = →( ){ } ⊂1 2

1 2
   

 (47)

The dominance of the CARD model was determined by 
physician assessment of 100 randomly selected higher-order 
associations detected using the CARD model and Harpaz’s 
method of association rule mining model (cf. Harpaz’s Method 
of Association Rule Mining Model) (Harpaz et al., 2010). 
In the identification of known DDI, the CARD model was 

more accurate than Harpaz’s method: CARD model (20%) vs. 
Harpaz’s method (10%). Furthermore, in the CARD model, 
the detection of unknown combinations is less than Harpaz’s 
method: CARD model (50%) vs. Harpaz’s method (79%) (Cai 
et al., 2017).

LIMITATION
The spontaneous reporting systems used in these studies are 
based on clinical trials and post-marketing spontaneous reports, 
so only AEs observed are registered, and their causal relationship 
is unclear. Therefore, the cases may be underreported. 
Furthermore, the number of reports and signal values are 
influenced by various factors. Although not necessarily apparent, 
the number of cases increases in the first 2 years post-marketing 
and then begins to decrease. This is known as the Weber effect 
(Weber, 1984; Hartnell and Wilson, 2004).

The number and score of signals also possibly fluctuate 
during several years after launching (Hochberg et al., 2009). 
After drug-induced AE is highlighted, the number of reports 
may generally be accelerated. This is known as the notoriety 
effect (Pariente et al., 2007).

Additionally, the reports of drugs in the same class to those 
reported may also be accelerated. This is known as the ripple 
effect (Pariente et al., 2007).

The signal may be underestimated by numerous reports and 
that the same AE is associated with other drugs. This is called the 
masking effect or cloaking effect (Wang et al., 2010).

Matsuda et al. (2015) clarified that factors related to drug-
induced AEs reporting attitudes in Japan may be different from 
those in other countries due to the involvement of medical 
representatives early post-marketing phase vigilance as a part 
of Japanese unique system of surveillance and the voluntary 
reporting process.

Thus, the spontaneous reporting systems are affected by several 
reporting biases and the state of the country’s survey. Furthermore, 
the report rates of AEs vary from year to year, and the value of the 
signal can easily vary with the timing of the survey.

In addition to the general limitations of study using the 
spontaneous reporting systems, the research of DDIs has some 
unique limitations.

In the surveillance for of DDIs, the lack of information about 
one of the two drugs will overestimate the RRR of drug-induced 
AEs, when either drug is used alone (Norén et al., 2008).

This is a serious problem in evaluating the AEs of DDIs, 
because it leads to under-reporting of n111 and over-reporting 
of n101 or n011 (Figure 1). Furthermore, some of these statistical 
models do not apply to interactions with three or more drugs.

Finally, these statistical models are designed to focus on the 
detection of synergism rather than antagonism among some 
interaction of DDIs.

CONCLUSIONS AND PeRSPeCTIveS
In this review, we have discussed statistical methodologies for 
signal detection of DDIs in spontaneous reporting systems. To 
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the best of our knowledge, this is the latest review including 
recently proposed statistical methodologies.

The bivariate disproportionality analysis (e.g., single drug-
induced AE) represents the bulk of daily routine of PhV. 
However, as the use of multiple drugs becomes more common, 
the problems of AEs due to DDIs cannot be ignored. Therefore, 
in the future operations of PhV, it is important to detect signals 
of unknown DDIs at an early stage.

In the bivariate disproportionality analysis, the frequentist 
methods generally have the following advantages and limitations 
compared with Bayesian methods. Several comparative studies of 
detection trends of these detection approaches have been reported 
(van, Puijenbroek et al., 2002; Kubota et al., 2004; Li et al., 2008; 
Bonneterre et al., 2012; Ang et al., 2016; Pham et al., 2019).

The advantages of the frequentist methods are generally as 
follows: 1. early signal detection, 2. sensitive, 3. easily applicable, 
and 4. easy to understand. While the limitations are 1. detection 
of false positive signals and 2. low specificity.

Although these advantages and limitations are considered to 
show a similar tendency in the signal detection models of DDIs, 
at this stage, the verification is not sufficient. Furthermore, the 
statistical models introduced in Statistical Methodology are not 
sufficiently clarified the difference in detection power. Therefore, 
in the future, it is necessary to examine the similarity and 
specificity of the signal detection tendency of each statistical 
model introduced.

As mentioned in Limitation, there are various biases (Weber, 
1984; Hartnell and Wilson, 2004; Pariente et al., 2007; Hochberg 
et al., 2009; Wang et al., 2010; Matsuda et al., 2015) as these 
signals are calculated using the spontaneous reporting system. 
So the signal obtained is only a hypothesis. This does not 

change whether it is signals of single drug or DDIs. Therefore, 
considerable attention must also be paid to the interpretation of 
results in signal research of DDIs.

As indicated so far, most studies have focused on the analysis 
of AEs caused by the concomitant use of two drugs. However, 
in polypharmacy patients, the occurrence of AEs by interaction 
of multiple drugs (e.g., fourth order drug interaction: drug D1–
drug D2–drug D3–AE) is a concern. Therefore, in the future, 
establishment of a signal detection method for this higher order 
drug interaction will be more important.

This review has introduced only statistical methodologies for 
detecting DDIs based on the number of AEs reported.

In recent years, the method for detecting the signals that use 
time-to-onset instead of the number of reports have been studied 
(van Holle et al., 2012; van Holle et al., 2014; Scholl and Van 
Puijenbroek, 2016), but there are no examples of using them for 
DDIs. Since it may be possible to detect the signals that cannot 
be obtained with the statistical models introduced in this review, 
further studies are expected.
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