
Frontiers in Pharmacology | www.frontiers

Edited by:
Andrea Tarozzi,

University of Bologna, Italy

Reviewed by:
Chuen-Mao Yang,

Chang Gung University, Taiwan
Sarah Beggiato,

University of Ferrara, Italy
Lidia Garcia-Bonilla,

Cornell University, United States

*Correspondence:
Xiang Li

xiangli2017@suda.edu.cn
Wanli Dong

wanli_dong@126.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Neuropharmacology,
a section of the journal

Frontiers in Pharmacology

Received: 31 August 2019
Accepted: 02 December 2019
Published: 21 January 2020

Citation:
Tan X, Yang Y, Xu J, Zhang P, Deng R,
Mao Y, He J, Chen Y, Zhang Y, Ding J,

Li H, Shen H, Li X, Dong W and
Chen G (2020) Luteolin Exerts

Neuroprotection via Modulation of the
p62/Keap1/Nrf2 Pathway in
Intracerebral Hemorrhage.

Front. Pharmacol. 10:1551.
doi: 10.3389/fphar.2019.01551

ORIGINAL RESEARCH
published: 21 January 2020

doi: 10.3389/fphar.2019.01551
Luteolin Exerts Neuroprotection via
Modulation of the p62/Keap1/Nrf2
Pathway in Intracerebral Hemorrhage
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Wanli Dong1* and Gang Chen2

1 Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China, 2 Department of Neurosurgery
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Upregulation of neuronal oxidative stress is involved in the progression of secondary brain
injury (SBI) following intracerebral hemorrhage (ICH). In this study, we investigated the
potential effects and underlying mechanisms of luteolin on ICH-induced SBI. Autologous
blood and oxyhemoglobin (OxyHb) were used to establish in vivo and in vitro models of
ICH, respectively. Luteolin treatment effectively alleviated brain edema and ameliorated
neurobehavioral dysfunction and memory loss in vivo. Also, in vivo, we found that luteolin
promoted the activation of the sequestosome 1 (p62)/kelch‐like enoyl-coenzyme A
hydratase (ECH)‐associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2
(Nrf2) pathway by enhancing autophagy and increasing the translocation of Nrf2 to the
nucleus. Meanwhile, luteolin inhibited the ubiquitination of Nrf2 and increased the
expression levels of downstream antioxidant proteins, such as heme oxygenase-1 (HO-
1) and reduced nicotinamide adenine dinucleotide phosphate (NADPH): quinine
oxidoreductase 1 (NQO1). This effect of luteolin was also confirmed in vitro, which was
reversed by the autophagy inhibitor, chloroquine (CQ). Additionally, we found that luteolin
inhibited the production of neuronal mitochondrial superoxides (MitoSOX) and alleviated
neuronal mitochondrial injury in vitro, as indicated via tetrachloro-tetraethylbenzimidazol
carbocyanine-iodide (JC-1) staining and MitoSOX staining. Taken together, our findings
demonstrate that luteolin enhances autophagy and anti-oxidative processes in both in
vivo and in vitro models of ICH, and that activation of the p62-Keap1-Nrf2 pathway, is
involved in such luteolin-induced neuroprotection. Hence, luteolin may represent a
promising candidate for the treatment of ICH-induced SBI.

Keywords: intracerebral haemorrhage, luteolin, p62-Keap1-Nrf2 pathway, autophagy, antioxidant, oxidative stress
Abbreviations: ICH, intracerebral hemorrhage; SBI, secondary brain injury; SD, Sprague-Dawley; OxyHb, oxyhemoglobin;
Co-IP, co-immunoprecipitation; PBS, phosphate buffer saline; LC3, microtubule-associated protein 1A/1B-light chain 3; p62,
sequestosome 1; Keap1, kelch‐like ECH‐associated protein 1; Nrf2, nuclear factor erythroid 2-related factor 2; HO-1, heme
oxygenase-1; NQO1, NADPH, quinine oxidoreductase 1; CQ, chloroquine; ARE, antioxidant response element; ROS, reactive
oxygen species; JC-1, tetrachloro-tetraethylbenzimidazol carbocyanine iodide; MitoSOX, mitochondrial superoxide; HRP,
horseradish peroxidase; CB, the cerebellum; Ipsi-CX, ipsilateral cortex; Ipsi-BG, the ipsilateral basal ganglia; Cont-BG, the
contralateral basal ganglia; Cont-CX, the contralateral basal cortex; PVDF, polyvinylidene difluoride; DCF-DA, 2,7-
dichlorofluorescein diacetate.
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INTRODUCTION

Intracerebral hemorrhage (ICH) is an important public health
problem that has aroused worldwide concern due to its high
mortality and morbidity rates (Qureshi et al., 2009). In addition
to primary brain injury that disrupts the physical structure of
brain tissue, ICH-induced secondary brain injury (SBI) often
leads to severe neurological deficits or even death (Xi et al., 2006).
Since there has only been minimal progress in the clinical
management of ICH, treatment of patients with acute ICH has
remained as a challenge for doctors (Law et al., 2017). Therefore,
further research is needed for the discovery and development of
novel efficacious treatments. There are many pathophysiological
changes that have been demonstrated to participate in the
process of SBI, including hemoglobin-induced iron overload,
oxidative stress, inflammation, cell apoptosis, autophagy,
mitochondrial dysfunction, and blood−brain−barrier
disruption (Zhou et al., 2014; Duan et al., 2016).

Oxidative stress plays a significant role in ICH-induced SBI.
Oxidative stress is involved in pathophysiological processes at
multiple stages after ICH (Aronowski and Zhao, 2011). Nuclear
factor erythroid-related factor 2 (Nrf2) has been demonstrated to
be an important transcription factor that participates in the
regulation of oxidative stress and in ameliorating brain damage
(Wang et al., 2007; Xu et al., 2017; Zeng and Chen, 2017). Under
unstressed states, Nrf2 interacts with its inhibitor, kelch‐like
enoyl-coenzyme A hydratase (ECH)‐associated protein 1
(Keap1), to remain in the cytoplasm. Under conditions of
oxidative stress, Nrf2 disassociates from Keap1 and
translocates to the nucleus to activate the antioxidant response
element (ARE), which leads to an increase in the expression of
downstream protective proteins such as heme oxygenase-1 (HO-
1) and reduced nicotinamide adenine dinucleotide phosphate
(NADPH):quinine oxidoreductase-1 (NQO1) (Wang
et al., 2018a).

As a lysosomal degradative pathway, autophagy is essential
for survival and maintaining cellular homeostasis. In addition,
autophagy is involved in diverse diseases and injuries (Jiang et al.,
2015), including the pathological processes during ICH (Duan
et al., 2017; Li et al., 2018c). Moreover, recent studies have
demonstrated that oxidative stress contributes to autophagy
(Duan et al., 2016). Additionally, by engulfing or degrading
oxidative-stress products, autophagy may have positive effects
on reducing oxidative damage (Filomeni et al., 2015), such as via
reactive oxygen species (ROS)/Nrf2/p62 autophagy (Jiang et al.,
2015). As a form of microtubule-associated protein 1A/1B-light
chain 3 (LC3), the amount of LC3II is greatly correlated with the
formation of autophagosomes and is considered to be an
indicator of the extent of autophagy (Kabeya et al., 2000).

As a member of the flavonoid family, luteolin has been shown
to exhibit multiple pharmacological effects, such as antioxidative,
anti-inflammatory, autophagic-regulatory, apoptotic, and
antitumor effects in many disease models (Xiong et al., 2017;
Luo et al., 2019; Ma et al., 2019; Yu et al., 2019). Several studies
have shown that luteolin exerts neuroprotective effects both in
vitro and in vivo (Xu et al., 2014; Caltagirone et al., 2016; Kwon,
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2017; Luo et al., 2019). However, the effects of luteolin on ICH
remain poorly understood.

In this study, we investigated the neuroprotective effects of
luteolin in ICH-induced SBI, including potential underlying
mechanisms related to regulation of antioxidative processes
and autophagy. Moreover, we aimed to assess whether luteolin
may represent a potential therapeutic candidate for treating ICH.
MATERIALS AND METHODS

Animals
For all pharmacological experiments in vivo, adult male Sprague−
Dawley rats (250 to 300 g) were purchased from the Animal
Center of the Chinese Academy of Sciences (Shanghai, China).
The rats had access to water and food ad libitum and were group-
housed under a 12-h light/dark cycle in animal rooms that had
controlled temperature (22 ± 3°C) and humidity (60 ± 5%). All
animal experiments were approved by the Ethics Committee of
the First Affiliated Hospital of Soochow University. All protocols
were in accordance with the National Institutes of Health (NIH)
Guide for the Care and Use of Animals.
Reagents
Anti-HO-1 (ab13243), anti-Nrf2 (ab89443), anti-NQO1 (A18;
ab28947), anti-histone H3 (ab1791), anti-ubiquitin (ab7780),
anti-SQSTM1/p62 (ab56416), and anti-Keap1 antibodies
(ab139729) were purchased from Abcam (Cambridge, MA,
USA). Anti-b-actin antibody (sc-376421) and normal mouse
immunoglobulin G (IgG) (sc-2025) were purchased from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). Anti-b-tubulin
(2128L) and anti-LC3B (2775) antibodies were purchased from
Cell Signaling Technology (Beverly MA). Protein A + G agarose
(P2012), mitochondrial membrane potential assay kits with
tetrachloro-tetraethylbenzimidazol carbocyanine iodide (JC-1)
(C2006), and ROS assay kits (S0033) were obtained from the
Beyotime Institute of Biotechnology (Jiangsu, China).
Mitochondrial superoxide (MitoSOX) Red MitoSOX indicator
for live-cell imaging (M36008) was purchased from Thermo
Fisher Scientific (USA). Luteolin (T1027) was purchased from
TargetMol (USA). Horseradish peroxidase (HRP)-conjugated
secondary antibodies, anti-rabbit IgG, HRP-linked antibody
(7074S), anti-mouse IgG, and HRP-linked antibodies (7076S)
were from Cell Signaling Technology (Beverly, MA).
Induction of Intracerebral Hemorrhage
As previously described (Meng et al., 2018), a rat model of ICH
was established by injecting 100 ml of autologous blood into the
brain of each rat. First , Sprague-Dawley rats were
intraperitoneally anesthetized with 4% chloral hydrate and
were then mounted onto a stereotactic apparatus (Shanghai
Ruanlong Science and Technology Development Co., Ltd.,
China). After exposing the scalp, we drilled a small hole above
the right basal ganglia (1.5 mm posterior to bregma, 3.5 mm
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lateral to the midline). Then, autologous whole blood, which was
collected by cardiac puncturing, was injected slowly (5.5 mm
ventral to the cortical surface, at 20 ml/min) with a microliter
syringe (Hamilton Company, NV, USA) into the stereotaxically
positioned hole above the right basal ganglia. The needle was
required to stay in place for 5 min to prevent reflux. Finally, scalp
was sutured. Representative brain slices from each group are
shown in Figure 1A.
Experimental Design
Part I: Potential Effects of Luteolin on Intracerebral
Hemorrhage-Induced Secondary Brain Injury in Rats
In this set of experiments, 96 rats (109 rats were used, but only 96
rats ultimately survived) were randomly and equally divided into
the following six groups (n = 16 per group): sham group, ICH
group, ICH + vehicle group, and three ICH + luteolin treatment
groups (i.e., 5, 10, and 20 mg/kg). Rats in the sham group were
intracerebrally injected with physiological saline solution (100
ml) into the right basal ganglia at 20 ml/min, after which the
microliter syringe stayed in the place for 5 min to prevent reflux.
Then, bone wax was used to seal the burr hole and the skin
incision was disinfected and sutured, similar to the procedure for
rats in the ICH group. ICH-operated rats were injected with 100
ml of autologous whole blood into the right basal ganglia as
Frontiers in Pharmacology | www.frontiersin.org 3
mentioned above. Luteolin and vehicle [dimethylsulfoxide
(DMSO)] were injected intraperitoneally at different intervals
(10 min, 24 h, and 48 h after ICH) according to the prescribed
dose. First, stock solution of luteolin was prepared. We dissolved
50 mg of luteolin into 1 ml of DMSO to make the stock solution.
Next, we diluted the stock solution into the corresponding doses
with phosphate buffer saline (PBS). Subsequently, we
administered intraperitoneal injections at 10 min, 24 h, and 72
h after surgery. At 24 h after ICH, 10 rats per group were tested
for behavioral impairments. At 72 h after ICH, six rats per group
were euthanized and their brain tissues were used for detection of
brain edema. Finally, another six rats were tested in the Morris
water maze on the third, fourth, fifth, and sixth day after surgery
to assess changes in cognition (Figure 1B).
Part II: Potential Mechanisms of Luteolin on
Intracerebral Hemorrhage-Induced Secondary Brain
Injury In Vivo
In this set of experiments, we used a total of 86 rats, among
which 72 rats ultimately survived. The surviving 72 rats were
randomly divided into six groups with six rats in each group
(consistent with the groupings of Part I above). Brain tissues
were collected at 24 h after surgery for Western blotting, and
coimmunoprecipitation (Co-IP) analysis (Figure 1C).
FIGURE 1 | Models of intracerebral hemorrhage (ICH) and experimental designs. (A) Coronal brainsections of rats in the sham and ICH groups. (B) Effects of
luteolin on ICH-inducedsecondary brain injury (SBI) in vivo. (C) Potential mechanisms of luteolin on ICH-induced SBI both in vivo and in vitro.
January 2020 | Volume 10 | Article 1551
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Part III: Potential Mechanisms of Luteolin on
Oxyhemoglobin-Induced Secondary Brain
Injury In Vitro
In this set of experiments, primary neurons were cultured and
oxyhemoglobin (OxyHb), as a common irritant, was applied to
emulate ICH pathophysiology in vitro. Primary neurons were
treated with different concentrations of luteolin (5, 10, and 20
mM) and OxyHb (10 mM) for 24 h. Finally, Western blotting, JC-
1 staining, and MitoSOX staining were performed to assess
potential mechanisms of luteolin on OxyHb-induced SBI.
Neurobehavioral Tests
The effects of luteolin on ICH-induced behavioral impairments
were examined by monitoring appetite, locomotor activity, and
neurological defects in Sprague-Dawley rats with a scoring
system that has been previously published (Li et al., 2018b);
Table 1). At 24-h post-ICH, 10 rats per group were tested and
the data were collected by two investigators blind to the
experimental design.
Brain Water Content
As described in a previous study, at 72 h after ICH brain water
content was detected by the dry and wet method (Wang et al.,
2018b). In brief, at 72 h after ICH induction, the brain of each rat
was harvested immediately. Then the harvested brain tissue was
subdivided into the following five parts: cerebellum (CB),
ipsilateral cortex (Ipsi-CX), ipsilateral basal ganglia (Ipsi-BG),
contralateral basal ganglia (Cont-BG), and contralateral cortex
(Cont-CX). The wet weight was recorded immediately after the
tissues were weighed with an electronic analytical balance.
Subsequently, the dry weight was measured after the samples
were dried in a thermostatic drier at 100°C for 72 h. Brain water
content was calculated with the following formula: (wet weight −
dry weight)/wet weight × 100%.
Morris Water Maze
As described previously (Shen et al., 2015), theMorris water maze
was performed to assess cognitive function in rats. In short, the
rats were trained for 3 days (four trials per day) before the ICH
surgery was performed. At 3 to 6 days postsurgery (four trials per
day), Sprague-Dawley rats were tested in the Morris water maze.
Frontiers in Pharmacology | www.frontiersin.org 4
The depth of the water tank was half ameter and the diameter was
180 cm. First, the tank was filled with water (20–22°C) to a height
of 30 cm, after which ink was added to the water. Black-corded
fabric was used to wrap the target platform. The platform, which
was 10 cm in diameter, was positioned at 2 cm beneath the surface
of the water. The starting location of the rat was altered with each
new trial. Moreover, the visual points of reference were kept
unchanged around the pool. Each trial was terminated when the
rat found the platform or when the trial had lasted for 59 s. Rats
were allowed to rest for 20 s on the platformafter each trial. During
the training phase, the rats were given 1min tofind the platform in
the pool. If the rats failed tofind the platform,we then guided them
to the platform with a rod. The rats were allowed to stay at the
platform for 20 s to strengthen their memory before they were
removed. The swimming path length, latency, and speed to find
the platform for each trial were automatically recorded on a
computer. The parameters were used to evaluate learning/
memory abilities and cognitive function.
Western Blotting
After induction of ICH for 24 h, brain samples from the right
basal ganglia of each rat were collected and homogenized. Both
the brain samples collected and extracted cells (for in vitro
experiments) were lysed in ice-cold radioimmunoprecipitation
assay (RIPA) lysis buffer (Beyotime Institute of Biotechnology,
Jiangsu, China). After centrifugation at 12,000 rpm at 4°C for 15
min, the supernatant from each sample was collected.
Subsequently, we measured protein concentrations via a
bicinchoninic (BCA) protein assay kit (Beyotime Institute of
Biotechnology). After mixing each sample with sodium dodecyl
sulfate (SDS) sample buffer, the protein samples were boiled for 5
min at 100°C. After being separated in a 10% SDS-
polyacrylamide gel electrophoresis (PAGE) gel, the protein
samples (30 mg per lane) were electrophoretically transferred to
a polyvinylidene-difluoride (PVDF) membrane (Millipore
Corporation, Billerica, MA, USA), which was then blocked
with non-fat milk in PBS-Tween 20 (PBST) for 1 h at room
temperature. The membrane was then incubated with primary
antibodies overnight at 4°C. The titers of antibodies were as
follows: anti-HO-1 antibody (ab13243, 1:1,000 dilution), anti-
Nrf2 antibody (ab89443, 1:1,000 dilution), anti-NQO1 antibody
(A180; ab28947, 1:1,000 dilution), anti-SQSTM1/p62 antibody
(ab56416, 1:1,000 dilution), anti-Keap1 antibody (ab139729,
1:1,000 dilution), LC3B antibody (Cell Signaling Technology,
2775s, 1:1,000 dilution), and anti-ubiquitin antibody (ab7780,
1:1,000 dilution). Furthermore, anti-b-tubulin antibody (Cell
Signaling Technology, 2128L, 1:1,000 dilution), anti-histone H3
antibody (ab1791, 1:1,000 dilution), and anti-b-actin antibody
(sc-376421, 1:500 dilution) served as loading controls. On the
next day, after being washed with PBST (PBS + 0.1% Tween 20),
each membrane was incubated with HRP-conjugated secondary
antibodies for 1 h at room temperature, after which each
membrane was subsequently washed three times with PBST.
Protein bands were then revealed via an enhanced
chemiluminescence (ECL) kit (Beyotime), and protein bands
were analyzed via ImageJ software (NIH, Bethesda, MD, USA).
TABLE 1 | Neurobehavioral tests.

Category Behavior Score

Appetite Finished meal 0
Left meal unfinished 1
Scarcely ate 2

Activity Walked and reached at least three corners of the cage 0
Walked with some stimulation 1
Almost always lying down 2

Deficits No deficits 0
Unstable walking 1
Unable to walk 2
January 2020 | Volume 10 | Article 1551
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Nuclear and Cytoplasmic Protein
Extractions
Nuclear and cytoplasmic proteins were extracted with a nuclear
and cytoplasmic protein extraction kit (P0027, Beyotime)
according to the manufacturer’s instructions.
Ubiquitin Analysis
First, the collected brain samples were lysed in ice-cold RIPA
lysis buffer. Then the total protein samples were incubated with 1
mg of anti-Nrf2 antibody or IgG (negative control) overnight at
4°C with agitation. Subsequently, the immune complex was
incubated with protein A/G agarose beads (Santa Cruz
Biotechnology, Santa Cruz, CA) at 4°C for 4 h and was then
prec ip i t a t ed under ro ta ry ag i t a t i on . F ina l l y , the
immunoprecipitated proteins were analyzed by SDS−PAGE
and immunoblotting with specific antibodies, including anti-
Nrf2 and anti-ubiquitin antibodies.
Cell Culture
As described previously (Sun et al., 2018), primary rat cortical
neurons were isolated from 17-day-old rat embryos. In short, we
separated the meninges and blood vessels of the brains, which
were subsequently rinsed with PBS. Subsequently, the harvested
brain tissue was digested with 0.25% trypsin at 37°C for 5 min.
The digested brain tissues were then washed with PBS and the
resultant brain suspension was centrifuged at 1,500 rpm for 5
min. The resuspended cells were inoculated into 6-well and 12-
well plates that were precoated with poly-D-lysine (Sigma, USA).
Regarding the inoculation density, we inoculated 2*106 neurons
per well into the 6-well plates, and inoculated 1*105 neurons per
well into 12-well plates. Subsequently, the dissociated cortical
neurons were cultured in Neurobasal medium (Gibco, Carlsbad,
CA, USA) that was supplemented with 0.5 mM of GlutaMAX,
2% B-27, 50 U/ml of streptomycin, and 50 U/ml of penicillin
(Invitrogen, Grand Island, NY, USA). Finally, the neurons were
placed in an incubator at a constant temperature of 37°C and
with humidified air containing 5% CO2. We changed half of the
culture medium every 2 days for 1 week, after which the neurons
were harvested for subsequent assays.
Intracerebral Hemorrhage Models In Vitro
We established an in vitro of ICH model by using OxyHb which
stimulates neurons and induces pathophysiological changes in
neurons that are similar to those from ICH. OxyHb (10 mM) was
added in Neurobasal medium to stimulate neurons for 24 h at
37°C in 5% CO2.
Tetrachloro-Tetraethylbenzimidazol
Carbocyanine Iodide Staining
The mitochondrial membrane potential assay kit was used to
detect changes in the mitochondrial membrane potential of
neurons, while JC-1 staining was used as an indicator of
Frontiers in Pharmacology | www.frontiersin.org 5
mitochondrial damage (Beyotime, China), both of which were
used according to the manufacturer’s protocol. After being
washed with PBS, pretreated neurons were incubated with 1
ml of JC-1 working solution per sample at 37°C for 20 min. Then
neurons were washed twice with JC-1 staining buffer. After
adding 4′ ,6-diamidino-2-phenylindole (DAPI) (DAPI
Fluoromount-G, SouthernBiotech, USA), we observed the
neurons under a fluorescent microscope (Wang et al., 2018b).
Measurement of Mitochondrial Superoxide
After being treated with OxyHb (10 mM) to mimic ICH in vitro,
luteolin (10 mM) or vehicle was added into the medium of
primary neurons. After 24 h, we firstly prepared the stock
solution of 5-mM MitoSOX reagent. Then, 13 ml of DMSO
was added to a vial of MitoSOX Red MitoSOX indicator
(Thermo Fisher Scientific, USA) containing 50 mg of content.
Then, 5-mM MitoSOX reagent working solution was made by
diluting the stock solution of 5-mM MitoSOX reagent
(mentioned above) with PBS. The neurons of all groups were
covered with 5-mMMitoSOX reagent working solution and were
incubated at 37°C for 10 min in the dark. Then neurons were
mounted in PBS for analysis and imaging after being washed
three times with warm PBS.
Statistical Analysis
We used GraphPad Prism 6 to perform statistical analyses of all
experimental data. In addition to neurobehavioral scorings,
which are expressed as the median with the interquartile range,
all other data are expressed as the mean ± standard deviation
(SD). The Mann-Whitney U test was used to analyze
neurobehavioral scorings. For all other data, one-or two-way
analyses of variance (ANOVAs) were applied to determine
significant differences among more than two groups, and we
used Tukey’s post-hoc tests to determine pairwise differences
among the groups. Differences were considered statistically
significant at p < 0.05.
RESULTS

Luteolin Attenuates Intracerebral
Hemorrhage-Induced Secondary Brain
Injury In Vivo
To evaluate the effect of luteolin on brain injury following ICH,
autologous blood was injected into the basal ganglia of rats.
Coronal brain sections are shown in Figure 1A. Behavioral
testing was performed at 24 h after ICH. Damage of
neurobehavioral abilities of the ICH group was significantly
more severe than that of the sham group, and this impairment
was partly alleviated after intraperitoneal injection of 10 mg/kg
or 20 mg/kg of luteolin for 24 h (Figure 2A). We found that
sham group vs. ICH group, Z = −4.077, P < 0.0001; ICH + vehicle
group vs. ICH + 5 mg/kg luteolin group, Z = −0.390, P = 0.8471;
ICH + vehicle group vs. ICH + 10 mg/kg luteolin group,
January 2020 | Volume 10 | Article 1551
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Z = −2.403, P = 0.0234; ICH + vehicle group vs. ICH + 20 mg/kg
luteolin group, Z = −2.262, P = 0.024.

Then, we measured brain water content to assess the effect of
luteolin on brain edema after ICH.We found that the brain water
content was significantly higher in the ICH group compared with
that in the sham group in the Ipsi-BG and Ipsi-CX. However, the
rise of brain water content in these brain regions was inhibited
via luteolin (10 or 20 mg/kg). In contrast, there were no
Frontiers in Pharmacology | www.frontiersin.org 6
significant differences in the brain water content within the
Cont-BG, Cont-CX, or CB among the six experimental groups
(Figure 2B).

In addition, to examine the role of luteolin in cognitive
changes induced by ICH, rats were tested in the Morris water
maze test (Figures 2C–F). Longer escape latencies and
swimming distances were observed in rats from the ICH
group compared with these parameters in the sham group. In
FIGURE 2 | Luteolin ameliorates intracerebral hemorrhage (ICH)-induced neuronal injury. After injection of autologous blood, Sprague-Dawley rats were treated with
luteolin (5, 10, 20 mg/kg) or vehicle. (A) The neurological scores of rats in the six groups were evaluated and resultant scores are reported in Table 1 (**p < 0.01 vs.
sham group; #p < 0.05 vs. ICH + vehicle group; n = 10). (B) The effects of luteolin on brain water content were examined. All data are shown as the mean ± SD
(**p < 0.01 vs. sham group; ##p < 0.01 vs. ICH + vehicle group; n = 10). (C–F) Effects of luteolin treatment on cognitive behavioral impairments induced by
autologous blood were tested via the Morris water maze. (C) Representative swimming-path traces of the rats in each group are displayed. (D) Swimming speed at
the beginning of the test (third-day postsurgery), (E) distances and (F) escape latencies from four trials per day for a total of 4 days are shown. The values are shown
as the mean ± SD (*P < 0.05, **P < 0.01; n = 6).
January 2020 | Volume 10 | Article 1551
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contrast, there were no significant differences in these
parameters among the ICH group, and ICH + vehicle group,
or ICH + 5 mg/kg luteolin group. However, data from rats in
the ICH + 10 mg/kg luteolin group and ICH + 20 mg/kg
luteolin group demonstrated that the ICH-induced increases in
escape latencies and swimming distances were partially
ameliorated via luteolin treatments (Figures 2E, F). For
latencies, the following results were found: third-day postsurgery,
F (3, 120) = 88.48, P < 0.0001; on the fourth-day postsurgery,
F (3, 120) = 157.4, P < 0.0001; on the fifth-day postsurgery, F (3,
120) = 139.6, P < 0.0001; and on the sixth-day postsurgery,
Frontiers in Pharmacology | www.frontiersin.org 7
F (3, 120) = 112.4, P < 0.0001. For swimming distance, the
following results were found: on the third-day postsurgery, F (3,
120) = 72.53, P < 0.0001; on the fourth-day postsurgery, F (3,
120) = 119.2, P < 0.0001; on the fifth-day postsurgery, F (3, 120) =
115.7, P < 0.0001; and on the sixth-day postsurgery, F (3, 120) =
279.9, P < 0.0001. Additionally, we found there were no
significant differences in the swimming speed of all the groups
at the beginning of the test (third-day postsurgery) (Figure 2D).
Overall, luteolin exerted a partial rescuing effect on the brain
injury induced by ICH, and this effect was evident at doses of 10
and 20 mg/kg.
FIGURE 3 | Luteolin treatment promotes intracerebral hemorrhage (ICH)-induced activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway
and enhances Nrf2 nuclear translocation. After injecting of autologous blood and luteolin (5, 10, 20 mg/kg), we extracted brain tissue proteins in each group at 1 day
after ICH. (A–C) Protein levels of Nrf2, heme oxygenase-1 (HO-1), and reduced nicotinamide adenine dinucleotide phosphate (NADPH):quinine oxidoreductase 1
(NQO1) were examined by Western blotting. In the quantitative analysis of protein levels, the mean values of proteins in the corresponding sham groups were
normalized to 1.0. Data are presented as the mean ± SD (*p < 0.05 vs. sham group and ##p < 0.01 vs. ICH + vehicle group; n = 6). (D) Western-blot analysis of
Nrf2 in the nucleus and cytoplasm at 24 h after ICH. Relative protein levels are shown. H3 and b-tubulin served as loading controls. All data are shown as the mean
± SD [##p < 0.01 vs. ICH + vehicle group (nuclear); **p < 0.01 vs. ICH + vehicle group (cytoplasmic); n = 3]. Full images for Western blots in figures were shown in
Supplementary Material.
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Luteolin Promotes Activation of the Nrf2
Pathway and Enhances Nrf2 Nuclear
Translocation Following Intracerebral
Hemorrhage In Vivo
To explore the effects of luteolin on the Nrf2 signaling pathway
after ICH, at 24 h after ICH, we detected the protein levels of
both Nrf2 and downstream antioxidative proteins of Nrf2 (HO-1
and NQO1) via Western blotting. At 24 h after ICH Nrf2 levels
were not significantly elevated compared to those of the sham
group; however, treatment with luteolin significantly elevated
Frontiers in Pharmacology | www.frontiersin.org 8
Nrf2 levels at 24 h after ICH (Figure 3A). We obtained similar
results when we detected the protein levels of HO-1 and NQO1
(Figures 3B, C). The promotion effect was only apparent when
the dose of luteolin reached 10 and 20 mg/kg. Moreover, to
further explore the mechanisms of luteolin on regulating the
Nrf2 signaling pathway, we evaluated Nrf2 nuclear translocation
by extracting and assaying nuclear and cytoplasmic proteins. As
shown in Figure 3D, after ICH, nuclear Nrf2 protein levels were
increased and corresponded to concomitantly decreased levels of
cytoplasmic Nrf2 protein compared to those in the sham group,
FIGURE 4 | Luteolin promotes autophagy to activate the sequestosome 1 (p62)/kelch‐like enoyl-coenzyme A hydratase (ECH)‐associated protein 1 (Keap1)/nuclear
factor erythroid 2-related factor 2 (Nrf2) pathway and inhibits the ubiquitination of Nrf2 in vivo. Rats were subjected to intracerebral hemorrhage (ICH), and were then
injected with luteolin (5, 10, 20 mg/kg) or vehicle. At 24 h after ICH, brain tissues were collected and Western-blot analysis was performed. The protein levels of
Keap1 (A), p62 (B), and LC3 (C) were evaluated in the six groups. Data are presented as the mean ± SD (*P < 0.05 vs. sham group; #P < 0.05, ##P < 0.01 vs.
ICH + vehicle group; n = 6). (D) The interaction between Nrf2 and ubiquitin in vivo was analyzed via coimmunoprecipitation. Ubiquitin was immunoprecipitated with
the anti-Nrf2 antibody and immunoglobulin G (IgG) was used as a negative control. Luteolin inhibited the ubiquitination of Nrf2. Full images for Western blots in
figures were shown in Supplementary Material.
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and this effect was significantly amplified after administration of
luteolin (10 mg/kg). These findings suggest that luteolin increased
Nrf2 nuclear translocation to activate subsequent pathways at 24 h
after ICH, possibly to induce anti-oxidative processes.
Luteolin Activates the P62-Keap1-Nrf2
Pathway and Enhances Autophagy After
Intracerebral Hemorrhage by In Vivo
We next further explored the effects and possible mechanisms of
luteolin on the Nrf2 signaling pathway after ICH. Here, we
focused on Keap1, which is an important Nrf2 repressor that
binds to Nrf2 in the absence of stimulation and is related to
ubiquitination of Nrf2 to mediate proteasomal degradation. As
shown in Figure 4A, the level of Keap1 in brain tissue was
decreased at 24 h after ICH compared to that in the sham group
but it was not obvious. However, the administration of medium
and high doses of luteolin (10, 20 mg/kg) significantly decreased
Keap1 levels compared to that in the ICH + vehicle group. p62,
which is another type of autophagy-adaptor protein, has been
documented to associate with Nrf2 signaling and autophagy via
binding with Keap1. Finally, p62 sequesters Keap1 into
autophagosomes for degradation during autophagy (Jiang
et al., 2015). Hence, we next examined the expression of p62 as
an indicator of autophagy. As is shown in Figure 4B, a lower
expression of p62 was found in the ICH group compared with
that in the sham group. In contrast, luteolin (10, 20 mg/kg)
reduced the expression of p62 compared to that in the ICH +
vehicle group. Next, we evaluated the level of LC3II, which is
another autophagy-related marker. The expression of LC3II was
increased at 24 h after ICH and the treatment of luteolin (10, 20
mg/kg) further increased LC3II expression. This finding suggests
that luteolin enhanced autophagy and led to the activation of the
downstream Nrf2 signaling pathway (Figure 4C).
Luteolin Protects Intracerebral
Hemorrhage-Induced Injury Via Inhibition
of Nrf2 Ubiquitination In Vivo
Reduced Nrf2 ubiquitylation has been recognized to enhance the
stability of Nrf2 and to promote the activation of the Nrf2
signaling pathway (Jiang et al., 2015). Therefore, we examined the
level of Nrf2 ubiquitination via Co-IP assays to further explore the
mechanism of luteolin in influencing the Nrf2 signaling pathway.
As shown inFigure 4D, the interaction betweenNrf2 and ubiquitin
was obvious in the sham group. Compared with that in the ICH +
vehicle group, treatment with luteolin (10 mg/kg) inhibited the
interaction between Nrf2 and ubiquitin.
Luteolin Ameliorates Oxyhemoglobin-
Induced Mitochondrial Injury In Vitro
The Nrf2 signaling pathway has been recognized as a significant
pathway for exerting antioxidative processes and downregulating
the accumulation of ROS (Zeng and Chen, 2017). As an
important indicator for assessing the level of oxidative-stress
damage, we used the MitoSOX Red MitoSOX indicator to
Frontiers in Pharmacology | www.frontiersin.org 9
measure mitochondrial ROS. OxyHb was used to simulate ICH
pathophysiology in vitro in cultured primary neurons. After
being treated with OxyHb (10 mM), using a fluorescent
microplate reader, we found increased ROS in the OxyHb
group and OxyHb + vehicle group compared to that in the
sham group, but this OxyHb-induced increase was inhibited via
luteolin (10 mM) treatment (Figures 5A, B). JC-1 staining is an
ideal fluorescent probe for examining changes in the
mitochondrial membrane potential (△Yt). In the absence of
stimulation, JC-1 binds to the mitochondrial matrix in the form
of J-aggregates, producing red fluorescence. As shown in Figure
5C, after treatment with OxyHb, a decrease in red fluorescent
intensity and an increase in green fluorescence intensity were
observed in the OxyHb group and the OxyHb + vehicle group,
which indicated a loss of the mitochondrial membrane potential
and openings of mitochondrial permeability transition pores
(MPTPs). However, the administration of luteolin (10 mM)
reversed such effects. In conclusion, luteolin reduced the
production of mitochondrial ROS and played a significant role
in mitochondrial protection following OxyHb.
Luteolin Protects Neurons From
Oxyhemoglobin-Induced Injury via
Activation of the P62/Keap1/Nrf2 Pathway
In Vitro
To further investigate the role of luteolin in the p62/Keap1/Nrf2
pathway after ICH, we examined the protein levels of p62, Keap1,
and LC3II viaWestern blotting of primary neurons in vitro. The
expression levels of both p62 and Keap1 were decreased after
treatment with OxyHb (10 mM), as compared with these levels in
the control group. However, the protein levels of both p62 or
Keap1 were significantly decreased following co-treatment with
OxyHb (10 mM) and luteolin (10 mM), as compared with these
levels following OxyHb (10 mM) + vehicle. In order to explore
the potential mechanisms of luteolin in the correlation between
the p62/Keap1/Nrf2 pathway and autophagy, chloroquine (CQ)
—which is an autophagy inhibitor—was used. We found that the
luteolin-induced decreases in the protein levels of p62 or Keap1
were reversed after the co-treatment with OxyHb (10 mM), CQ
(30 mM), and luteolin (10 mM). Additionally, analysis of LC3II
protein levels recapitulated this phenomenon. Pre-treatment
with OxyHb (10 mM) and luteolin (10 mM) up-regulated the
expression of LC3II, which suggested that there were elevated
levels of autophagy, compared with those in the OxyHb (10
mM) + vehicle group. Moreover, this change was reversed via CQ
(Figures 6A–D). In summary, we obtained similar results to
those in our in vivo experiments, which confirmed the role of
luteolin in promoting the activation of the p62/Keap1/
Nrf2 pathway.
DISCUSSION

Over the past several decades, oxidative stress has been found to
be involved in the pathogenesis and development of many
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diseases, including ophthalmic diseases (Nishimura et al., 2017;
Pinazo-Duran et al., 2018), diabetes (Rochette et al., 2018),
cardiovascular diseases (Luscher, 2015; Munzel et al., 2015;
Schiattarella and Hill, 2017), atherosclerosis (Forstermann
et al., 2017), arthritis (Bala et al., 2017; Kardes and Karagulle,
2018), dermatological diseases (Rojo de la Vega et al., 2018),
respiratory diseases (Hecker, 2018), hepatic diseases (Lee et al.,
2019), urinary system diseases (Andersson, 2018), cancer
(Poprac et al., 2017), neurodegenerative disorders (Jiang et al.,
2016), and other nervous system diseases (D’Amico et al., 2013;
Patel, 2016; Pei and Fan, 2017). Moreover, oxidative stress also
participates in pathological processes after ICH (Aronowski and
Zhao, 2011). Inhibition of oxidative stress has been
demonstrated to improve the prognosis of ICH, ameliorate
neurobehavioral impairments, and reduce brain edema (Wei
et al., 2017; Zeng and Chen, 2017; Sosa et al., 2018; Wang et al.,
2018b). Autophagy is involved in the pathophysiological
processes of various diseases, as well as in ICH (He et al.,
2008). In recent years, the crosstalk between autophagy and
Frontiers in Pharmacology | www.frontiersin.org 10
anti-oxidative processes has received considerable attention, and
related studies have suggested that autophagy may enhance
antioxidative processes in a variety of disease models
(Giordano et al., 2014; He et al., 2017; Li et al., 2018a).

ICH exhibits high disability and mortality rates. Moreover,
ICH has become a heavy burden for global health care systems
and societies (Selim et al., 2019). Supportive medical care has
represented the main treatment for ICH but has yielded an
insufficient efficacy (Hanley et al., 2019). Numerous studies have
been carried out in order to further investigate the mechanisms
of ICH-induced SBI. Many kinds of recombinant proteins,
compounds, drugs, and other agents—including recombinant
complement component 1q (C1q)/tumor necrosis factor (TNF)-
related protein 9 (rCTRR9), recombinant osteopontin (rOPN),
isoliquiritigenin, andrographolide, and melatonin—have been
reported to exert neuroprotective effects after ICH by
alleviating brain injury, inhibiting neuronal apoptosis,
suppressing oxidative stress, down-regulating inflammatory
damage, and protecting the blood−brain barrier (Zeng and
FIGURE 5 | Luteolin attenuates oxyhemoglobin (OxyHb)-induced increases in mitochondrial reactive oxygen species (ROS) and mitochondrial injury in vitro. Primary
neurons were cultured and were incubated with or without OxyHb (10 mM) and/or co-incubation with luteolin (10 mM) for 24 h. Representative images of
mitochondrial superoxide (MitoSOX) staining (A), relative MitoSOX fluorescence intensities analysis (B), and tetrachloro-tetraethylbenzimidazol carbocyanine iodide
(JC-1) staining images (C) are shown, which indicated the levels of mitochondrial ROS and the degrees of mitochondrial injury. The scale bar = 5 mm (A). Data are
presented as the mean ± SD (**P < 0.01 vs. control group; #P < 0.05 vs. OxyHb [10 mM] + vehicle group; n = 3) (B), whereas the scale bar = 50 mm (C).
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Chen, 2017; Gong et al., 2018; Li et al., 2018d; Wang et al., 2018b;
Zhao et al., 2018). However, the protective effects of these
neuroprotective agents are still lacking in clinical applications,
and many such agents include problematic side effects.
Therefore, there is a continued need to further identify and
develop novel drugs that are both safe and efficacious in the
treatment of ICH.

Luteolin is a member of the naturally occurring flavonoid
family and has various beneficial bioactivities. Numerous studies
have revealed anti-inflammatory, antioxidative, anti-apoptotic,
autophagic-regulatory, anti-viral, anticancer, and metabolic
effects of luteolin, which have been confirmed in many
different disease models (Hu et al., 2016; Zhang et al., 2016;
Peng et al., 2017; Du et al., 2018; Liu et al., 2018; Tan et al., 2018b;
Yang et al., 2018b; Kang et al., 2019). In addition, in studies on
ischemic stroke (Qiao et al., 2012; Tan et al., 2018a; Luo et al.,
2019), traumatic brain injury (Xu et al., 2014), neurodegenerative
diseases (Kwon, 2017; Zhang et al., 2017), and other neurological
diseases, luteolin has been shown to exert therapeutic effects.
Frontiers in Pharmacology | www.frontiersin.org 11
Compared with other properties of agents, luteolin has a wide
range of sources and is cost-effective. Moreover, because of its
lipophilicity, luteolin is able to freely penetrate the blood-brain
barrier even if it is administered peripherally (Sawmiller et al.,
2014). However, to the best of our knowledge, the impact of
luteolin on ICH-induced SBI has remained unclear. Hence, our
study focused on this direction and attempted to elucidate any
underlying mechanisms.

In this study, we demonstrated that luteolin enhanced the
activation of the Nrf2 pathway and enhanced Nrf2 nuclear
translocation after ICH. Nrf2 is known to regulate various
antioxidant enzymes to protect cells against oxidative stress and
is essential for the clearance of hematomas (Zhao et al., 2015;
Kang et al., 2019). Numerous studies have demonstrated that
activation of the Nrf2 signaling pathway is beneficial in alleviating
ICH-induced SBI. Additionally, activation of the Nrf2 signaling
pathway has been suggested to be an underlying mechanism
related to the efficacies of other agents in ICH treatment (Lan
et al., 2017; Wei et al., 2017; Zeng and Chen, 2017).
FIGURE 6 | Luteolin promotes the activation of the sequestosome 1 (p62)/kelch‐like enoyl-coenzyme A hydratase (ECH)‐associated protein 1 (Keap1)/nuclear factor
erythroid 2-related factor 2 (Nrf2) pathway in vitro. (A) Western blotting showing that compared to that in the control group, after oxyhemoglobin (OxyHb) stimulation,
the protein level of p62 or Keap1 was decreased and the expression of LC3II was increased. Additionally, these changes were magnified with co-treatment of OxyHb
(10 mM) and luteolin (10 mM). Moreover, the above changes were reversed via chloroquine (CQ). (B) Quantification of the protein levels of p62 in the various groups.
Data are presented as the mean ± SD [*P < 0.05 vs. control group; &&P < 0.01 vs. OxyHb (10 mM) + vehicle group; ##P < 0.01 vs. OxyHb (10 mM) + luteolin (10 mM)
group; n = 3]. (C) Quantification of the expression of Keap1 in the various groups. Data are presented as the mean ± SD [*P < 0.05 vs. control group; &P < 0.05 vs.
OxyHb (10 mM) + vehicle group; ##P < 0.01 vs. OxyHb (10 mM) + luteolin (10 mM) group; n = 3]. (D) Quantification of the relative levels of LC3II in the various groups.
Data are presented as the mean ± SD [*P < 0.05 vs. control group; &&P < 0.01 vs. OxyHb (10 mM) + vehicle group; ##P < 0.01 vs. OxyHb (10 mM) + luteolin (10 mM)
group; n = 3]. Full images for Western blots in figures were shown in Supplementary Material.
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Moreover, previous studies have revealed that luteolin upregulates
Nrf2 expression and triggers Nrf2 translocation in various disease
models, including brain diseases (Xu et al., 2014; Liu et al., 2018;
Tan et al., 2018b; Ma et al., 2019). Our present findings were
consistent with those of the previous studies.

Previous studieshave revealed that there aredifferential effects of
luteolin on the Nrf2 signaling pathway in different cell lines. For
example, luteolin was recognized as an Nrf2 inhibitor and
suppressed the activity of the Nrf2/ARE pathway in human lung
carcinoma A549 cells (Tang et al., 2011). Son et al. found that
luteolin has a bidirectional regulation of the Nrf2 pathway at
different stages of disease development (Son et al., 2017). These
findings indicate that the role of luteolin in the regulation of the
Nrf2/ARE pathway may be different in different cell types. At the
same, the biological timing context may be a significant factor.

As a type of LC3-binding protein, p62 functions as a critical
autophagy-adaptor protein and promotes the selective
degradation of proteins via autophagy (Komatsu et al., 2007).
The results of related studies have indicated that by physically
isolating Keap1 and impairing the ubiquitylation of Nrf2, p62
mediates the activation of Nrf2 and its downstream pathways
and plays an important role in antioxidative processes (Jiang
et al., 2015). In the process of exploring new drugs, up-regulation
of autophagy has been found in numerous disease-model studies
Frontiers in Pharmacology | www.frontiersin.org 12
(Yang et al., 2018a; Rusmini and Cortese, 2019) and activation of
the p62/Keap1/Nrf2 pathway has been shown to play a role in
alleviating systemic diseases (Sun et al., 2016; Su et al., 2018) and
in ameliorating brain injury, such as ischemic stroke (Wu et al.,
2019). Our present findings were similar to those described
above. In addition, luteolin has been found to enhance
autophagy in studies of other diseases (Xu et al., 2014; Hu
et al., 2016; Cao et al., 2017). Additionally, the administration
of autophagic inhibitors such as CQ, has been shown to be
associated with exacerbating disease progression (Yang et al.,
2018a; Wu et al., 2019). These findings are consistent with our
present results, such that we found that luteolin enhanced
autophagy and activated the p62/Keap1/Nrf2 pathway, and this
effect was reversed by the autophagic inhibitor, CQ, in our ICH
model (Figure 7).

Above all, our findings suggest that luteolin may represent a
novel treatment for ICH-induced SBI. However, our study had
some limitations. Our study used Sprague−Dawley male rats as
animal models. However, in clinical epidemiological studies,
there are also female patients with ICH, and the incidence of
ICH in elderly patients is higher than in younger patients.
Furthermore, the specific details of luteolin promoting
autophagy and affecting the p62/Keap1/Nrf2 pathway
remain unclear.
FIGURE 7 | Potential mechanisms of luteolin in ameliorating intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI). Luteolin enhances autophagy,
activates the sequestosome 1 (p62)/kelch‐like enoyl-coenzyme A hydratase(ECH)‐associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)
pathway, and plays an important role in neuroprotection and anti-oxidative processes, which suggests that luteolin may represent a promising drug for ameliorating
ICH-induced SBI.
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CONCLUSION

Taken together, our results demonstrate that autophagy
increases slightly after ICH, which activates the p62/Keap1/
Nrf2 pathway and upregulates the expression levels of its
downstream antioxidant proteins, HO-1 and NQO1, but that
effect was not obvious. In contrast, the administration of luteolin
significantly amplified the above effects and may have the
potential to attenuate ICH-induced SBI in ICH patients.
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