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INTRODUCTION
As a leading cause of disability among adults, osteoarthritis (OA) leads to serious public health and 
economic burdens. Currently, treatment options for OA are generally based on symptom severity 
and duration, with the goals of symptom alleviation and improvement in functional status (Taruc-Uy 
and Lynch, 2013). Nonpharmacologic and pharmacologic strategies are used initially, while a 
surgical approach to OA is reserved for chronic cases when these treatments failed. Unfortunately, 
the currently available clinical pharmacologic treatments for OA, such as analgesia, glucocorticoids, 
non-steroidal anti-inflammatory drugs, and disease-modifying antirheumatic drugs, are not 
adequately effective (Chevalier et al., 2009; Scott, 2010; Verbruggen et al., 2012; Chevalier et al., 
2015; Appleton, 2018; Li and Zheng, 2018; Li et al., 2018), and generally associated with a diversity of 
adverse side-effects (Habib et al., 2010; Cooper et al., 2016; Compston, 2018). For instance, analgesia 
does not reduce inflammation and cartilage damage (Appleton, 2018), glucocorticoids have been 
reported to induce severe damages in the musculoskeletal, cardiovascular, and gastrointestinal 
systems (Cooper et al., 2016; Compston, 2018), and non-steroidal anti-inflammatory drugs do 
not actively control arthritis progression (Appleton, 2018). Accumulating evidence demonstrates 
that an ideal OA-combating agent should be able to reduce inflammation and promote cartilage 
regeneration safely, which has long been desired. In responding to this demand, the current strategy 
for disease-modifying osteoarthritis drug seeking has shifted to biologoical molecules that promote 
chondorgenic development and regenration.

To date, a diversity of well-known pro-chondrogenic growth factors, such as bone morphogenetic 
proteins (BMPs) and transforming growth factors (TGFs), have been examined for OA treatment. 
However, the results are not optimistic since intra-articular injection of these growth factors 
could even enhance the inflammatory infiltration in damaged joints (Allen et al., 1990; Fava et al., 
1991; Hong et al., 2009). Meanwhile, multiple transcriptional factors that potentially suppress 
inflammation, such as nuclear factor of activated T cells 1 (NFATc1), NFATc2, and runt-related 
transcription factor 1 (RUNX1), have also be introduced in this arena against OA, while they 
do not hold much promise presently. For example, the function of NFATc proteins in arthritis is 
controversial (Yaykasli et al., 2009; Miclea et al., 2011; Greenblatt et al., 2013).

Another possibility for fighting OA is utilizing the extracellular matrix (ECM) molecules that 
naturally distribute in the articular cartilage. For example, fibromodulin (FMOD) is an ECM protein 
with multiple keratin sulfate side-chains that belongs to the small leucine-rich proteoglycan family 
(Plaas et al., 1990). It was first identified as a collagen-binding molecule broadly distributed in connective 
tissues, with particularly high expression in cartilage (Hedbom and Heinegard, 1989). In the past three 
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decades, in addition to the broad attention of its effects on collagen 
fibrillogenesis (Chen et al., 2010), muscle development (Lee 
et al., 2018a; Lee et al., 2018b), cell reprogramming (Zheng et al., 
2012; Li et al., 2016; Zheng et al., 2019), angiogenesis (Jian et al., 
2013; Zheng et al., 2014; Ao et al., 2017), wound healing (Zheng 
et al., 2017), and tumorigenesis (Pourhanifeh et al., 2019), the 
involvement of FMOD in cartilage development and maintenance 
as well as arthritis progression, especially in temporomandibular 
joint (TMJ) OA, has been investigated through world-wide 
collaboration. Here, we review the current research investigating 
FMOD and arthritis, and aim to provide novel insight into the 
potential use of FMOD for OA management.

SpATIOTEMpORAL DISTRIBUTION OF 
FMOD DURING CARTILAGE GROWTH 
AND DEVELOpMENT
An investigation that focused on mouse glenohumeral joints 
demonstrated that, at 12–13 days post-coitus when the limb 
buds are just condensing mesenchymal cells, FMOD was not 
detectable at the protein level (Murphy et al., 1999). Intense 
FMOD staining was first noticed at the surface of the scapular and 
humeral anlage intracellularly and pericellularly in the interzone 
at 14–15 days post-coitus (Murphy et al., 1999). Starting from 
17 days post-coitus, a strong FMOD signal was found in the 
ECM surrounding the chondrocytes at the surface of the joints 
and proliferating chondrocytes in the epiphyses of the humerus 
and scapula (Murphy et al., 1999). Meanwhile, during postnatal 
maturation until adulthood, FMOD was detected throughout the 
ECM of the developing articular surface and the growth plate but 
was more abundant in articular cartilage (Murphy et al., 1999). 
Since FMOD was associated with prechondrocytic mesenchymal 
cells in the interzone before joint cavitation and with developing 
articular chondrocytes in the maturing and young adult limbs, it 
has been proposed that FMOD may function in the early genesis 
of articular cartilage (Murphy et al., 1999).

It is worth noting that FMOD shared a similar temporospatial 
transcriptional pattern with type II collagen in mouse knee joints 
during postnatal development, while FMOD gene expression 
reached the maximum level at 1 month old (Saamanen et al., 
2001). FMOD transcription was restricted to chondrocytes 
and peaked in the proliferating zone and the early articular 
cartilage (Saamanen et al., 2001), which had been confirmed 
at the protein level by immunostaining (Murphy et al., 1999). 
In mature animals, in situ hybridization revealed that both 
pericellular and interterritorial cartilage at knee joints had high 
FMOD expression with the highest intensity in the middle and 
deep zones of the uncalcified cartilage (Saamanen et al., 2001). 
At 6 months old, FMOD staining decreased in the uncalcified 
cartilage but increased in the calcified cartilage (Saamanen et al., 
2001). FMOD was also detected in the hypertrophic chondrocytes 
of the secondary ossification centers and growth plate of mice 
at 10 days old, and transcription of FMOD was diminished and 
finally disappeared with maturation and aging of the trabecular 
epiphyses (Saamanen et al., 2001).

STRUCTURAL ALTERATION OF FMOD IN 
AGING AND ARTHRITIS pROGRESSION
In addition to its spatiotemporal distribution, FMOD’s 
structural heterogeneity was also noticed during articular 
cartilage growth and development. For instance, FMOD 
isolated from young articular cartilage carries neither α(2-6)-
linked N-acetylneuraminic acid nor α(1-3)-linked fucose in the 
N-linked keratan sulfate chains (Lauder et al., 1996). Meanwhile, 
an age-related increase has been observed in the abundance of 
both α(2-6)-linked N-acetylneuraminic acid and α(1-3)-linked 
fucose, but not the levels of galactose sulfation (Lauder et al., 
1998). Western blot showed FMOD-derived from fetal and 
neonatal articular cartilage (f/n-FMOD) as a diffused region 
with a relative molecular weight of 70–110 kDa (Cs-Szabo et al., 
1995; Roughley et al., 1996), while FMOD-derived from mature 
adult (a-FMOD) was a more discrete component with a relative 
molecular weight of 67 kDa (Cs-Szabo et al., 1995; Roughley 
et al., 1996)—larger than the FMOD core protein without post-
translational modifications (46 kDa). Interestingly, digesting 
f/n-FMOD with keratanase II or endo β-galactosidase reduces 
its molecular weight to a similar level of a-FMOD (Cs-Szabo 
et al., 1995). Thus, Roughley et al. argued that FMOD might 
predominantly exist in the proteoglycan form in juvenile 
cartilage tissues but is mainly in a glycoprotein form in the adult 
counterparts (Roughley et al., 1996).

Interestingly, FMOD is one of the small leucine-rich 
proteoglycans with the most significantly increased protein 
fragmentation in arthritis compared with macroscopically 
healthy articular cartilage from the age-matched donors (Melrose 
et al., 2008). In addition to the 59 kDa band, multiple small 
bands can be detected by Western blot when FMOD is isolated 
from articular cartilage of OA and rheumatoid arthritis patients 
(Cs-Szabo et al., 1995; Roughley et al., 1996; Melrose et  al., 
2008; Shu et al., 2019). Moreover, when using N-glycosidase to 
remove the sulfate chains from FMOD isolated from arthritic 
articular cartilage, several protein bands with the size of 43, 40, 
and 27 kDa were detected (Cs-Szabo et al., 1995). Therefore, 
arthritis progression may not only alter the degree and type of 
its carbohydrate substation but also lead to the breakage of the 
FMOD core protein.

Meanwhile, degradation of FMOD core protein was also 
observed in interleukin (IL)-1-challenged cartilage (Sztrolovics 
et al., 1999; Shu et al., 2019)—a representative model that elucidates 
the genetic and molecular pathogenesis of inflammation-related 
secondary OA (Kuyinu et al., 2016). The degradation of FMOD core 
protein was predominantly catalyzed by matrix metalloproteinases 
(MMPs) and ADAM metallopeptidases with thrombospondin 
type 1 motifs (ADAMTSs) (Kashiwagi et al., 2004; Shu et al., 2019). 
In vitro digestion of healthy human knee cartilage with MMP-13, 
ADAMTS-4, and ADAMTS-5 generated FMOD fragments of 
similar sizes as FMOD derived from OA cartilage without digestion 
(Shu et al., 2019). Notably, the fragmented FMOD is always detected 
by the antibody recognizing the N-terminal fragment of FMOD 
but not the one recognizing the C-terminal (Melrose et al., 2008; 
Shu et al., 2019). One possible explanation is that the C-terminus 
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is vulnerable to the fragmentation and not stably retained in the 
tissue, and substantially lost into the synovial fluid (Melrose et al., 
2008). Importantly, MMP-13 degradation of FMOD resulted in a 
fragment of 30 kDa, which was also detected in moderately and 
severely fibrillated cartilage, instead of healthy or slightly fibrillated 
cartilage (Monfort et al., 2006). These phenomena may support the 
hypothesis that the sensitivity of FMOD protein fragmentation is 
increased along with the severity of cartilage degradation.

LESSONS FROM FMOD DEFICIENT MICE 
FOR OA INVESTIGATION
FMOD-null (Fmod−/−) mice have distinct knee joints in comparison 
with their wildtype (WT) littermates at 36 weeks old (Gill 
et  al., 2002), accompanied by a significantly higher histological 
arthritis score (Ameye et al., 2002). In addition, serial sections 
through FMOD-null mice knees showed degeneration and joint 
remodeling histologically. More severe incidences of degeneration 
occurred in the area of the tibial condyles that are uncovered by 
the menisci, as these sites experience the highest loading stress, 
resulting in considerable loss of cartilage and bone thickness (Gill 
et al., 2002). Moreover, the menisci of FMOD-null mice had a 
markedly less sharp profile with more rounded edges, similar to 
FMOD-null ligaments, which were also more likely to be damaged 
compared to WT ligaments. The area of tibial articular cartilage 
was even more exposed due to degenerated menisci compared to 
that of the WT littermates (Gill et al., 2002). Furthermore, knee 
joints of Fmod−/− mice at 80 weeks old displayed full-depth lesions 
of articular cartilage and clusters of cells that were not seen in the 
knee joints of WT littermates (Gill et al., 2002).

As biglycan (BGN) and FMOD have overlapping and possible 
compensatory functions in the joints (Shirakura et al., 2017), 
BGN and FMOD double-knockout (Bgn−/0/Fmod−/−) mice exhibit 
an earlier onset of OA than Fmod−/− mice. Bgn−/0/Fmod−/− mice 
presented with an abnormal gait characterized by the decreased 
flexibility of knee and ankle joints (dragging leg), which was 
observed as early as 3 weeks old. Additionally, at 3 months old, the 
histological arthritis score of the Bgn−/0/Fmod−/− knee joints was 
significantly higher than that of the WT knee joints. However, 
the abnormal gait phenomena were observed in neither BGN nor 
FMOD single knockout mice (Ameye et al., 2002).

Moreover, BGN and FMOD are also highly expressed in the 
disc and articular cartilage of the TMJ (Wadhwa et al., 2005a). 
Bgn−/0/Fmod−/− mice developed accelerated OA accompanied by 
small vertical clefts in the condylar cartilage and partial disruption 
of the disc as compared to WT animals at 6 months old (Wadhwa 
et al., 2005b). At 18 months old, extensive cartilage erosion was 
visible in the Bgn−/0/Fmod−/− mice TMJ (Wadhwa et al., 2005b).

pOTENTIAL ROLES OF FMOD  
IN ARTHRITIS
There are several hypotheses about the possible roles of FMOD 
in arthritis. FMOD binds to collagens (Melching and Roughley, 
1999), and fragmentation of FMOD during arthritis progression 

may destabilize collagen fibrils, rendering them more susceptible 
to tissue collagenases (Kashiwagi et al., 2004). However, such 
a difference between WT and FMOD-null mice may not 
necessarily have immediately visible effects at the ultrastructural 
level in adults (Ameye et al., 2002).

Alternatively, FMOD may sequester TGF-β/BMP superfamily 
members in the ECM and thereby prevent their binding to the 
cellular receptors (Wadhwa et al., 2005a). For example, when 
treating the TMJ with BMP2, both catabolic and anabolic 
markers were more profoundly upregulated in the Bgn−/0/
Fmod−/− mice than WT animals (Shirakura et al., 2017). This 
observation suggests that BGN and FMOD could protect the 
condyle from BMP2-induced matric turnover (Shirakura et al., 
2017). Additionally, the sequestration of TGF-β1 in mandibular 
condylar chondrocyte ECM decreased in Bgn−/0/Fmod−/− mice. 
The overactive TGF-β1 signal transduction in Bgn−/0/Fmod−/− 
mice accelerated both production and degradation of type 
II collagen and aggrecan, and subsequently led to an overall 
imbalance in ECM turnover that favors cartilage degradation 
and the onset of OA (Embree et al., 2010).

FMOD may also function as a barrier preventing cell 
adhesion and subsequent cartilage damage. For example, 
FMOD administration dramatically prevents the adhesion of 
polymorphonuclear neutrophils and fibroblasts on articular 
cartilage surfaces (Noyori and Jasin, 1994; Mitani et al., 2001). 
This inhibition of cellular attachment may be attributed to the 
capability of FMOD to mask epitopes of cartilage collagen that 
face the joint cavity (Noyori and Jasin, 1994).

Furthermore, FMOD may participate in arthritis progression 
by directly manipulating inflammatory reactions. For instance, 
C1q and complement inhibitor factor H can directly bind to 
FMOD but in different regions (Akimoto et al., 2006). However, 
the deposition of the membrane attack complex and C5a release 
were lower in the presence of FMOD, presumably due to the 
formation of the FMOD-factor H complex (Akimoto et al., 
2006). Interestingly, IL-1 only stimulates the binding of C1q, but 
not factor H, to the N-terminal fragment of FMOD in cartilage 
(Akimoto et al., 2006). Thus, FMOD may balance the activation 
of the classical complement pathway: when maintained in 
its intact form, FMOD silences the complement cascade by 
binding factor H; on the other hand, when FMOD is degraded 
or fragmented, as seen in OA (Melrose et al., 2008; Shu et al., 
2019), the N-terminal FMOD segment binds to C1q and in turn 
activates the complement system to eliminate pathogens and 
damaged cells for tissue recovery and reconstruction.

FMOD has been used as an early marker of chondrogenesis 
(Barry et al., 2001). The expression level of FMOD is inversely 
correlated with the passage number of human chondrocytes in 
monolayer cultivation (Lin et al., 2008). In the TMJ cartilage 
of 3-month-old Bgn−/0/Fmod−/− mice, fewer proliferative 
chondrocytes were noticed in comparison to that of their 
WT counterparts (Wadhwa et al., 2005b). Moreover, Bgn−/0/
Fmod−/− mice presented with more chondrocyte apoptosis in 
the articular cartilage than WT mice at the same developmental 
stage (Wadhwa et al., 2005a). A recent study even showed 
that microRNA-340-5p negatively regulated OA chondrocyte 
proliferation while stimulating apoptosis by reducing FMOD 
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expression (Zhang et al., 2018). Nevertheless, the exact function 
of FMOD in chondrogenesis has yet to be fully uncovered.

FURTHER DIRECTION
As aforementioned, FMOD is a critical ECM component 
involved in articular cartilage development, growth, aging, 
and arthritis; however, the exact functions of FMOD during 
arthritis are still unclear. Take advantage of the development 
of the Cre/Lox as well as CRISPR-Cas9 recombination system, 
the specific functions of FMOD during arthritis progression 
could be deciphered in detail with tissue-specific knockout 
animal models. Recently, it has been reported that FMOD 
can be successfully produced and purified from the cell 
culture supernatant of stable recombinant CHO-K1 cells 
transfected with a plasmid harboring the human FMOD 
gene (Zheng et al., 2012; Li et al., 2016; Pourhanifeh et  al., 

2019). Since FMOD whole protein is now easy to produce, 
further in-depth investigations are warranted to reveal 
the underlying mechanism of action of FMOD as a new 
generation disease-modifying osteoarthritis drug candidate. 
Last but not least, the plasmid- or virus-mediated expression, 
as well as directly synthesis, could be utilized to identify the 
functional sequence(s) of FMOD that regulate(s) cartilage 
development and pathology, which would further advance the 
pharmacology application of FMOD.
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