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Lung cancer is one of main causes of cancer mortality and 83% of lung cancer cases are
classified as non-small cell lung cancer (NSCLC). Patients with NSCLC usually have a
poor prognosis and one of the leading causes is drug resistance. With the progress of
drug therapy, the emergence and development of drug resistance affected the prognosis
of patients severely. Accumulating evidence reveals that long non-coding RNAs
(lncRNAs), as “dark matters” of the human genome, is of great significance to drug
resistance in NSCLC. Herein, we review the role of lncRNAs in drug resistance in NSCLC.
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INTRODUCTION

As one of the cancers with high incidence worldwide, lung cancer is the main cause of cancer mortality
due to the high fatality related to the disease (Testa et al., 2018). Thirteen percent of lung cancer cases
are classified as small-cell lung cancer with 6% relative 5-year survival rate and 83% of cases are non-
small cell lung cancer (NSCLC) with 23% 5-year survival rate (Miller et al., 2019). Chemotherapy is the
most common treatment for NSCLC and the commonly used drugs include cisplatin (DDP) and the
taxanes (Fennell et al., 2016). A study of NSCLC tumor cultures reported that resistance rates to DDP
and the taxanes were approximately 63% and 43% (d’Amato et al., 2006). Epidermal growth factor
receptor tyrosine kinase inhibitors (EGFR-TKIs) are first-line drugs for advanced NSCLC patients with
EGFR-activating mutations (Bruckl et al., 2017; Hirsch et al., 2017). However, EGFR-TKIs only provide
around 10–13 months of median progression free survival for NSCLC patients (Tan et al., 2015).
Immune checkpoint inhibitors (ICIs) targeting immune-evasive PD-1 axis are also emerging treatments
in recent years, but emerging clinical data reports that only 15–25% NSCLC patients responded to ICIs
in.org December 2019 | Volume 10 | Article 14571
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(Zugazagoitia et al., 2017; Pu et al., 2018). Moreover, the drug effect
is gradually alleviated with the progress of treatment and is usually
impaired by drug resistance (Fennell et al., 2016).

Long non-coding RNAs (lncRNAs) are a set of transcripts with
more than 200 nucleotides in length, which are closely related to
physiology and pathology process through interacting with DNAs,
RNAs, and proteins (Rinn and Chang, 2012; Kopp and Mendell,
2018). Accumulating evidence has proven that the transcriptional
dysregulation of lncRNAs plays a critical role in the proliferation,
metastasis, and drug resistance of lung cancer (Loewen et al., 2014;
Ge et al., 2019; Jiang et al., 2019). Genomic profiling found that
altered expression of numerous lncRNAs was closely related to
drug resistance in NSCLC. Yang et al. reported that 725 lncRNAs
were upregulated and 655 lncRNAs were downregulated in A549/
DDP cells compared with in A549 cells (Yang et al., 2013b). Tian
et al. established paclitaxel resistant model cells (A549/PTX) and
found the upregulation of 119 lncRNAs and downregulation of
1,035 lncRNAs (Tian et al., 2017b). Cheng et al. found 1,731
upregulated and 2,936 downregulated lncRNAs in gefitinib
resistant PC9 cell line (Cheng et al., 2015b). Wu et al. identified
703 upregulated and 773 downregulated lncRNAs in gefitinib
resistant HCC827-8-1 cells (Wu et al., 2016). Reanalysis of
gefitinib, erlotinib, and crizotinib resistance showed the
alterations of many lncRNAs in different EGFR-TKIs resistant
NSCLC cells and qPCR validated the alterations of four lncRNAs
in gefitinib-resistant PC9 cell line (Ma et al., 2017).

LncRNAs mediated drug resistance involves complicated
mechanisms. Co-expressed network analysis in drug resistant
cells shows that lncRNAs might control resistance through
regulating expression of protein-coding genes (Ma et al., 2017).
Interactions between lncRNAs and microRNAs (miRNAs)
suggests that lncRNAs which harbor miRNAs binding sites can
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target miRNAs for degradation and mediate drug resistance via
miRNA sponging effect (Yao et al., 2019). Altered expression of
lncRNAs also results in abnormal signaling pathways and
regulates effects of anti-cancer drugs (Jiang et al., 2018).
Previously, there were several reviews focused on lncRNAs
related to DDP and EGFR-TKIs resistance in lung cancer
(Chen et al., 2016b; Wang et al., 2018). However, as more
drug-resistance relevant lncRNAs become progressively
significant because of their aberrant expression, complex
biological functions, and potential clinical applications in
NSCLC, a thorough and clear review on drug resistance and
lncRNAs is warranted for a more comprehensive understanding
of different drug resistance mechanisms. Herein, we review the
role of lncRNAs in drug resistance to DDP, taxanes, and EGFR-
TKIs in NSCLC and summarize lncRNAs and resistance to other
drugs targeting abnormally activated signaling pathways and
attenuated immune response in NSCLC prospectively.
LncRNAs and NSCLC DDP Resistance
DDP is the most widely used compound which plays a key role in
many cancer treatment programs (Eberhardt et al., 2015). As a
kind of alkylating agents, DDP can entry into NSCLC cells to form
DNA adducts, induce DNA damage, and result in cell death. The
mechanisms of lncRNAs mediated DDP therapeutic effect
alteration involve the regulation of several phenotypes such as
drug efflux, cell apoptosis, autophagy, cancer cell stemness, etc.
through miRNA sponging effect and gene expression regulation.
LncRNAs might also regulate DDP resistance or sensitivity in
NSCLC via controlling Wnt and MAPK/Slug signaling pathway
which are closely related to cancer development. Mechanisms
involving lncRNAs and DDP resistance are illustrated in Figure 1.
FIGURE 1 | LncRNAs and DDP resistance in NSCLC cells. Arrows in red: promotion; arrows in blue: inhibition; lncRNAs in red: DDP resistance promoting lncRNAs;
lncRNAs in blue: DDP sensitivity enhancing lncRNAs.
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Upregulated LncRNAs in NSCLC
DDP Resistance
As one of the biologically well-studied lncRNAs, lncRNA
HOTAIR is overexpressed in NSCLC and plays an important
role in metastasis (Liu et al., 2013). Recent researches revealed
several mechanisms of HOTAIR mediated DDP resistance in
NSCLC. Increased expression of energy-dependent translocator
helps accelerate DDP efflux in DDP resistant cells. Silencing
HOTAIR inhibited the drug transport out of cells through
reducing the expression of multidrug resistance 1 (MDR1) and
multidrug resistance-associated protein 1 (MRP1) which both
belong to the superfamily of ATP Binding Cassette (ABC)
transporters and involve drug efflux. HOTAIR may also make
a significant contribution to drug resistance by activating Wnt
signaling pathway in NSCLC cells (Guo et al., 2018). p21, a
cyclin-dependent kinase inhibitor induced by DNA damage,
results in cell cycle arrest and inhibition of cell proliferation
(Abbas and Dutta, 2009). HOTAIR promotes the DDP resistance
in lung adenocarcinoma (LUAD) cells by downregulating p21
protein and overexpressed p21 can rescue the effects of HOTAIR
on DDP resistance, which indicates that p21 mediates HOTAIR
induced DDP resistance (Liu et al., 2013). Autophagy can be
induced by acute DDP treatment and serve as a protective factor
to avoid DDP-induced cell death (Galluzzi et al., 2012). Silencing
of HOTAIR can suppress phosphorylation of ULK1 to inhibit
activation of autophagy, consequently decreasing DDP resistance
in NSCLC (Yang et al., 2018). Tumor cell stemness is another
important phenotype related to drug resistance, which indicates
a difficult cell death induced by DDP and a significant
contribution to tumor development and metastasis. HOTAIR
could promote DDP resistance in NSCLC cells by upregulating
Klf4 which plays an important role in maintaining cell stemness
(Liu et al., 2016).

LncRNA MALAT1 is one of the earliest found lncRNAs in
NSCLC cells and plays a significant part in tumor development
and DDP resistance (Schmidt et al., 2011). Upregulated
MALAT1 in DDP resistant NSCLC cell lines serves as sponge
of miR-101 and upregulates the target gene SOX9. As
transcription factor, SOX9 binds to the MALAT1 promoter
and upregulates MALAT1, which forms the MALAT1/miR-
101/SOX9 feedback loop. The known downstream of SOX9,
Wnt/b-catenin signaling pathway, was involved in MALAT1
mediated DDP resistance (Chen et al., 2017). MALAT1 also
activates the transcription factor STAT3, increases the
expression of MRP1 and MDR1 via STAT3 phosphorylation
and promotes NSCLC DDP resistance (Fang et al., 2018).

LncRNA CCAT1 is an oncogene lncRNA significantly
upregulated in DDP-resistant NSCLC cells. CCAT1 possibly
decreases the sensitivity of NSCLC cells to DDP through
CCAT1/miR-130a-3p/SOX4 axis. SOX4 is a target of miR-
130a-3p and improves the protein level of ABC Subfamily G
Member 2 (ABCG2), which is a transporter protein significant to
drug efflux (Hu et al., 2017). LncRNA XIST is upregulated in
NSCLC cells and positively associated with the TNM stage
(Tantai et al., 2015). XIST is closely associated with NSCLC
Frontiers in Pharmacology | www.frontiersin.org 3
DDP resistance via regulates autophagy through miR-17/ATG7
axis. Knockdown of XIST suppresses NSCLC cells autophagic
flux and enhances DDP sensitivity (Sun et al., 2017). LncRNA
NEAT1 is a p53-induced lncRNA, playing a key role in cancer
progression and NEAT1 is significantly upregulated in A549/
DDP cells. Knockdown of NEAT1 inactivates Wnt signaling
pathway and downregulates stemness markers, which indicates
NEAT1 might play a novel role in stemness and DDP resistance
of NSCLC (Mello et al., 2017; Jiang et al., 2018).

LncRNA H19 is significantly overexpressed in DDP resistant
NSCLC cells. Knockdown of H19 was related to the upregulation
of Fas, Bak, and Bax, which suggests that H19 may promote DDP
resistance by regulating cell apoptosis (Wang et al., 2017b).
LncRNA NNT-AS1 is upregulated in DDP resistant NSCLC
cell lines and tissues. Knockdown of NNT-AS1 results in cell
cycle arrest, inhibits cell proliferation, and promotes cell
apoptosis via downregulation of MAPK/Slug signaling
pathway, which suggests MAPK/Slug pathway mediates NNT-
AS1 induced DDP resistance in NSCLC (Cai et al., 2018).
Downregulated LncRNAs in NSCLC DDP
Resistance
LncRNA MEG3 is considered as a tumor suppressive gene and
downregulated in NSCLC cells with DDP resistance. MEG3 can
activate p53 to inhibit the tumor development and enhance the
DDP-mediated apoptosis via Wnt pathway (Xia et al., 2015). In
addition to activating p53, lncRNA MEG3 can improve the
apoptosis of the tumor cells by reducing Bcl-xL (Liu et al.,
2015). Besides, the transcription factor SOX7 acts as tumor
suppressor in NSCLC possibly through activating SPRY1 and
SLIT2, and repressing TRIB3 andMTHFD2 (Hayano et al., 2013;
Zhang et al., 2018). MEG3 can enhance the sensitivity to DDP of
NSCLC via MEG3/miR-21-5p/SOX7 axis (Wang et al., 2017a).

LncRNA GAS5 is downregulated in NSCLC cells and
improves the sensitivity of NSCLC to DDP lung cancer cells
via miR-21/PTEN axis (Cao et al., 2017). PTEN is regarded as
tumor suppressive regulator in NSCLC and closely associated
with DDP resistance (Yang et al., 2013a; Xu et al., 2014).
LncRNA TP53TG1 can enhance the sensitivity of NSCLC to
DDP via miR-18a/PTEN axis (Xiao et al., 2018). Similarly, low
expression of lncRNA AC078883.3 contributes to resistance of
NSCLC to DDP viamiR-19a/PTEN axis (Xing et al., 2019b). The
study shows that the cells with lower expression of lncRNA
AK126698 have stronger resistance to DDP, which main due to
Wnt signaling activation (Yang et al., 2013b).
LncRNAs and NSCLC Taxanes Resistance
Paclitaxel is a natural secondary metabolite isolated from the
bark of the gymnosperm yew. Docetaxel, an analog of paclitaxel,
inhibits depolymerization of microtubules and mitosis of cells,
leads to cell proliferation arrest and achieves the purpose of
treating lung adenocarcinoma (Khongkow et al., 2016).
December 2019 | Volume 10 | Article 1457
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However, LUAD with developed taxanes resistance is still the
main cause of treatment failure (Du and Morgensztern, 2015).
The mechanisms of LncRNAs mediated taxanes resistance
mainly focused on modified drug efflux, attenuated cell
apoptosis, and enhanced cell proliferation.

LncRNA ANRIL is overexpressed in LUAD tissues and in
A549/PTX cells. ANRIL can inhibit apoptosis and induce
taxanes resistance via Bcl-2 upregulation and cleaved PARP
downregulation (Xu et al., 2017). LncRNA CCAT1 serves as
the molecular sponge of let-7c and further upregulates Bcl-xL,
which enhances proliferation, attenuates apoptosis, and
promotes chemical resistance in LUAD cells (Chen et al.,
2016a). Linc-ROR serve as sponge of miR-145 leading to
overexpression of FSCN1, which induced proliferation of
LUAD cells and paclitaxel resistance (Pan et al., 2017).

Ren et al. revealed that lncRNA KCNQ1OT1 expression was
upregulated in LUAD tissues and A549/paclitaxel cells.
Knockdown KCNQ1OT1 led to MDR1 protein expression
decreasing and A549/paclitaxel cells regained the sensitivity to
drugs (Ren et al., 2017). However, another study on KCNQ1OT1
revealed that it was upregulated in patients with early-stage
NSCLC with good prognosis, acting as an inhibitor of cell
proliferation and tumor growth (Sun et al., 2018). These
revealed that KCNQ1OT1 might play biphasic functions in
NSCLC progression and drug resistance.
LncRNAs and NSCLC EGFR-TKIs
Resistance
EGFR is a transmembrane protein with inherent tyrosine kinase
activity, overexpression of which in NSCLC patients is associated
Frontiers in Pharmacology | www.frontiersin.org 4
with poor prognosis (Ma et al., 2017). NSCLC patients with
overexpressed EGFR or mutations in kinase domain of EGFR
usually benefit from EGFR-TKIs (Paez et al., 2004). EGFR-TKIs
including gefitinib and erlotinib inhibit phosphorylation of
EGFR and activation of receptor related kinases. However,
long-term treatment usually leads previously sensitive patients
to the development of acquired resistance to EGFR-TKIs.
LncRNAs regulates EGFR-TKIs resistance or sensitivity
through activating EGFR downstream signaling pathway
including Akt/mTOR and ERK. Abnormal expression of
lncRNAs results in alterations of phenotypes related to EGFR-
TKIs resistance including EMT, cell proliferation, apoptosis, etc.
(Figure 2).
Upregulated LncRNAs in NSCLC EGFR-
TKIs Resistance
Cheng et al. studied the role of lncRNA UCA1 in acquired
resistance to EGFR-TKIs in NSCLC, which indicated the
overexpression of UCA1 in the PC9/R and H1975 cells
(Cheng et al., 2015a). The expression of UCA1 mRNA in
NSCLC patients with acquired resistance to gefitinib was
obviously increased and connected with the poor prognosis
of the patients. Further analysis found that this correlation
only existed in NSCLC patients without T790M mutation.
Western blot and immunohistochemistry showed that UCA1
was positively connected with p-EGFR, p-ERK, p-AKT, and p-
mTOR expression. Silencing UCA1 expression enhances E-
cadherin’s expression and weakens expression of vimentin, N-
cadherin, and Snail. Therefore, UCA1 may promote gefitinib
resistance by activating ERK, AKT/mTOR pathways,
and EMT.
FIGURE 2 | LncRNAs, taxanes resistance, and EGFR-TKIs resistance. Arrows in red: promotion; arrows in blue: inhibition; lncRNAs in red: resistance promoting
lncRNAs; lncRNAs in blue: sensitivity enhancing lncRNAs.
December 2019 | Volume 10 | Article 1457
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LncRNA BC087858 is highly expressed in gefitinib-resistant
NSCLC cells. Pan et al. detected the expression of lncRNA
BC087858 in different NSCLC cells and EGFR-TKIs resistant
tumor tissues, concluding that NSCLC patients with high
BC087858 expression had poor prognosis (Pan et al., 2016).
This significant correlation also occurred in patients with
T790M-mutant negative NSCLC. In vitro siRNA-BC087858
transfection can reverse the resistance of T790M-mutant
negative NSCLC drug-resistant cells to gefitinib and promote
cell apoptosis. BC087858 can promote EMT by up-regulating
Snail and ZEB1 expression. It can also activate MEK/ERK and
PI3K/AKT signaling pathways by up-regulating p-EGFR, p-ERK,
and p-AKT expression, thereby promoting EGFR-TKIs resistance.
Downregulated LncRNAs in NSCLC EGFR-
TKIs Resistance
LncRNA GAS5 is a tumor suppressor and low-expressed in
NSCLC. The ectopic expression of GAS5 significantly promoted
the expression of p53 and reduced the expression of transcription
factor E2F1 which is closely related to cell proliferation (Shi et al.,
2015). Dong et al. reported that overexpression of GAS5 could
reverse the resistance of A549 cells to gefitinib, by significantly
reducing the expression of p-AKT, p-ERK, p-EGFR, and p-IGF1R
(Dong et al., 2015). The authors confirmed the results of in vitro
experiments through in vivo experiments, which is a great highlight.
LncRNAs and NSCLC Resistance
to Other Drugs
Rearrangements of anaplastic lymphoma kinase (ALK) in
NSCLC were found in 2007 and patients with ALK
arrangements benefited a greater improvement of life from
ALK-TKIs than from chemotherapy (Soda et al., 2007;
Solomon et al., 2014; Katayama et al., 2015). Crizotinib, a
multi-targeted ALK/ROS1/MET inhibitor, has been approved
by FDA for the treatment of advanced ALK-rearranged NSCLC.
However, rapid development of crizotinib resistance usually
begins to emerge within 2 years (Doebele et al., 2012).
Knockdown of HOTAIR decreased phosphorylation of ULK1,
a kinase that is involved with autophagy, which suggested that
HOTAIR might promote the drug resistance of NSCLC cells to
crizotinib by enhancing autophagy (Yang et al., 2018).

Immunotherapy focuses on improving tumormicroenvironment
and immune system and ICIs including several monoclonal
antibodies targeted PD-1 (nivolumab, pembrolizumab) and
PD-L1 (atezolizumab, durvalumab) have been approved by
FDA for treatment (Pu et al., 2018). ICIs have better antitumor
effect than chemotherapy drugs in NSCLC (Borghaei et al., 2015;
Brahmer et al., 2015), but resistance to ICIs are reported with
various clinical and molecular features (Gettinger et al., 2018).
Xu et al. found 13 lncRNAs closely related to the infiltration of
different immune cells (Xu et al., 2018). Among these, lncRNA
RP11705C15.3 plays a vital role in the dysregulation of the
Frontiers in Pharmacology | www.frontiersin.org 5
immune response in most cancer types including NSCLC,
which contributed to "avoiding immune destruction" via
inhibition of T cells (Hanahan and Weinberg, 2011). They also
found that dysregulations of lncRNA RP11705C15.3 and
SNHG5 are closely related to the prognosis of patients with
NSCLC treated with anti-PD-1 immunotherapy. Wei et al. found
that the lncRNA MALAT1 had a negative expression correlation
with miR-200a-3p and a positive expression correlation with PD-
L1 in NSCLC samples. They concluded that MALAT1 could
promote the progression of NSCLC via miR-200a-3p/PD-L1
axis, which indicated that high expression of MALAT1 in
NSCLC migh t enhan c e r e s i s t a n c e t o an t i - PD-1
immunotherapy (Wei et al., 2019a). The results indicated that
immune-related lncRNAs might have the potential to be
biomarkers of immunotherapy response.
Clinical Prospects of LncRNAs
in NSCLC
LncRNAs might have the great potential to be clinical
biomarkers which could predict diagnosis and prognosis and
indicate the response of drug treatment for NSCLC patients
(Navarro et al., 2019; Esfandi et al., 2019; Tan et al., 2017). An
increasing number of novel lncRNAs including GAS5, SOX2OT,
HOTTIP, OIP5-AS, LINC00473, etc. are potential biomarkers
for NSCLC diagnosis and prognosis and should be validated in
large NSCLC samples (Chen et al., 2016c; Esfandi et al., 2019;
Kamel et al., 2019; Navarro et al., 2019). LncRNA CASC8
rs10505477 could possibly be used to apperceive toxicity and
response of chemotherapy in NSCLC patients (Hu et al., 2016).
LncRNAs involving tumorigenesis and drug resistance might
show a promising future of nucleic acid drug targeting lncRNAs
for inhibition of NSCLC progression. LncRNAs targeting
therapeutics can be achieved by multiple approaches including
RNA interference (RNAi), antisense oligonucleotides (ASOs),
morpholinos, CRISPR-Cas9, etc. (Arun et al., 2018). In vivo
experiments proved that ASOs could significantly target
MALAT1 in A549 xenograft model and showed a more
effective anti-metastasis response compared with control mice
groups (Gutschner et al., 2013). Clinical trials related to NSCLC
based on RNAi or ASOs of lncRNA are pursuing although many
experiments cannot reach clinical stage for safety (Tian
et al., 2017a).
CONCLUSIONS

Accumulating evidence has shown that lncRNAs, as “darkmatters”
of the human genome, is of great significance to drug resistance in
lung cancer. Because of their comprehensive biological functions,
especially in regulating gene expression, the relationship between
lncRNAs and the drug sensitivity of NSCLC cells has received
significant attention. Dysregulation of numerous lncRNAs in drug
resistant NSCLC cells has been dug out throughout microarray
analyses and lab experiments. In this review, we collect the recently
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reported experiments in silico, in vitro, and in vivo, aiming to have
a better understanding of lncRNAs and drug resistance in NSCLC.
Understanding lncRNAs of drug resistance in NSCLC would
promote the development of the cognition of diverse factors
affecting drug resistance, which would help to break the barrier
of drug resistance in NSCLC.
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