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Parameterization, and Calibration 
of a Human Physiologically Based 
Pharmacokinetic Model for the 
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Cyclohexane-1, 2-Dicarboxylate 
Using In Silico, In Vitro, and Human 
Biomonitoring Data
Kevin McNally, Craig Sams and George Loizou *
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A physiologically based pharmacokinetic model for Hexamoll® diisononyl-cyclohexane-1, 
2-dicarboxylate was developed to interpret the biokinetics in humans after single oral doses. 
The model was parameterized with in vitro and in silico derived parameters and uncertainty 
and sensitivity analysis was used during the model development process to assess structure, 
biological plausibility and behavior prior to simulation and analysis of human biological 
monitoring data. The model provided good simulations of the urinary excretion (Curine) of two 
metabolites; cyclohexane-1,2-dicarboxylic acid mono hydroxyisononyl ester (OH-MINCH) 
and cyclohexane-1, 2-dicarboxylic acid mono carboxyisononyl ester (cx-MINCH) from the 
biotransformation of mono-isononyl-cyclohexane-1, 2-dicarboxylate (MINCH), the monoester 
metabolite of di-isononyl-cyclohexane-1,2-dicarboxylate. However, good simulations could 
be obtained, with and without, a lymphatic compartment. Selection of an appropriate model 
structure was informed by sensitivity analysis which could identify and quantify the contribution 
to variability in Curine by parameters, such as, the fraction of oral dose that directly entered 
the lymphatic compartment and therefore by-passed the liver and the fraction of MINCH bio-
transformed to cx-MINCH and OH-MINCH. By constraining these parameters within biologically 
plausible limits the presence of a lymphatic compartment was deemed an important component 
of model structure. Furthermore, the use of sensitivity analysis is important in the evaluation of 
uncertainty around in silico derived parameters. By quantifying their impact on model output 
sufficient confidence in the use of a model should be afforded. This type of approach could 
expand the use of physiologically based pharmacokinetic models since parameterization with 
in silico techniques allows for rapid model development. This in turn could assist in reducing the 
use of animals in toxicological evaluations by enhancing the utility of “read across” techniques.
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inTrODUCTiOn
Plasticizers from different classes of chemicals are used in the 
manufacture of plastics. They are used to promote plasticity, 
that is, the ability to be shaped and molded, to increase 
flexibility and reduce brittleness. The most commonly used 
plasticizers are the phthalates, a term which describes dialkyl- 
or alkylarylesters of 1,2-benzenedicarboxylic acid. The length 
of the ester chain determines the industrial application, with 
alkyl chain lengths from three to 13 carbons widely used in 
polymers such as polyvinyl chloride (PVC). For health effects 
evaluation phthalates have commonly been grouped as low 
molecular weight (three to six carbon alkyl chain length) and 
high molecular weight (HMW; seven or more carbon alkyl 
chain). The plasticizer content of soft PVC, for example, can 
reach up to 40% (Koch and Calafat, 2009). Products containing 
plasticizers include floorings, roofings, wall coverings and 
cables, clothing, packaging materials and toys (David et al., 2001; 
Koch and Calafat, 2009). However, phthalates can leach into the 
surrounding media because they are physically, not chemically, 
bound to the polymer. Therefore, plasticizers can enter the 
environment and directly enter the human body. Environmental 
exposure may encompass many exposure sources, but data from 
fasting humans suggest real world exposure to HMW phthalate 
plasticizers is likely predominantly attributable to dietary 
exposures, whereas low molecular weight phthalates (potential 
in a non-plasticizer application) attributable to use of personal 
care products (Koch et al., 2013a).

In a review by Koch and Calafat (2009) certain phthalates 
like e.g. di-(2-ethylhexyl) phthalate (DEHP), di-iso-
nonylphthalate, butylbenzyl phthalate, di-iso-butyl phthalate, 
di-n-butyl phthalate, and dipentyl phthalate can modulate 
the endogenous production of foetal testicular testosterone 
and insulin-like factor 3 in rats (Gray and Gangolli, 1986; 
Gray Jr et  al., 2000; Borch et al., 2006; Howdeshell et al., 
2007; Furr et al., 2014) . These phthalates have also been 
grouped as suspected human endocrine disrupters (Koch and 
Calafat, 2009), though there is variation in their potential to 
cause developmental effects in rats that suggests the HMW 
phthalates do not warrant hazard classification (ECHA, 2018). 
The ubiquitous presence of plasticizers in the environment, in 
humans and the demonstration of toxicity in animal studies for 
some specific phthalates has led to multiple hazard and safety 
assessments by regulatory agencies globally.

When available, human biomonitoring (HBM) can be 
an important part of the risk assessment (RA) and risk 
management of compounds such as the plasticizers. HBM 
is the repeated controlled measurement of a chemical, its 
metabolites, or biochemical markers in accessible samples 
such as bodily fluids (e.g., urine, blood, and saliva), exhaled air, 
and hair (Manno et al., 2010). In risk characterization, HBM is 
often superior to other methods of exposure assessment, such as 
personal air measurements or dermal deposition assessments, 
because actual estimated body burden or biologically effective 
dose is a composite measure of multiple routes of exposure, of 
the differences in individual behavior (e.g., personal hygiene), 
work rate (characterized by different respiration rates), 

physiology, metabolism, and hence susceptibility (Boogaard 
et al., 2011). Uncertainty in external exposure assessment due 
to inter- and intra-individual variability can also be reduced by 
using HBM if the measured biomarker, either parent chemical 
or metabolite, is proportionately related to the ultimate toxic 
entity (Boogaard et al., 2011). In general, urine is the matrix of 
choice for HBM of non-persistent chemicals such as plasticizers 
because urine is an easily accessible matrix which can be used 
also with children, women of child-bearing age and other 
sub-populations for quantification of these compounds and/
or their metabolites, and it is commonly the most important 
quantitative route of excretion for chemicals.

The ability to estimate organ and tissue dose or “tissue 
dosimetry” from body burdens calculated using HBM 
should further improve the correlation of exposure to health 
effects (Loizou and Hogg, 2011). Physiologically based 
pharmacokinetic (PBPK) modeling is a powerful means of 
simulating the factors that determine tissue dose within any 
biological organism and consequently, it is correlation with 
health effects (Clewell and Andersen, 1985; Krishnan and 
Andersen, 1994; Rostami-Hodjegan and Tucker, 2007). The 
value of PBPK models is that they are tools for integrating 
in vitro, in silico, and in vivo mechanistic, pharmacokinetic, 
and toxicological information achieved through their 
explicit mathematical description of important anatomical, 
physiological and biochemical determinants of chemical 
uptake, distribution, and elimination. Thus, PBPK modeling 
is increasingly being used in chemical RA (Chiu et al., 2007; 
Loizou et al., 2008; WHO, 2010).

In this study we present a PBPK model developed to interpret 
the urinary excretion of metabolites in humans of di-isononyl-
cyclohexane-1,2-dicarboxylate (Hexamoll® DINCH), a HMW 
phthalate substitute, after a single oral dose (Koch et al., 2013b). 
The structure of the model, initially informed by previous studies 
with DEHP (Kessler et al., 2012), includes a sub- model for 
the first monoester metabolite, mono-isononyl-cyclohexane-
1,2-dicarboxylate (MINCH) and the urinary excretion of the 
first two oxidized metabolites of MINCH, cyclohexane-1,2-
dicarboxylic acid mono hydroxyisononyl ester (OH-MINCH) 
and cyclohexane-1,2-dicarboxylic acid mono carboxyisononyl 
ester (cx-MINCH). A simple description of the oral uptake 
of DINCH via the stomach and gut with a portion of the oral 
dose entering the hepatic portal vein and another portion into 
the lymphatic system via the lacteals is included (Kessler et al., 
2012). The model was parameterized with in vitro and in silico 
methods, that is, measured intrinsic hepatic clearance scaled 
from in vitro to in vivo and predicted octanol–water partition 
coefficient (PC) (Log Pow) values which, in turn, were used 
to predict parameters such as plasma unbound fraction and 
tissue:blood PCs. Also, the sufficiency and relevance of PBPK 
model structure and the sensitivity of model output to in vitro 
and in silico derived model parameters was investigated using 
an approach based on global sensitivity analysis (GSA) as part 
of the ongoing development of a good PBPK modeling practice 
(Barton et al., 2007; Loizou et al., 2008; Barton et al., 2009; 
WHO, 2010; Paini et al., 2017; Clewell et al., 2019; Ellison et al., 
2019; Fabian et al., 2019).
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MaTerials anD MeTHODs

experimental
Chemicals
Pooled human microsomes were purchased from (Tebu-bio, 
Peterborough, UK). The microsomes were prepared from a pool 
of 50 liver samples; mixed gender (20 mg protein ml-1). DINCH 
and MINCH were provided by BASF. All chemicals used were of 
analytical grade or higher.

Analysis
Samples were analysed by liquid chromatography (Shimadzu 
Prominence) with tandem mass spectrometry detection (AB 
Sciex API 3200) using electrospray ionization. Ion optics, 
temperatures and gas flows were optimized on our individual 
system. All analyses used a Synergi Hydro-RP column (150 × 2 
mm; 4 µ; Phenomenex) in conjunction with a methanol: 20mM 
ammonium acetate (0.1% acetic acid) gradient. Sample injection 
volume was 2 µl.

In Vitro Incubations
The very high lipophilicity of DINCH resulted in the formation 
of an insoluble film on the surface of the reaction medium and 
precluded the measurement of in vitro clearance. Therefore, the 
in vitro clearance of MINCH only was possible (Figure 1).

The NADPH regenerating system consisted of the 
following final concentrations: 1.3 mM NADP+; 3.3 mM 
glucose-6-phosphate; 5 mM magnesium chloride; 0.4 U/ml 

glucose-6-phosphate dehydrogenase; 50 mM phosphate buffer 
(pH 7.4). Final microsomal protein concentration was 0.5 mg/
ml. Incubations were performed in polypropylene tubes and pre-
warmed reaction mixtures were started by addition of substrate 
dissolved in acetonitrile. The final acetonitrile concentration 
was less than 1% and, typically, a substrate concentration of 10 
µM was used (initial investigations were performed to check 
solubility in the reaction mixture). Incubations were conducted in 
a water bath at 37°C. At the time points chosen for measurement, 
tubes were mixed by inversion and an aliquot removed and 
quenched by adding to an equal volume of ice-cold methanol 
followed by centrifugation to precipitate the protein as a pellet. 
The supernatant was removed for analysis. Three replicates were 
sampled at each time point. Control incubations consisted of 
reaction mix excluding glucose-6-phosphate dehydrogenase (for 
evaluation of non-specific binding) and reaction mix excluding 
microsomes (for evaluation of substrate stability).

The method of Jones and Houston (2004) was used to 
determine the in vitro half-life of substrate depletion. At least 
three independent incubations were performed and results were 
assessed visually for reproducibility. However, due to differences 
in sampling time points between experiments, results from 
individual incubations were not combined.

Determination of In Vitro Intrinsic Clearance
A straight line was fitted to the non-specific binding data and 
a scaling factor calculated (the intercept divided by the fitted 
value) for each time point; thus multiplying the non-specific 
binding data by the scaling factors would generate scaled non-
specific binding data that were approximately constant over all 
times (Figure 2). When applied to parent chemical (in this case, 
MINCH) concentration, this factor can account for losses such 
as non-specific binding to microsomes and the reaction vessel. 
The mean of the repeated measured concentrations of MINCH 

FigUre 1 | Postulated DINCH metabolism in humans showing only those 
metabolites measured in human biological monitoring and described in the 
PBPK model.

FigUre 2 | Determination of half-life for the estimation of in vitro intrinsic 
clearance of MINCH in human liver microsomes where, (×) represents non-
specific binding, (◦) total liver metabolism, and (▫) specific liver metabolism.
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at each time point was multiplied by the corresponding scaling 
factor. An exponential decay function,

 y be t k= − /  (1)

was fitted to the scaled data using a non-linear fit (the Levenberg–
Marquardt nonlinear least squares algorithm) where, y is the 
scaled concentration, b is the fitted value at t = 0 and the decay 
constant is given by k.

In vitro clearance, CLin vitro (milliliter per minute per 
milligram microsomal protein) in human hepatic microsomes 
was calculated using the half-life (T½) derived from the decay 
constant (k) using the following equations (Obach et al., 1997):

 in vitroT
k1 2
2

/
( )= ln  (2)

 CL
in vitro

in vitroT
ml incubation

mg micros
= ×ln( )

/

2

1 2 oomes
 (3)

Where, ml incubation is the volume (milliliter) of the 
incubation medium and mg microsomes is the mass (milligram) 
of microsomes in the incubation medium.

The sensitivity of model output to the intrinsic clearance term 
was tested within the PBPK model structure as described in the 
section on sensitivity analysis. The half-life (T½) for MINCH 
accounted for approximately 1.5% of variability in urinary 
metabolite excretion during the first 2 h post-oral uptake of 
DINCH and almost zero for the remainder of the simulation 
period. Therefore, the contribution of residual metabolism in 
the absence of glucose-6-phosphate dehydrogenase to non-
specific binding was not measured as this would have made an 
insignificant contribution to simulations.

Calculation of In Vivo Clearance
The intrinsic hepatic clearance CLint_H was calculated using the 
following formula adapted from Obach (1999): 

 CL CL MPY Vli
H in vitroint = × × × 60  (4)

Where, MPY is the microsomal protein yield per g liver 
(milligram per gram), Vli is mass of the liver (gram) and the 60 
converts from minutes to hours.

Whole liver plasma clearance CLH (liter per hour) was 
calculated assuming the well-stirred model of hepatic clearance 
taking into account the unbound fraction in plasma, fu and the 
red blood cells to plasma ratio, CRBC/CP, using the following 
equation (Yang et al., 2007): 

 CL
Q fu CL

Q fu CL
H H

H H RBC p
H

int

int C C
=

⋅ ⋅
+ ⋅

_

_ / ( / )
 (5)

Where, QH (liter per hour) is the blood flow to the liver as a 
proportion of cardiac output.

The intrinsic gut clearance CLint_gut was calculated similarly 
as described for hepatic clearance, but substituting MPYgut and 

Vgu for MPY and Vli, respectively, in Equation 3. The resulting 
calculated CLint_gut was used in place of CLint_H for calculation 
of CLgut.

Prediction of Log Pow

The common quantitative descriptor of lipophilicity, the octanol–
water PC Pow, is defined as the ratio of the concentrations of a 
neutral compound in organic and aqueous phases of a two-
compartment system under equilibrium conditions. It is mostly 
used in its logarithmic form, Log Pow.

A large number of different calculation methods have been 
derived for estimating the Log Pow of chemical structures. A 
comparison of calculation methods identified the ACDLogP as 
one of the best performing methods (Mannhold et al., 2009).

The ACDLogP algorithm is based on contributions of separate 
atoms, structural fragments, and intramolecular interactions 
between different fragments. These contributions have been 
derived from an ACD/Labs1 internal database of over 18,400 
structures with experimental Log Pow values (Petrauskas and 
Kolovanov, 2000). Therefore, the ACDLogP method implemented 
in the ACD/ChemSketch 2014 software2 was used to calculate 
Log Pow values required to then calculate the tissue:blood PCs for 
the plasticizer and it is primary metabolites (Table 1).

Prediction of Tissue: Blood Partition Coefficients
Two tissue-composition-based algorithms for the calculation 
of tissue:blood PCs were used in this study. The method of 
Poulin and Haddad (2012) which was developed for the 
prediction of the tissue distribution of highly lipophilic 
compounds, defined as chemicals with a Log Pow > 5.8, was 
used for DINCH (Table 1). The method of Schmitt (2008) 
which was developed to predict the tissue distribution of 
chemicals with Log Pow < 5.17 was used to predict the PCs of 
the monoester, MINCH (Table 1).

The algorithm of Poulin and Haddad (2012) was 
implemented as a Microsoft® Excel Add-in whereas a modified 
version of the algorithm of Schmitt (2008) was available within 
the httk: R Package for High-Throughput Toxicokinetics 
(Pearce et al., 2017).

Where the tissue-composition-based algorithms did not 
provide a tissue:blood PC for a particular compartment the 
value from a surrogate organ or tissue was assumed. These are 
presented in italicized text with the surrogate organ or tissue in 
brackets Table 1.

Prediction of Plasma Fraction Unbound
In general, in the presence of plasma proteins the fraction of a 
compound unbound in plasma decreases as the lipophilicity of 
a compound increases (van de Waterbeemd et al., 2001; Peters, 
2011). The fraction unbound (fu) was calculated from log ((1-fu)/
fu) with the following equation: 

 fu x=
+

1
10 1

  (6)

1 http://www.acdlabs.com (accessed 5th July 2018). 
2 http://www.acdlabs.com (accessed 5th July 2018).
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Where, x = 0.4485 logP – 0.4782
When x is the equation for the prediction of fu for a chemical 

with a predominantly uncharged state at pH 7.4 (Lobell and 
Sivarajah, 2003) (Table 1).

Calculation of Fraction Metabolized
The proportion of MINCH metabolized to cx- and 
OH-MINCH, represented by FracMetab (FracMetabcx to cx- 
and FracMetabOH to OH-MINCH) (Table 2) for each volunteer 
was estimated by expressing all the biological monitoring 
data (MINCH, OH-MINCH, cx-MINCH, cyclohexane-1,2-
dicarboxylic acid, oxo-MINCH, and MCHxCH) in moles and 
dividing the amount of cx- and OH-MINCH each by the total 
sum of all metabolites (Table 2).

Data
The biological monitoring data described in Koch et al. (2013b) 
were kindly provided by Dr. Rainer Otter of BASF, SE. Briefly, 
DINCH was administered orally to three healthy male volunteers, 
aged between 26 and 38 years, weighing between 82 and 90 kg. 
Approximately 50 mg DINCH dissolved in 0.25 ml of ethanol 
was applied in an edible chocolate coated waffle cup containing 

tea or coffee during breakfast. The resulting respective doses for 
the three individuals were between 0.552 and 0.606 mg kg-1 body 
weight (BW) (Table 2). The first urine sample was collected prior 
to dosage followed by consecutive sample collection up to 48 h 
post-dose.

The Physiologically Based 
Pharmacokinetic Model
A PBPK model was developed to study the metabolism of 
DINCH in humans after single oral doses. The model includes 
a bladder compartment to simulate fluctuations in metabolite 
concentration in the urine caused by micturition (Franks et al., 
2006), a description of absorption from both the stomach 
and the gut (Loizou and Spendiff, 2004) and a simple model 
of the lymphatic system describing uptake of DINCH via 
the lacteals in the intestine and entering the venous blood 
after bypassing the liver (Kessler et al., 2012) (Figure 3). 
A lymphatic compartment was included as chemicals with 
Log Pow > 5 are potentially suitable for lymphatic transport 
through lacteals (Brocks and Davies, 2018).The dose that 
entered the lymphatic system via the gut, FracDOSE was coded 
in the model as a proportion of administered dose, with the 
complementary (greater) proportion entering the liver via the 
portal vein (Table 3). The model described the metabolism of 
DINCH to MINCH in the gut with both DINCH and MINCH 
entering the systemic circulation via uptake from the gut like 
DEHP to mono(2-ethylhexyl)phthalate (MEHP) (Kessler 
et  al., 2012). Therefore, a sub-model was added to describe 
the kinetics of MINCH. The two models were connected at 
the level of the liver. The model for DINCH differed from the 
sub-model for MINCH only with the presence of a lymphatic 
compartment and the sub-model for MINCH having the 
bladder compartment; otherwise both models had a stomach 
and gut draining into the liver, an adipose, slowly and rapidly 
perfused and blood compartment (Figure 3).

The model was parameterized using standard organ and tissue 
masses and regional blood flow rates (Brown et al., 1997; ICRP, 
2002). The mass of the lymphatic system was obtained from 
Offman et al. (2016) and the lymph flow rate from Thibodeau 
and Patton (1999).

The tissue: blood PCs and the fractions unbound in plasma 
were predicted using Log Pow as described in Prediction of 
tissue:blood partition coefficients.

The biotransformation of DINCH to MINCH was 
described by intrinsic clearance terms in the gut and liver. 
The biotransformation of MINCH to cx- and OH-MINCH 
was described by an intrinsic clearance term determined in 
vitro and scaled to in vivo described in Calculation of in vivo 
clearance. Likewise, the proportion of MINCH metabolized 
to cx- and OH-MINCH was estimated as described in 
Calculation of fraction metabolized. The in vivo intrinsic 
clearance of MINCH in the gut was calculated by using the 
measured in vitro hepatic clearance rate and scaled to in 
vivo by replacing hepatic microsomal protein yield with gut 
microsomal protein yield (Pacifici et al., 1988; Soars et al., 
2002) (Table 3).

TaBle 1 | Tissue:blood partition coefficients and plasma fraction unbound 
predicted using Log Pow.

DinCH MinCH

Log Po:w 9.77 5.17
Tissue:blood partition coefficient
Adipose 49.77 29.10
Liver 5.89 54.80
Muscle 3.29 7.51
Blood cells 3.01 6.67
Gut 7.40 25.20
Spleen 3.70 12.20
Stomach1 (gut) 7.40 25.20
Rapidly Perfused (spleen) 3.70 12.20
Slowly Perfused (muscle) 3.29 7.51
Plasma Fraction Unbound 0.000125 0.014648

1Compartments in italics have surrogate values from another organ compartment. The 
corresponding surrogate organ compartment is in parentheses.

TaBle 2 | Volunteer specific parameters.

Volunteer

a B C

Body weight (kg) 89 90 82
Dose (mg kg-1) 0.558 0.552 0.606
Mean (sd) rate of urine 
production (L h-1)

0.104 (0.053) 0.158 (0.086) 0.190 
(0.242)

Mean (sd )creatinine 
concentration (g L-1)

1.278 (0.605) 0.962 (0.672) 1.278 
(0.831)

Fraction Metabolised
FracMetab to cx_MINCH 0.045 0.048 0.049

FracMetab to OH_MINCH 0.250 0.238 0.202
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statistical analysis
Parameter Distributions
Parameter ranges used for uncertainty analysis and global 
sensitivity analysis are listed in Table 3, where “U,” “N,” and 
“LN” represent uniform, normal and log-normal distributions 
respectively. Anatomical and physiological parameter distributions 
were obtained from the freely available web-based application 
PopGen (McNally et al., 2014), which is a virtual (healthy) human 
population generator3. A human population of 10,000 individuals, 
comprising 100% male, white Caucasians, age range 16–65, height 
range 140–200 cm, body mass indices 18.5–30 was generated to 
encompass the characteristics of the volunteers that took part 
in the study of Koch et al. (2013b). Parameter ranges for organ 
masses and blood flows were set at the 5th and 95th percentiles of 
the distributions from the virtual population.

3 (http://xnet.hsl.gov.uk/popgen) (accessed 21th March 2019).

The rate of urine (liter per hour) and creatinine (gram 
per liter) production (Table 2) were based upon bounding 
limits from those observed in the human volunteer study. 
Both parameters were calculated for each time interval 
between samples and the mean and standard deviations 
were derived over those rates. This is more representative 
of urine production volume over the experimental period 
whereas a simple average could lead to a single large volume 
of urine over a single sampling period dominating the rate 
calculation. This method also permitted the specification of a 
prior distribution which is not possible with a simple average 
over the experimental period.

Uniform distributions in Tables 3 and 4 were assigned to 
a number of parameters for which there were no available 
distributions. The minima for the distribution ranges were 
calculated by dividing the starting or “point” value of the 
parameter by two and for the maxima multiplying by two.

FigUre 3 | A schematic of the model for DINCH and sub-model for MINCH. The DINCH model contained a lymphatic compartment (– – -) which received a portion 
of the DINCH oral dose from the stomach and gut, which by-passes the liver and enters the venous blood via the lymph node represented by the blue arrow. The 
biotransformation of DINCH to MINCH occurs in both the liver and gut. In the MINCH sub-model the biotransformation of MINCH to cx- and OH-MINCH is ascribed 
only to the liver and urinary excretion of metabolites were described with first-order elimination rate constants and a bladder compartment.
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Point values for parameters for which there was no prior 
knowledge such as, FracMetab, FracDose, and K1 were 
determined by choosing a value which provided a reasonable fit 
to urinary metabolite excretion data.

The 5th and the 95th percentiles of the half-life values used for 
the calculation of the in vitro intrinsic clearance of MINCH were 
scaled to in vivo and used as the minimum and maximum range 
for in vivo clearance.

Uncertainty Analysis
A 200 point maxi-min Latin Hypercube Design was created based 
upon the parameter limits provided in Table 3. The PBPK model 
was run for each of these design points and the concentration 
response profiles for three outputs studied; DINCH in venous 
blood and MINCH in venous blood and OH-MINCH in urine. 
The purpose of this preliminary work was to efficiently assess 
(based upon a relatively small number of model runs) whether the 
behavior of the model over the parameter space corresponding to 
defined parameter limits (Table 3) was broadly reasonable. The 
use of three output measures allowed an evaluation of absorption, 
uptake and metabolism of DINCH to MINCH, the second step of 
metabolism of MINCH to cx- and OH-MINCH and elimination 
of the latter two metabolites in urine. The study of OH-MINCH 
in urine also allowed an assessment of whether a subset of model 
runs was consistent with experimental data.

Sensitivity Analysis
A two-phased GSA comprising elementary effects screening 
(Morris test) followed by a variance-based analysis on the 
retained subset of sensitive parameters was conducted, as 
described in (McNally et al., 2011; Loizou et al., 2015). In order 
to perform the Morris screening test and the extended Fourier 
amplitude sensitivity test (eFAST) GSA the model code was 
further modified to ensure that logical constraints on mass 
balance and blood flow to the tissues were met by adopting the 
re-parameterizations described in Gelman et al. (1996).

In order to simulate the biological monitoring data described 
in Koch et al. (2013b) the concentration of cx- and OH-MINCH 
in the urine, Curine was selected as the primary model output, 
however the venous concentrations of DINCH and MINCH 
were also studied to assess whether the absorption, uptake and 
metabolism to MINCH, and the second step of metabolism to 
cx- and OH-MINCH showed expected sensitivities. For all three 
outputs the Morris test was performed as described in (McNally 
et al., 2011). A total of 54 parameters listed in Tables 1–3 were 
screened and ranked in order of importance (McNally et al., 
2011). The top 11 most important parameters were retained in 
the analysis using eFAST (McNally et al., 2011). The variance-
based eFAST analysis was conducted over a time period of 50 h to 
cover the entire biological monitoring sampling period described 
in (Koch et al., 2013b).

Calibration
Calibration of a subset of uncertain parameters in the PBPK model 
using a dataset of metabolites measured in timed urine samples 

TaBle 3 | Physiological and kinetic default values used in PBPK model and 
probability distributions applied for uncertainty and sensitivity analyses.

Physiological 
Parameters

abbreviation Default 
Value

Distribution

Body weight (kg) BW 72.3 N(72.3,9.05)
% BW
Total vascularised tissues VT 0.95 –
Liver VLiC 3.09 N(3.09, 0.8)
Fat VFaC 19.5 LN(3.42,0.43)
Gut VGuC 1.50 U(1.19,1.84)
Stomach VStC 0.22 N(0.22, 0.07)
Slowly perfused tissue VSpdC 60.7 N(60.7, 9.4)
Rapidly perfused tissue VRpdC 3.71 N(3.7, 0.26)
Blood VBldC 5.0 U(2.5,10)
Lymph VLymphC 0.36 U(0.18, 0.72)

Cardiac output (l h-1 
kg-1 BW)

QCC 14 N(13.8, 2.5)

% Cardiac output
Liver QHepartC 6.0 N(6.89, 0.52)
Fat QFaC 5.0 N(5.3, 0.3)
Gut QGuC 14.9 U(13.2,16.6)
Stomach QStC 1.1 N(1.1, 0.08)
Slowly perfused tissue QSpdC 27.0 N(28.7, 1.91)
Rapidly perfused tissue QRpdC 42.0 N(43.1, 2.78)
Lymph QLymphC 0.04 U(0.02,0.08)

Metabolic Clearance 
(minutes)
In vitro half-life DINCH T½dinch 301 U(15, 60)
In vitro half-life MINCH T½minch 30.53 N(30.54, 2.39)
In vivo DINCH gut half-life T½dinch_gut 30 U(15, 60)
Microsomal protein yield 
(mg g-1)
Hepatic MPY 342 See Table 4
Gut MPYgut 3.93 U(1.95, 7.8)
Fraction Bound in 
plasma (proportion)

Abbreviation Default Value Distribution

DINCH FBDINCH 0.0001249 U(10-5, 0.01)
MINCH FBMINCH 0.0146477 U(0.001, 0.01)
gastric emptying (h-1)4

Maximum k(max) 10.2 U(5.1, 20.4)
Minimum k(min) 0.005 U(0.0025, 

0.01)
absorption (h-1)9

Gut kGa 25.1 U(12.55, 50.2)
Time taken to consume 
dose (h)

DRINKTIME 0.25 U(0.125, 0.5)

Fraction of dose taken up 
into liver

FracDOSE 0.7 See Table 4

Fraction of dose taken up 
into lymphatic system

1- FracDOSE

Fraction of MINCH 
metabolised

FracMetab See Table 4

Urinary production (l h-1) Rurine5 0.1 See Table 4
Creatinine concentration 
(g L-1)

Creat10 0.5 See Table 4

Urinary excretion rate (h-1) K1 0.15 See Table 4

1Estimated.
2 (Barter et al., 2007; Howgate et al., 2006).
3 (Pacifici et al., 1988; Soars et al., 2002).
4 (Loizou and Spendiff, 2004).
5Volunteer specific (Table 2).
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following ingestion of DINCH (Koch et al., 2013b) was attempted. 
The subset of sensitive parameters taken forward to calibration was 
based upon results of variance-based GSA of urinary concentrations 
of metabolites. This was conducted by generating a Lowry plot 
(McNally et al., 2011) and drawing a line from the 100% of the 
total effects point on the y-axis to the point of contact with the 
ribbon where a perpendicular line was drawn down to the x-axis 
(Figure 4). All the parameters to the left of the perpendicular were 
selected for parameter estimation. Since BW was a known measured 
parameter it was not included in the parameter estimation. Instead 
it was fixed at the measured value along with the remaining 49 
relatively insensitive parameters. PORALDOSE represented the 
dose of DINCH administered orally and was included in the set of 
parameters to be estimated in the initial calibration—this allowed us 
to study the precision with which the known ingested dose could be 
estimated, based upon urinary metabolite data, a process referred to 
as reverse dosimetry. The ingested dose was subsequently fixed, with 
a further calibration of the unknown sensitive parameters attempted.

The Bayesian approach described in McNally et al. (2012) 
was followed. This requires the specification of a joint prior 
distribution for sensitive parameters, which is refined through 
a comparison of model predictions (corresponding to a given 
parameter set) and measurements within a statistical model. 
The resulting parameter space that is consistent with the prior 
specification and measurement data is the posterior distribution.

Marginal prior distributions for model parameters are 
described in Tables 4 and 5. For most of the parameters, weakly 
informative prior distributions were specified, which provided 
conservative upper and lower bounds for parameters, however 
within these ranges the prior distributions were flat. A mean 
and standard deviation for the rate of urine production and 
creatinine concentration based upon the biological monitoring 
from the study of Koch et al. (2013b) were initially estimated 
for each study participant. Furthermore, a correlation of -0.7 
between Rurine and Creat was estimated from the data of Koch 
et al. (2013b). Based upon means, standard deviations and this 
correlation a multivariate normal prior distribution for these two 
parameters was specified for each study of the study participants. 
An improper prior distribution was assumed for σ.

Preliminary investigations attempted calibrations based 
upon measurement data on a single individual and single 

metabolite (either OH-MINCH or cx-MINCH). The final 
calibration model (6) used data from two individuals4 (A 
and B) and both metabolites—the fractions metabolized to 
OH-MINCH or cx-MINCH and separate elimination rates, 
K1-OH and K1-cx, respectively were therefore included as 
parameters (Table 4, Figure 5) . A log-normal calibration 
model (7) was specified for this comparison, where yijk and 
μijk denotes the measurements and PBPK model predictions 
respectively of the concentration of metabolite i (OH-MINCH 
and cx-MINCH) in individual j (individuals A and B) at times 
k = 1..T. The uncertain parameters in the PBPK model are 
denoted θ, and σ is a statistical parameter quantifying the 
disagreement between predictions and measurements
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Inference for model parameters θ and statistical parameter 
σ was made using a Markov Chain Monte Carlo (MCMC) 
algorithm (bespoke Metropolis–Hastings algorithm coded in 
R). The MCMC algorithm was burnt in for 1,000 iterations and 
sampling was conducted for a further 10,000 iterations for each 
model. Every 10th sample was retained for analysis. Checks were 
made to ensure convergence of the chains and that the auto-
correlation was reasonable.

software
The PBPK model was written in the R language (R Development 
Core Team, 2008) and run using RStudio (RStudio Team, 2016).

PBPK models were solved using the deSolve package of R. 
GSA of model outputs (Morris screening test and eFAST) were 
conducted using the Sensitivity package of R. Reshaping of 
data and plotting was performed using the reshape and ggplot2 
packages, respectively. The md2c package was used to induce rank 
correlations in samples (Wickham, 2007; Pouillot and Delignette-
Muller, 2010; Soetaert et al., 2010; Pujol and Iooss, 2015). The main 

4 Urinary data from participant C was judged to be unreliable (Figure 6).

TaBle 4 | Prior distributions and summary statistics from marginal posterior distributions for calibrated parameters for volunteers A and B.

Parameter Prior source Posterior Distributions

Median (90% Ci) (Varying 
Oral Dose)

Median (90% Ci) 
(Fixed Oral Dose)

PORALDOSE U(0.1,0.9) Weakly informative 0.30 (0.21,0.41) 0.555
FRACDOSE U(0,1) Weakly informative 0.91 (0.68, 0.99) 0.74 (0.53, 0.96)
MPY N(34,15) PopGen 39.10 (27.53, 54.16) 38.4 (26.40, 53.12)
K1_OH U(0.05, 2) Weakly informative 0.15 (0.13, 0.17) 0.15 (0.13, 0.18)
K1_cx U(0.05, 2) Weakly informative 0.10 (0.08, 0.11) 0.10 (0.09, 0.12)
FracMetabMOH N(0.25, 0.05) Study data 0.23 (0.19, 0.28) 0.20 (0.16, 0.27)
FracMetabcx N(0.0475, 0.01) Study data 0.05 (0.04, 0.06) 0.05 (0.03, 0.06)
Rurine_A, N(0.104, 0.053) Study data 0.10 (0.06, 0.16) 0.12 (0.07, 0.18)
Creat_A N(1.278, 0.605) Study data 1.27 (0.69, 2.03) 1.40 (0.87, 2.14)
Rurine_B, N(0.158, 0.086) Study data 0.12 (0.07, 0.19) 0.14 (0.09, 0.19)
Creat_B N(0.962, 0.672) Study data 1.11 (0.70, 2.01) 1.32 (0.87, 2.04)
σ Improper (~ σ-1) 0.28 (0.25, 0.33) 0.28 (0.25, 0.33)
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effects and total effects (McNally et al., 2011) were computed at each 
time point and parameter sensitivities were studied over this period 
using Lowry plots generated as described in McNally et al. (2011).

All plots were created using R and gglot2 (R Development 
Core Team, 2008; Wickham, 2016).

Hardware
The computer used in this study was a Dell Optiplex 9020 with 
an Intel(R) Core ™ i5-4590 CPU @ 3.30 GHz with 8.00 GB RAM 
running Windows 7 Enterprise Service Pack 1.

resUlTs

In Vitro Clearance
A whole liver intrinsic clearance value of 184.3 l h-1 was 
calculated using Equations 3 and 4 with the half-life of 

30.53 min for the in vitro clearance of MINCH measured in 
pooled human hepatic microsomes (Figure 2 and Table 2) 
This value is less than two-fold greater than a whole liver 
intrinsic clearance value of 101.9 l h-1 for MEHP an analogue 
monoester metabolite of DEHP which is initially metabolized 
to 5-OH MEHP and 5-carboxy MEPP (calculated from Table 4  
in Choi et al. 2013).

In Silico Predicted Parameters
A Log Pow of 9.77 was predicted for DINCH. This indicates a four 
orders of magnitude higher lipophilicity than MINCH which has 
a predicted Log Pow of 5.17 (Table 1). The very high lipophilicity 
of DINCH means that insufficient concentrations were present 
in the predominantly aqueous reaction medium for the in vitro 
measurement of clearance. Hence, the in vitro clearance of 
MINCH only was possible.

FigUre 4 | Lowry plots of the 11 most influential parameters governing Curine variance at (a) 2 h and (B) 10 h. FracMetab, FracDose, Creat, RUrine, BW, MPY, and 
K1 were the most important parameters throughout the entire 50 h simulation and accounted for almost 100% of variance in Curine. In order to account for 100% 
variance the red broken line was drawn from 1 (100% variance point) on the y axis to the ribbon and then vertically down to the x axis. All parameters to the left of 
the vertical line account for all the variance in Curine.
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The tissue:blood PCs, in turn were predicted from the 
predicted Log Pow for DINCH and MINCH where the 
adipose:blood PC for DINCH was considerably higher than for 
MINCH. This is consistent with adipocytes being composed 
primarily of cells specialized in storing energy as fat. However, 
the other tissue:blood PCs for MINCH were higher than for 
DINCH reflecting the heterogeneity of lipid, protein and water 
contents of the various of cell types within a given organ or tissue.

The plasma fractions unbound for both DINCH and MINCH 
were also calculated from the predicted Log Pow. The unbound 
fraction in plasma for MINCH was 145 fold higher than for 
DINCH (Table 1).

Uncertainty and sensitivity analysis
Prior to the analysis of HBM data a thorough evaluation of 
model structure, in terms of the code and the mathematical 
equations used to describe the chemical and biological 
mechanisms proposed as relevant to DINCH and MINCH 
biokinetics was conducted. The aim of this exercise was to 
confirm that the general behavior of the model was consistent 
and biologically plausible. The initial analysis focussed on the 
concentration-time profiles of DINCH and MINCH in plasma 
in addition to the main model output, Curine, the excretion of 
urinary metabolites. The results from this exercise are available 
in the Supplementary Materials. In addition, estimates of tissue 
dosimetry in plasma, liver and adipose, which may inform the 
selection of concentrations for in vitro studies, are also presented 
in the supplementary materials.

The elementary effects (Morris) screening suggested that 
the concentration of OH-MINCH (and cx-MINCH) expressed 
relative to creatinine in urine was primarily sensitive to parameters 
influencing the urinary elimination rate of metabolite (K1), the 
half-life (T½minch) and therefore intrinsic clearance, the fractions 
of MINCH metabolized to OH-MINCH and cx-MINCH 
(FracMetabOH), the dilution of metabolite in urine (Rurine, 
Creat) and the fraction of DINCH entering the lymphatic 
system (FracDose) following ingestion (DRINKTIME). The 
computationally cheaper elementary effects screening cannot 
distinguish between interactions and non-linearities therefore, 
the top 11 parameters identified from the screening were taken 
forward to the second stage of GSA and studied using the eFAST 
variance based analysis.

Figure 4 is a Lowry plot showing the total effect of a 
parameter ST, which is comprised the main effect SM (black 
bar) and any interactions with other parameters Si (grey bar) 
given as a proportion of variance (McNally et al., 2011). The 
ribbon (light blue), representing variance due to parameter 
interactions, is bounded by the cumulative sum of the main 
effects (lower bound) and the minimum of the cumulative sum 
of the total effects (upper bound). FracMetab, FracDose, Creat, 
RUrine, BW, MPY, and K1 were the most important parameters 
throughout the entire 50 h simulation and accounted for almost 
100% of variance in Curine. In order to reduce computational 
overhead, Minch_T½ was excluded from the parameter 
estimation exercise because it decreased further with time 
from a point of very low significance. Therefore, the parameter 
sensitivities at 2 and 10 h post exposure shown in Figure 4 
are representative example plots. The results from the more 
computationally demanding eFAST technique indicated that 
interactions between parameters as opposed to non-linearities 
drove the underlying variability in the model output (the greater 
the width of the ribbon or the greater height of the light grey 
bars of the Lowry plot indicate greater effects of interactions 
between parameters).

Calibration
Summary results from calibration using urinary OH-MINCH 
and cx-MINCH concentrations from two volunteers (A and 
B) are tabulated in Table 4; marginal posterior medians and 
90% credible intervals for each parameter are provided for 
the cases where the external dose [PORALDOSE (milligrams 
per kilogram)] was treated as unknown and included in the 
subset of parameters to be calibrated, and where PORALDOSE 
was fixed. A numerically derived median and 90% credible 
interval5 for the concentration-response profile is shown for 
individuals A and B in Figure 5 under each of the calibrations 
described above.

The satisfactory fit to both urinary cx- and OH-MINCH 
concentrations from two volunteers (A & B) simultaneously, using 
a common set of calibrated parameters (except for Rurine and 
Creat, which were individualized model parameters) supports 

5 The 1,000 retained parameter sets from the posterior were run through the PBPK 
model with results ordered at each time point and percentiles read off.

TaBle 5 | Prior distributions and summary statistics from marginal posterior distributions for calibrated parameters for volunteer C.

Parameter Prior source Median (90% Ci) (Fixed Oral Dose)

PORALDOSE U(0.1,0.9) Weakly informative 0.606
FRACDOSE U(0,1) Weakly informative 0.39 (0.19, 0.92)
MPY N(34,15) PopGen 18.72 (17.09, 27.31)
K1_OH U(0.05, 2) Weakly informative 0.66 (0.45, 0.86)
K1_cx U(0.05, 2) Weakly informative 0.37 (0.27, 0.56)
FracMetabMOH N(0.202, 0.05) Study data 0.23 (0.17, 0.28)
FracMetabcx N(0.049, 0.01) Study data 0.05 (0.04, 0.07)
Rurine_OH N(0.190, 0.242) Study data 0.10 (0.06, 0.19)
Creat_OH N(1.278, 0.831) Study data 1.17 (0.47, 1.99)
σ Improper (~ σ-1) 0.50 (0.42, 0.64)
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that the structure of the model, albeit a simplified description 
of reality, was reasonable. Also, the anatomical, physiological, 
biochemical, and physicochemical parameter values used, 
including those predicted using algorithms and mathematical 
relationships such as PCs, plasma fraction unbound and 
fraction metabolized provided a satisfactory simulation of the 
pharmacokinetics of DINCH and MINCH (Figure 5).

Marginal posterior distributions for MPY, and the 
individualized Rurine and Creat parameters and the two 
elimination rates were broadly consistent over the two calibrations 
(Table 4).The calibrated model suggests a more rapid elimination 
of cx-MINCH in urine compared to OH-MINCH.

For the initial calibration exercise, PORALDOSE was not fixed 
to the known administered dose of 0.555 mg/kg BW/day which 
was in excess of the upper limit of the 90% credible interval6 
(0.21, 0.41) (Table 4). However, in the calibration exercise 
where PORALDOSE was fixed at 0.555 mg/kg BW/day almost 
identical results were obtained, in terms of the numerically 

6 Confidence interval derived using a Bayesian approach.

derived central estimates and 90% credible interval for the 
concentration- response (Figure 5 volunteer A estimated dose 
and volunteer A fixed dose respectively, and Figure volunteer 
B estimated dose and volunteer B fixed dose respectively). This 
apparently surprising finding can be attributed to the influence 
of prior distributions for secondary MINCH metabolites 
OH-MINCH and cx-MINCH. These priors were estimated 
from the metabolite data for the three volunteers, and although 
intended to be relatively weak, were sufficient to discriminate 
between parameter sets which provided a similar quality of fit to 
the HBM data. Specifically, the smaller proportions of MINCH 
metabolized to OH-MINCH and cx-MINCH in the calibration 
with fixed PORALDOSE were less consistent with the prior 
distribution (Table 4). Uniform distributions for OH-MINCH 
and cx-MINCH over similar ranges to the normal distributions 
used in calibration would have resulted in a wider marginal 
posterior for PORALDOSE consistent with the administered 
dose of 0.555 mg/kg BW/day. This result suggests that the 
sensitivity of results to prior distributions should be considered 
when information on the associated model parameters is weak. 

FigUre 5 | Simultaneous fit to both cx- (red line and symbols) and OH-MINCH (blue line and symbols) using a common set of calibrated parameters showing the 
90% credible interval for volunteers A and B The upper panels show the fit when estimating PORALDOSE and lower panels when PORALDOSE is fixed.
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However, a consequence of fixing PORALDOSE was a notable 
reduction in the parameter FracDOSE, reflecting a greater 
amount entering the lymphatic system. This suggested that 
simulations that corresponded to a negligible amount of DINCH 
entering the lymphatic system were no longer consistent with 
the HBM data.

The data from volunteer C were excluded from the 
simultaneous model calibration because the urine volumes were 
unusually large and the creatinine concentrations unusually low 
at 45, 90, 135, and 180 min post oral administration (volunteer 
C drank a large volume of water at the start of the study—Dr. 
Holger Koch personal communication). This resulted in the 
first three measurements of both cx-MINCH and OH-MINCH 
(milligrams per gram creatinine) being comparatively high 
and the fourth comparatively low concentrations (Figure 6). 
As a consequence the constant rates of urine and creatinine 
production assumed in the PBPK model were clearly 
inconsistent with measurements from this volunteer. However, 
calibration using the volunteer C HBM data was attempted in 
order to investigate the consequences of calibrating to unusual 
data which were inconsistent with an assumption (constant 
rates of urine and creatinine production) in the underlying 
PBPK model. Results from the fixed PORALDOSE calibration 
are reported in Table 5. The median and 90% credible interval 
for the concentration–response (calculated as described 
previously) are shown in Figure 6. Surprisingly, the broad trend 
of the data was reasonably well fitted, although with greater 
residual error (Figure 6, see sigma values in Table 5). However, 
in order to fit the HBM data the fraction of dose taken into the 
lymphatic system was notably higher, MPY was notably lower 
and the elimination rates of OH-MINCH and cx-MINCH in 
urine were notably slower (corresponding to larger K1 values) 

compared with calibration to data from volunteers A and B 
(Tables 4 and 5).

DisCUssiOn
In this work we described the development of a PBPK model for 
the oral ingestion of the plasticizer DINCH and its metabolite 
MINCH and the subsequent biotransformation of MINCH to 
cx-MINCH and OH-MINCH. Model structure was informed by 
properties of the chemical and experimental work, with central 
estimates of model parameters provided by in vitro hepatic 
intrinsic clearance scaled to in vivo whole liver intrinsic clearance, 
in silico predicted PCs and plasma unbound fractions of DINCH 
and MINCH, and population databases. The performance of the 
model was investigated using uncertainty and sensitivity analysis 
techniques and a small number of sensitive parameters were 
calibrated using data from urine voids provided by a human in vivo 
biomonitoring study. GSA confirmed that the accuracy of these in 
vitro and in silico derived parameter values were not important 
in determining variance in urinary metabolite concentrations. 
Notably for this model the sensitive parameters were primarily 
structural (such as elimination rates and fractions metabolized 
via different pathways), thus representing reducible sources of 
uncertainty. Apart from differences in the rate of uptake from 
the gut, substantial inter-individual differences in the subsequent 
distribution and elimination of DINCH are inconsistent with the 
model. Following calibration the principle uncertainties were in 
the fractions of dose entering the lymphatic system (FracDose) 
via the gut and in the fractions of MINCH that were bio-
transformed (FracMetabOH, FracMetabcx) and subsequently 
eliminated as cx-MINCH and OH-MINCH in urine. Alternative 
sources of information on these parameters, quantified through 
informative prior distributions, could in principle, further reduce 
the uncertainties in the calibrated model.

In the remainder of the discussion we comment on the 
process of calibration, the subsequent verification of model 
performance and comment on the implications for calibration 
problems requiring reverse dosimetry when dose is genuinely 
unknown, and when a surrogate for the in vivo human (human 
on a chip, in vitro systems etc.) is utilized; this has particular 
relevance for the paradigm where it is envisaged that animal data 
will not be utilized in RA and/or pharmacokinetic models are 
used to enhance toxicological assessment based on “read across” 
(Ellison, 2018).

In the results section the influence of the informative 
prior distributions for cx-MINCH and OH-MINCH was 
briefly discussed—the priors used favoured simulations 
with PORALDOSE below the known administered dose. In 
preliminary calibration models (results from this phase of 
work are not reported) non-informative uniform (0, 1) priors 
were specified for the fraction of MINCH bio-transformed 
and subsequently eliminated in urine as cx-MINCH and 
OH-MINCH. However, due to large correlations between 
FracMetabOH and FracMetabcx and the assumed unknown 
PORALDOSE, the marginal posteriors for all three parameters 

FigUre 6 | Simultaneous fit to both cx-(red line and symbols) and 
OH-MINCH (blue line and symbols) using a common set of calibrated 
parameters showing the 90% credible interval for volunteer C with fixed 
PORALDOSE.
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were unrealistically wide (lower dose and higher fractions 
metabolized to OH-MINCH and cx-MINCH and high dose with 
small fractions metabolized to OH-MINCH and cx-MINCH 
were consistent with concentration- response relationships in 
these two metabolites). It was therefore important to constrain 
FracMetabOH and FracMetabcx in the final calibration 
models—the priors (as given in Tables 4 and 5) were therefore 
derived from the study data of Koch et al. (2013b), as described 
in Calculation of fraction metabolized (Table 2). An alternative 
strategy would be to extend the PBPK model in order to describe 
all downstream metabolites of DINCH.—Whilst in principle 
the PBPK model could be extended and calibrated using a 
wider pool of concentration- response data from the study of 
Koch et al. (2013b), not all downstream metabolites are specific 
to DINCH for example cyclohexane-1,2-dicarboxylic acid. 
Therefore, biologically realistic constraints on the parameters 
FracMetabOH and FracMetabcx based upon the full spectrum of 
metabolite data held on each individual represents a reasonable 
and more practical approach. The importance of prior 
distributions which effectively constrain model parameters has 
been previously recognized (McNally and Loizou et al., 2015), 
although this was in the context of tighter bounds on human 
variability rather than structural parameters.

In the initial calibration model the administered dose 
(PORALDOSE) was treated as unknown and therefore included 
in the group of calibration parameters, in order to investigate 
how well this dose could be estimated from HBM data, after 
accounting for other parameter uncertainties. Results from 
this calibration exercise showed that a relatively wide range 
(wide for model calibration using HBM data) of PORALDOSE 
(90% credible interval of 0.21 to 0.41 mg/kg) was consistent 
with urine voids: the fit of two such parameter sets (selected 
from MCMC output) to bio-monitoring data from individual 
A corresponding to PORALDOSE of 0.22 and 0.40 mg/kg 
(approximately 20 and 40 mg of ingested DINCH) are shown in 
Figure 7 and indicate similar concentration-response profiles 
despite the difference in external dose. A pertinent question 
based upon this finding is “what are the key differences in the 
distribution of DINCH and its metabolites within the body, 
which correspond to these different administered doses?” The 
principle parameter difference (other than dose) corresponding 
to the two simulations shown in Figure 7 was in the fraction of 
dose entering the lymphatic system and hence by-passing first-
pass metabolism in the liver before entering and mixing into 
venous blood. For the lower value of dose a very low fraction, 
4%, entered the lymphatic system, whereas at the higher dose 
30% went down this route (correlations in the MCMC output 
suggest these two runs are representative of the model behavior). 
An examination of model output from these two runs revealed 
that the additional 20 mg of dose was accounted for by DINCH 
in the lymphatic system, which slowly decreased through the 
simulation, and as DINCH bound to protein within the plasma. 
The critical mechanism that facilitates the uptake of larger doses, 
and which therefore is more consistent with the known ingested 
dose, is the by-passing of first-pass metabolism and subsequent 
binding of parent chemical to protein within plasma. Due to the 
very high bound fraction for the parent chemical, larger doses 

of DINCH are consistent with the near zero concentrations of 
OH-MINCH and cx-MINCH observed in urine voids after 35 
h. An important finding from this exercise is that an adequate fit 
to HBM data could be achieved without modeling the lymphatic 
system; however the external dose required to achieve such 
a fit to HBM data was less than half the known administered 

FigUre 7 | Comparison of the fit of two draws from the joint posterior 
distribution to demonstrate the wide range of PORALDOSE consistent with 
data of volunteer A [0.22 mg kg-1 (solid line) and 0.4 mg kg-1 (broken line)], 
[cx-(red lines and symbols) and OH-MINCH (blue lines and symbols)].

FigUre 8 | Sensitivity of plasma fraction bound for DINCH. The amount 
(milligram) of DINCH in plasma over a 1,000 h period is shown for the 
posterior mode parameter set (volunteer A) and default binding. A similar 
simulation is shown for a 10 fold reduction (corresponding to decreasing 
from 99.99 to 99.9% binding) in fraction bound: the small change in absolute 
value (10-fold multiplicative difference) results in an important change in the 
duration of clearance from plasma following ingestion [99.99% (solid line), 
99.9% (broken line)].
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dose. This has important consequences for reverse dosimetry 
applications where the external dose is genuinely unknown: an 
adequate fit to an in vitro or HBM dataset is insufficient in itself 
to validate the structure of a PBPK model. Furthermore, an 
adequate fit to the data from individual C was achieved (Figure 
6) despite the significant variability in the urine volumes and 
creatinine concentrations from this volunteer, as described in 
results. However, the required parameters to achieve a good fit 
to HBM data were inconsistent with results from individuals 
A and B. Through the application of sensitivity analysis, which 
demonstrated the sensitivity of the model outputs under study 
to the rate of urine production and creatinine concentrations, 
and a careful analysis of the HBM data prior to calibration the 
problem with individual C was identified prior to attempting 
calibration. Our results demonstrate that study data need to 
be verified and consistency with the internal assumptions of a 
PBPK model assessed. The conclusion from these observations 
are that the quality of HBM can have a significant impact on 
parameter estimates i.e., reverse dosimetry. The prediction 
of inaccurate posterior distributions can be minimized by 
determining and using plausible physiological, biochemical 
and physicochemical constraints around prior distributions for 
sensitive parameters.

A simplistic description of the lymphatic system was 
coded into the model. We view this as a physically informed 
mechanism for a fraction of the ingested dose to avoid first pass 
metabolism in the liver, prior to mixing in venous blood. The 
mechanism for mixing is particularly simplistic—this is an area 
where the model could be improved if accurate modeling of 
distribution in the lymphatic system was important. However, 
due to the very high fraction bound to protein, the rate of 
stripping from plasma rather than the very slow flow rate of 
the lymph was the dominant factor in the rate of elimination of 
downstream metabolites of DINCH.

Finally, we comment on the bound fraction of DINCH, which 
was estimated based upon equation 5. The bound fraction of 
DINCH was not calibrated in this current work since sensitivity 
analysis, over the very narrow limits considered for this parameter 
when model output was Curine, indicated the concentrations of 
OH-MINCH and cx-MINCH in urine were insensitive to bound 
fraction of DINCH. However, the amount (and concentration) of 
DINCH in plasma and the rate of clearance following ingestion 
was investigated following calibration of the model when model 
output was venous concentration of DINCH. In Figure 8 the 
amount (mg) of DINCH in plasma over a 1,000 h period is shown 
for the posterior mode parameter set (individual A) and default 
binding. A similar simulation is shown for a 10 fold reduction 
(corresponding to decreasing from 99.99 to 99.9% binding) 
in fraction bound: the small change in absolute value (10-fold 
multiplicative difference) results in an important change in the 
duration of clearance from plasma following ingestion. An 
important conclusion from this work is that the consequences of 
the model should be studied following calibration, the credibility 
of the compartmental predictions scrutinized, and opportunities 
for refining the model through either expert knowledge or 
experimental data should be considered. This means that 
evaluation of model performance should involve the sensitivity 

analysis of a range of model outputs, including compartments 
for which there are no HBM data, in this case venous blood 
concentrations of DINCH and MINCH. Expert judgement should 
then be used to interpret the impact of these analyses on those 
model outputs for which there are HBM data. For the model for 
DINCH there is considerable added value in refining the estimates 
of four parameters, FracDOSE, FBDINCH, FracMetabMOH, and 
FracMetabcx, governing the fraction entering the lymph, the 
fraction of DINCH bound to protein and the fractions of MINCH 
bio-transformed and excreted as OH-MINCH and cx-MINCH.
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