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Purinergic signaling via P2 receptors is now widely accepted to play a critical role during
increased states of hyperexcitability and seizure-induced pathology. In the setting of
seizures and epilepsy, most attention has been paid to investigating the fast-acting ATP-
gated P2X receptor family. More recent evidence has now also provided compelling
evidence of an involvement of the slower-acting P2Y receptor family during seizures. This
includes data demonstrating expression changes of P2Y receptors in the hippocampus
following acute seizures and during epilepsy and anticonvulsive properties of P2Y-
targeting drugs; in particular drugs targeting the P2Y1 subtype. Seizures, however, also
involve damage to extra-hippocampal brain regions such as the cortex, which is thought
to contribute to the epileptic phenotype. To analyze expressional changes of the P2Y
receptor family in the cortex following status epilepticus and to determine the impact of
drugs interfering with P2Y1 signaling on cortical damage, we used a unilateral mouse
model of intraamygdala kainic acid-induced status epilepticus. Analysis of cortical tissue
showed that status epilepticus leads to a global up-regulation of the P2Y receptor family in
the cortex including P2Y1, P2Y2, P2Y4, and P2Y6, with the P2Y1 and P2Y4 receptor
subtypes showing the strongest increase. Supporting a detrimental role of P2Y1 activation
during status epilepticus, treatment with the P2Y1 agonist MRS2365 exacerbated high
frequency high amplitude spiking, synonymous with injury-causing electrographic activity,
and treatment with the P2Y1 antagonists MRS2500 protected against seizure-induced
cortical damage. Suggesting P2Y1-mediated effects are predominantly due to increased
microglia activation, treatment with the broad-spectrum anti-inflammatory drug
minocycline abolished the observed neuroprotective effects of P2Y1 antagonism. In
conclusion, our results further support a role for P2Y1-mediated signaling during seizure
generation and seizure-induced neurodegeneration, suggesting P2Y1-targeting therapies
as novel treatment for drug-refractory status epilepticus.

Keywords: adenosine triphosphate, purinergic signaling, metabotropic P2 receptor family, status epilepticus,
neurodegeneration, cortex
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INTRODUCTION

Epilepsy is characterized by an enduring predisposition to
increased hyperexcitability states in the brain and is one of most
common chronic brain diseases affecting up to 70 million people
worldwide. Despite the increasing number of anti-epileptic drugs
available in the clinic, drug resistance to pharmacological
interventions remains steadily at 30% (Thijs et al., 2019). Status
epilepticus, medical emergency defined as prolonged continuous
seizure activity lasting longer than 5 min, is associated with high
mortality and can cause wide-spread brain damage and serious
neurological complications including the development of epilepsy
(Betjemann and Lowenstein, 2015). As for epilepsy, drug
refractoriness during status epilepticus remains equally high,
with patients not responding to treatment being particularly
vulnerable to adverse clinical outcomes (Novy et al., 2010).
Mounting data has demonstrated an important role for
neuroinflammation during both seizure generation and
epileptogenesis (Vezzani et al., 2016); consequently, current
research in epilepsy has a strong focus on the identification of
the molecular mechanisms responsible for driving inflammatory
processes during seizure-induced pathology.

Purinergic signaling via extracellular adenine and uracil
nucleotide-activated P2 receptors has been suggested as
possible link between neuroinflammation and increased
hyperexcitability states (Henshall and Engel, 2015; Rassendren
and Audinat, 2016; Alves et al., 2018). P2 receptors are
subdivided into the fast-acting P2X receptor family, activated
mainly by adenosine tri-phosphate (ATP) and consisting of
seven members (P2X1-7) and the slower acting metabotropic
P2Y receptor family, activated by ATP, adenosine di-phosphate
(ADP) and the uracil nucleotides uracil tri-phosphate (UTP),
uracil di-phosphate, and UTP-glucose consisting of eight
members (P2Y1,2,4,6,11,12,13,14). P2Y receptors are further
subdivided into groups based on their coupling to specific G
proteins with P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 coupled to Gq
proteins, ultimately resulting in the activation of protein kinase C
via release of Ca2+ from intracellular stores. Among these, P2Y11

can also couple to Gs. P2Y12, P2Y13, and P2Y14 are coupled to Gi
proteins decreasing cAMP production via inhibiting adenylate
cyclase (von Kugelgen, 2006). Both P2X and P2Y receptors are
distributed widely throughout the central nervous system where
they are expressed and are functional on many cell types,
including neurons, microglia, astrocytes, and oligodendrocytes
(Burnstock, 2007).

Mounting data has repeatedly demonstrated distinct changes
in the expression profile of P2X and P2Y family members
following acute seizures and during epilepsy, and provided
compelling evidence that drugs blocking P2X or P2Y members
alter seizure severity and may even impact on the development of
epilepsy (Amhaoul et al., 2016; Engel et al., 2016; Amorim et al.,
2017; Alves et al., 2018). While most efforts have been invested to
study the effects of the fast-acting P2X receptor family on
seizures and epilepsy, in particular the P2X7 receptor (Beamer
et al., 2017), increasing evidence also suggest a causal role for
P2Y receptors during seizure-induced pathology (Eyo et al.,
2014; Avignone et al., 2015; Alves et al., 2017; Alves et al.,
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2018; Alves et al., 2019). P2Y receptor expression is altered in
the hippocampus following status epilepticus and during
epilepsy (Alves et al., 2017) and ADP and UTP, both broad-
spectrum P2Y receptor agonists, alter seizure severity during
status epilepticus and seizure-induced neurodegeneration (Alves
et al., 2017). Further supporting a role for P2Y receptors during
seizures, mice deficient in P2Y12 display a more severe seizure
phenotype during status epilepticus (Eyo et al., 2014). P2Y1

antagonism has been shown to reduce seizure severity and
protect against hippocampal neurodegeneration (Simoes et al.,
2018; Alves et al., 2019). This is of no surprise considering the
well documented role of P2Y1 to regulate neurotransmitter
release, facilitate neuronal excitability, and mediate microglia
migration and activation (Guzman and Gerevich, 2016).
Moreover, slice work in hippocampal tissue from epileptic rats
showed that P2Y1 antagonism caused a reduction in astrocytic
Ca2+-dependent glutamate gliotransmission and in turn
hyperexcitability (Wellmann et al., 2018). Providing more
evidence of an involvement of P2Y1 during seizure generation,
P2Y1 antagonism decreases tumor necrosis factor-a–induced
glutamate release from astrocytes and restores synaptic activity
in hippocampal slices from epileptic mice (Nikolic et al., 2018).

To date, the investigation of P2Y expression and function has
been mainly restricted to the hippocampus. Status epilepticus,
however, also leads to cell death in extrahippocampal brain
tissues including the amygdala, and piriform and entorhinal
cortex in both experimental models of status epilepticus and
in humans (Fujikawa et al., 2000; Curia et al., 2008;
Mouri et al., 2008; Kienzler et al., 2009), which is thought
to contribute to cognitive deficits and lowering of the seizure
threshold (Thompson and Duncan, 2005; Helmstaedter,
2007). To establish whether P2Y signaling is involved in
extrahippocampal neurodegeneration during status epilepticus,
we characterized the expression profile of the P2Y receptor
family in the cortex following status epilepticus and evaluated
whether drugs targeting the P2Y1 receptor subtype protect the
cortex from seizure-induced damage (Mouri et al., 2008).
MATERIALS AND METHODS

Intraamygdala Kainic Acid Mouse Model
of Status Epilepticus
All animal experiments were performed in accordance with the
principles of the European Communities Council Directive
(2010/63/EU). Procedures were reviewed and approved by the
Research Ethics Committee of the Royal College of Surgeons in
Ireland (REC 1322) and HPRA (AE19127/P038; AE19127/P001)
and undertaken as described before (Engel et al., 2012).
Experiments were carried out using 8- to 12-week-old C57Bl/6
male mice bred at the Biomedical Research Facility at RCSI and
male P2Y1 knock-out (KO) mice obtained from The Jackson
Laboratory (009131-B6.129P2-P2ry1 < tm1Bhk>/J). Animals
were housed in a controlled biomedical facility on a 12-h light/
dark cycle at 22 ± 1°C and humidity of 40% to 60% with food and
water provided ad libitum. During stereotaxic procedures, mice
January 2020 | Volume 10 | Article 1558
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were anesthetized using isoflurane (5% induction, 1%–2%
maintenance) and maintained normothermic by means of a
feedback-controlled heat blanket (Harved Apparatus Ltd, Kent,
UK). Once fully anesthetized, mice were placed in a stereotaxic
frame and a midline scalp incision was performed to expose the
skull. A guide cannula (coordinates from Bregma; AP = −0.94
mm, L = −2.85 mm) and three electrodes for EEG recording
(Bilaney Consultants, Sevenoaks, UK), two above each
hippocampus and one above the frontal cortex as reference,
were fixed in place with dental cement. EEG was recorded using
the Xltek recording system (Optima Medical, Guildford, UK).
Status epilepticus was induced by a microinjection of 0.3 µg
kainic acid (KA) [0.2 µl phosphate-buffered saline (PBS)]
(Sigma-Aldrich, Dublin, Ireland) into the right basolateral
amygdala. Vehicle-injected control animals received 0.2 µl of
PBS. The anticonvulsive lorazepam (6 mg/kg) (Wyetch, Taplow,
UK) was delivered i.p. 40 min following intraamygdala KA or
vehicle to curtail seizures and reduce morbidity and mortality.

Drug Administration
Mice were assigned randomly to receive either vehicle (sterile H2O),
P2Y1 antagonist MRS2500 (MRS25) (1 nmol) (≥96% purity; Tocris
Bioscience, Abingdon, UK) or P2Y1 agonist MRS2365 (MRS23) (1
nmol) (98% purity; Tocris Bioscience, Abingdon, UK) 15 min
following intraamygdala KA injection. All drugs were delivered by
an intracerebroventricular (i.c.v.) microinjection (2 ml) into the
ipsilateral lateral ventricle (coordinates from Bregma: AP = −0.4
mm; L = −0.95 mm). Minocycline (30 mg/kg, PBS) (Sigma-Aldrich
(M9511), Dublin, Ireland) was administered twice via i.p. injection
(200 ml) 24 and 4 h before triggering status epilepticus via
intraamygdala KA (Alves et al., 2019).

EEG Analysis
The duration of high-frequency (> 5 Hz) and high-amplitude
(> 2 times baseline) polyspike discharges of ≥5 s duration,
synonymous with injury-causing electrographic activity (Araki
et al., 2002), was counted manually by a reviewer unaware of
treatment as before (Engel et al., 2012).

Western Blotting
To analyze expression changes of the P2Y receptor family in
cortical tissue post-status epilepticus, the entire ipsilateral cortex
was removed and homogenized in lysis buffer, and 30 µg of
protein samples were loaded into an acrylamide gel and
separated by SDS-PAGE electrophoresis. Membranes were
probed with antibodies against P2Y1, P2Y2, P2Y4, P2Y6, P2Y12,
P2Y13, and P2Y14 (Alomone Labs, Hadassah Ein Kerem,
Jerusalem, Israel), c-Fos (Santa Cruz, Heidelberg, Germany),
and b-actin (Sigma-Aldrich, Dublin, Ireland). Protein bands
were visualized using a Fujifilm LAS-4000 system (Fujifilm,
Tokyo, Japan) with chemiluminescence (Pierre Biotechnology,
Rockford, IL, U.S.A.), which was followed by analysis using
Alpha-EaseFC4.0 software.

Fluoro-Jade B
Status epilepticus-induced neuronal cell death was assessed by
Fluoro-Jade B (FjB) as described before (Engel et al., 2012).
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Twelve-micrometer coronal sections at the medial level of the
hippocampus (Bregma AP = −1.94 mm) were sliced on a
cryostat. Brain tissue was then fixed in 4% paraformaldehyde
(PFA), rehydrated in ethanol, and transferred to a 0.006%
potassium permanganate solution. Tissue sections were
incubated with 0.001% FjB (Chemicon Europe Ltd, Chandlers
Ford, UK) and mounted in dibutylphthalate polystyrene xylene
mounting solution. Using an epifluorescence microscope, FjB-
positive cells were counted under a 40× lens in two adjacent
sections and the average determined for each animal.

Immunofluorescence Staining
To perform immunofluorescence staining, mice were
anaesthetized with an overdose of 250 µl sodium pentobarbital
(200 mg/ml) delivered i.p. and transcardially perfused with 4%
PFA. Brains were then transferred to a solution of PBS and
immersed into a 4% agarose solution before sectioning in a
VT1000S vibratome. Thirty-micrometer brain sections were
incubated in 0.1% Triton X-100 and glycine followed by the
blocking solution (1% BSA-PBS). Brain tissue was then
incubated with the primary antibodies: P2Y1 (1:100) (Santa
Cruz, Heidelberg, Germany), NeuN (1:400) (Millipore,
Billerica, MA, U.S.A), GFAP (1:400) (Sigma-Aldrich, Dublin,
Ireland), S100b (1:400) (Synaptic Systems, Goettingen,
Germany), or Iba1 (1:400) (Wako, Neuss, Germany). Brain
tissue was washed and incubated with a secondary antibody
raised in goat conjugated with Alexa Fluor 488 and Alexa Fluor
568. Sections were stained with DAPI (1:500) and mounted onto
glass slides with FluoroSave reagent. Confocal images were taken
on a Zeiss Examiner Z1 microscope using a 40× immersion oil
objective (Leica Microsystems, Wetzlar, Germany). Each image
depicted in the results section is a representative picture from at
least three mice. To determine the total number of P2Y1-positive
NeuN and Iba1 cells, three images from the cortical layer V–VI
were obtained using a 40× lens in the Zeiss Examiner Z1 confocal
microscope. Cell counts were the result of the average counting
of images and were carried out unaware of treatment groups.

Statistical Analysis
For statistical analysis we used GraphPad Prism and STATVIEW
software. Data was presented as means ± standard error of the
mean. One-way analysis of variance with post hoc Fisher's
protected least significant difference test was used to analyze
three or more group data. For two-group comparison, Student's
t-test was used to determine statistical differences between
groups. Significance was accepted at *p < 0.05, **p < 0.01, and
***p < 0.001.
RESULTS

P2Y Expression Changes in the Cortex
Following Status Epilepticus
To determine status epilepticus-induced changes in the
expression profile of the P2Y receptor family in cortical tissue,
we used the intraamygdala KA mouse model of status epilepticus
January 2020 | Volume 10 | Article 1558
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(Araki et al., 2002; Mouri et al., 2008). In this model, status
epilepticus leads to a characteristic lesion restricted to the
ipsilateral brain hemisphere including the hippocampus and
the cortex. While in the hippocampus cell death is mainly
observed in the CA3 subfield, within cortical structures,
neurodegeneration is most prominent in the cortical layers V
and VI (Figure 1A) (Mouri et al., 2008). Increased levels of the
activity-regulated protein c-Fos at 8 h following status epilepticus
confirmed the recruitment of the ipsilateral cortex during status
epilepticus (Figure 1B).

Previous work by us using the intraamygdala KA mouse
model of status epilepticus has shown a distinct expression
profile of the P2Y receptor family following status epilepticus
(Alves et al., 2017). To determine whether status epilepticus also
impacts on the expression of the P2Y receptor family in the
cortex, tissue from the ipsilateral cortex was analyzed at different
time-points post-status epilepticus via Western blot. This
revealed an increase in the expression of several P2Y receptor
family members including P2Y1, P2Y2, P2Y4, and P2Y6 (Figure
1C). While P2Y1, P2Y2, and P2Y6 showed a significant increase
at 24 h post-status epilepticus, P2Y4 expression was already
increased 1 h following status epilepticus and remained
increased for up to 24 h (Figure 1C). Although displaying a
slight increase in their expression, no significant expression
changes could be observed for the remaining P2Y receptors
post-status epilepticus (Figure 1C). P2Y11 expression was not
analyzed due to the lack of a P2ry11 gene ortholog in the mouse
genome (Dreisig and Kornum, 2016).

Taken together, our results demonstrate changes in the
expression of P2Y receptors in the cortex following status
epilepticus with P2Y upregulation being the predominant response.

Increased P2Y1 Expression in Microglia
Following Status Epilepticus
Emerging evidence suggests a causative role for P2Y signaling
during seizure generation and seizure-induced pathology (Alves
et al., 2018). Among the P2Y receptors analyzed, P2Y1 was one of
the receptors showing the strongest increase in its expression in
the cortex following status epilepticus. Importantly, recent data
suggests a functional role of P2Y1 during status epilepticus and
epilepsy (Alves et al., 2019). Therefore, to test whether P2Y
receptor activation impacts on cortical neurodegeneration, our
subsequent studies focused on the P2Y1 receptor subtype.

First, to explore the cell-specific expression pattern of P2Y1 in
the cortex post-status epilepticus, we carried out co-
immunostainings using different cell-type markers including
NeuN for neurons, Iba1 for microglia, and GFAP and S100b
for astrocytes and analyzed cortical layer V and VI, the areas
were we observed most neuronal damage post-status epilepticus.
Cortical tissue was analyzed 24 h following status epilepticus, the
peak of P2Y1 post-status epilepticus expression in the cortex.
While P2Y1 was detectable at low levels in cortical neurons and
microglia under control conditions and following status
epilepticus (Figures 2A, B), no co-localization was observed
using the astrocyte markers GFAP and S100b in vehicle-injected
control mice and in mice subjected to status epilepticus (Figures
Frontiers in Pharmacology | www.frontiersin.org 4
2C, D). In line with previous results analyzing hippocampal
P2Y1 expression (Alves et al., 2019), P2Y1 staining, however,
strongly increased on Iba1-positive microglia 24 h post status
epilepticus (Figure 2E). Higher magnification showed that,
whereas cortical neuronal P2Y1 seemed to be localized to the
cell body with a punctate expression pattern, microglia P2Y1

expression was observed throughout the cell including microglia
processes (Figure 2F). Specificity of P2Y1 staining was confirmed
using brain tissue from P2Y1 knock-out mice subjected to
intraamygdala KA-induced status epilepticus (Figure 2G).

Thus, as observed previously in the hippocampus, status
epilepticus leads to a strong increase in P2Y1 immunoreactivity
on microglia in the cortex.

P2Y1 Antagonism Decreases High
Frequency High Amplitude Spiking During
Status Epilepticus
High frequency high amplitude (HFHA) spiking during status
epilepticus has been shown to correlate with cell death in the
intraamygdala KA mouse model (Araki et al., 2002). We have
previously shown that treatment with the P2Y1 agonists MRS2365
(MRS23) during status epilepticus increased total seizure power
and treatment with the P2Y1 antagonists MRS2500 (MRS25)
reduced total seizure power (Alves et al., 2019). To determine
whether targeting of P2Y1 also impacts on HFHA spiking and
thereby potentially on seizure-induced neurodegeneration, we re-
analyzed EEG traces and quantified HFHA spiking in mice
subjected to intraamygdala KA and treated with the P2Y1

agonist MRS23 or P2Y1 antagonist MRS25 15 min following the
induction of status epilepticus (Alves et al., 2019). This revealed
that mice treated with the P2Y1 agonist MRS23 displayed a
significant increase in HFHA spiking when compared to
vehicle-treated mice (Figures 3A, B). No significant effect could
be observed in mice treated with the P2Y1 antagonist MRS25
when compared to vehicle-injected mice, althoughMRS25-treated
mice showed a ~40% reduction in HFHA spiking when compared
to control (Veh (527.7 ± 85.61 s) vs. MRS25 (317.7 ± 38.57 s), p =
0.0542) (Figures 3A, B). To test whether effects of P2Y1 are
mediated via inflammation, mice were treated with the broad-
spectrum anti-inflammatory drug minocycline (Abraham et al.,
2012; Alves et al., 2019). In line with anti-convulsive effects of
P2Y1 antagonism being mediated via inflammation, mice pre-
treated with minocycline and injected with the P2Y1 antagonist
MRS25 showed no seizure reduction when compared to vehicle-
injectedmice subjected to intraamygdala KA status epilepticus and
pre-treated with minocycline (Figure 3C).

In summary, P2Y1 activation contributes to HFHA spiking
during status epilepticus possibly mediated via driving pro-
inflammatory processes in the brain.

P2Y1 Antagonism Protects the Cortex
From Seizure-Induced Neurodegeneration
Several studies have reported P2Y1 antagonism to be protective
against seizure-induced neurodegeneration in the hippocampus
(Simoes et al., 2018; Alves et al., 2019). To determine whether
P2Y1 antagonism also protects against cortical cell death,
January 2020 | Volume 10 | Article 1558
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FIGURE 1 | Expression profiling of the P2Y receptor family in the cortex following status epilepticus. (A) Photomicrograph (20× lens) showing neuronal damage 24 h
following intraamygdala KA-induced status epilepticus in the ipsilateral hippocampus and cortex. Scale bar = 100 mm. (B) Representative Western blot (n = 1 per
lane) and corresponding graph showing increased c-Fos expression in the ipsilateral cortex post-status epilepticus (n = 4 per group). (C) Representative Western
blots (n = 1 per lane) and corresponding graphs showing the expression of the different P2Y receptor family members P2Y1, P2Y2, P2Y4, P2Y6, P2Y12, P2Y13, and
P2Y14 in cortical tissue following status epilepticus. Of note, while P2Y1, P2Y2, P2Y4, P2Y6 are significantly increased post-status epilepticus, no changes could be
observed for the remaining P2Y receptors (n = 6 per group). *p < 0.05, **p < 0.01.
Frontiers in Pharmacology | www.frontiersin.org January 2020 | Volume 10 | Article 15585
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brain tissue was stained with the neurodegeneration marker
FjB and cell death quantified in the cortex as before (Jimenez-
Pacheco et al., 2013). While no significant effect on cortical
neurodegeneration could be observed in mice treated
with the P2Y1 agonist MRS23 (Figure 4A), treatment with the
P2Y1 antagonist MRS25 reduced significantly neurodegeneration
in the cortex (Figure 4A). Conversely, mice pre-treated
with minocycline and then treated with the P2Y1 antagonist
MRS25 during status epilepticus showed no difference
in neurodegeneration in the cortex when compared to
minocycline pre-treated vehicle-injected mice subjected to
status epilepticus (Figure 4B).

In conclusion, our result suggests that P2Y1 antagonism not
only reduces seizure severity during status epilepticus, but also
protects the brain from damage including cortical tissue.
Frontiers in Pharmacology | www.frontiersin.org 6
DISCUSSION

In the present study, by using a unilateral mouse model of status
epilepticus, we report an overall increase in the expression of the
P2Y receptor family in the cortex following status epilepticus and
that P2Y1 antagonism reduces harmful HFHA polyspiking
during status epilepticus and protects the cortex from seizure-
induced neurodegeneration. Finally, we show that the observed
neuroprotective effect provided by P2Y1 antagonism is mediated,
at least in part, via reducing inflammation in the brain.
Therefore, our study extends previous data demonstrating a
detrimental role of P2Y1 activation during status epilepticus
and further suggests that targeting of P2Y1 may represent a
novel therapeutic avenue to treat patients with drug-refractory
status epilepticus.
FIGURE 2 | Cell-specific expression of P2Y1 post-status epilepticus. (A) Photomicrographs (40× lens) showing co-localization of P2Y1 (green) with neuronal marker
NeuN in cortical tissue (layer V–VI) in control injected-vehicle mice and following status epilepticus (SE) (white arrows). Scale bar = 10 µm (B) Co-localization of P2Y1

(green) with microglia marker Iba1 (red) 24 h following status epilepticus (SE) in the cortex (white arrows). Scale bar = 10 mm. (C, D) No co-localization of P2Y1

(green) with the astrocyte markers GFAP and S100b (red). Scale bar = 10 mm. (E) Graph showing strong increase in P2Y1-positive microglia 24 h following status
epilepticus (n = 3 per group). (F) Enlarged images, outlined by white box, showing co-localization of P2Y1 (green) on neurons (red) and microglia (red) 24 h post-
status epilepticus (SE). Scale bar = 10 mm. (G) Specificity of P2Y1-detecting antibody was confirmed using tissue from P2Y1 knockout mice (KO) 8 h post-status
epilepticus. Scale bar = 10 mm. Images are representative image from three animals per experiment. *p < 0.05, **p < 0.01, ***p < 0.001.
January 2020 | Volume 10 | Article 1558
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While there was little interest in P2Y receptors as potential
drug-targets to treat status epilepticus or epilepsy, this has
changed significantly over the past years with emerging
evidence suggesting a causal role of this receptor family not
only during seizure generation, but also in the development of
epilepsy (Alves et al., 2018). Recent data published by us has
demonstrated a distinct expression profile of the P2Y receptor
Frontiers in Pharmacology | www.frontiersin.org 7
family in the hippocampus following status epilepticus in both
animal models and temporal lobe epilepsy patients (Alves et al.,
2017). We have now extended these data analyzing the cortex, a
structure in which status epilepticus also induces neuronal
death (Curia et al., 2008; Mouri et al., 2008). Here we show
that status epilepticus leads to an up-regulation of P2Y1, P2Y2,
P2Y4, and P2Y6 in the cortex, with the P2Y1 and P2Y4 receptors
showing the strongest increase. These results are in line with
a former study where we have shown an upregulation of
the Gq-binding P2Y receptors in the hippocampus post-
status epilepticus (Alves et al., 2017). The observed status
epilepticus-induced decrease in P2Y12 expression in the
hippocampus could, however, not be replicated in the cortex.
Moreover, P2Y expression changes occurred at later time-
points following status epilepticus in the cortex when
compared to the hippocampus with the only exception being
P2Y4 which was increased shortly following status epilepticus in
both brain structures. We do not know what the reason for
these discrepancies between different brain areas are; however,
different brain structures are differently affected by seizures
during status epilepticus with seizures first occurring in
the hippocampus when compared to the cortex (Engel et al.,
2017). Differences in cell populations between cortex and
hippocampus may further contribute to differences observed
in the expression profile between both brain structures.

Indirect evidence suggesting a functional role for P2Y1 and
P2Y4, P2Y receptors undergoing the strongest increase in their
expression following status epilepticus, stems from a study
showing that treatment with ADP, main endogenous P2Y1

agonist, increases seizure severity during status epilepticus and
treatment with UTP, main endogenous agonists of P2Y4,
decrease seizure severity (Alves et al., 2017). In line with this,
P2Y1-targeting has been repeatedly shown to protect against
status epilepticus using different experimental models of seizures
and epilepsy (Alvarez-Ferradas et al., 2015; Nikolic et al., 2018;
Simoes et al., 2018; Alves et al., 2019). However, in contrast to
UTP-binding receptors being anticonvulsive, a more recent
study using a rat model of KA-induced acute seizures has
shown that blocking P2Y4 reduces seizure severity during
status epilepticus (Zhang et al., 2019). Future studies using
different mouse models of status epilepticus and different
treatment regimens (pre-treatment vs. post-treatment) will
have to clarify whether these observed effects of targeting P2Y4

are model- and/or treatment-specific. Nonetheless, the increased
expression of both receptor subtypes following status epilepticus
and during epilepsy suggests drugs targeting these receptors as
possible therapeutic approaches for both drug-refractory status
epilepticus and epilepsy.

Previously we have shown that in the mouse hippocampus
P2Y1 is expressed in neurons under normal physiological
condition and, following status epilepticus, is also detected
on microglia (Alves et al., 2019). In the cortex, P2Y1 receptor
expression was mainly detected on cortical neurons during
physiological control conditions and post-status epilepticus,
although at somewhat lower levels when compared to the
FIGURE 3 | P2Y1 antagonism decreases high frequency high amplitude
spiking during status epilepticus. (A) Representative EEG traces recorded
from the cortex from the time-point of intraamygdala kainic acid (KA)
injection until 60 min post-lorazepam (Lz) of mice treated with vehicle (Veh),
P2Y1 agonist MRS2365 (MRS23), and P2Y1 antagonist MRS2500 (MRS25).
Treatment with P2Y1-targeting drugs was administered 15 min post-
intraamygdala KA injection via i.c.v. Lorazepam (Lz) was administered 40
min following KA injection via i.p. (B) Representative EEG traces showing
examples of high frequency and high amplitude (HFHA) spiking taken during
the 30 min recording period following drug treatment (see arrows). Mice
treated with the P2Y1 agonist MRS23 showed an increase in the duration of
HFHA spiking while mice treated with the P2Y1 antagonists MRS25 showed
a decrease in the duration of HFHA spiking during status epilepticus (n = 7
Veh, 9 MRS23, and 8 MRS25). (C) Representative EEG traces and graph
showing slightly increased duration of HFHA spiking during status
epilepticus in mice treated with minocycline and P2Y1 antagonists MRS25
(n = 4 per group). *p < 0.05, **p < 0.01.
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hippocampus (Alves et al., 2019). In cortical microglia,
P2Y1 expression was, however, as observed before in the
hippocampus, almost undetectable during control conditions
and strongly increased 24 h following status epilepticus (De
Simone et al., 2010; Alves et al., 2019). Although P2Y1 has been
described to be expressed on astrocytes under different
pathological conditions, such as oxidative stress (Shinozaki
et al., 2006; Fujita et al., 2009), ischemia (Zheng et al., 2013),
and in patients with cortical dysplasia (Sukigara et al., 2014), no
expression of P2Y1 was detected on astrocytes in the cortex in
our status epilepticus mouse model. This is in agreement with
our previous study showing absence of P2Y1 on astrocytes in
the hippocampus post-status epilepticus (Alves et al., 2019).
Frontiers in Pharmacology | www.frontiersin.org 8
We included in our study a staining performed in the P2Y1 KO
mouse as a negative control, demonstrating the specificity of
the P2Y1 antibody. P2Y1 expression on cortical astrocytes may
also be below the detection range of our antibody-based
detection methods and electrophysiological techniques may
be required. However, regardless whether P2Y1 is present on
astrocytes or not, our results show that P2Y1 is also in the
cortex strongly upregulated on microglia, suggesting P2Y1-
driven microglia activation during status epilepticus not
being restricted to the hippocampus.

Here, we also report that while treatment with P2Y1

agonists increases HFHA polyspiking during status
epilepticus, P2Y1 antagonism reduces HFHA polyspiking.
This is in line with previous findings showing a reduction in
total severity of seizures during status epilepticus via P2Y1

antagonism (Alves et al., 2019). Suggesting this being
neuroprotective, studies in the intraamygdala KA mouse
model of status epilepticus have shown HFHA spiking to
correlate with brain injury (Araki et al., 2002). In line with
HFHA spiking causing neurodegeneration, mice treated with
the P2Y1 antagonist MRS25 also showed less cell death in the
cortex. However, despite the increase in HFHA polyspiking
during status epilepticus caused by the P2Y1 agonist MRS23,
this did not translate into more cell death in the cortex. The
reason for this remains elusive; P2Y1 may have, however,
effects independent on increasing hyperexcitability which
impact on cell survival. In line with P2Y1 being anti-
apoptotic, we have recently shown that P2Y1 overexpression
protected against KA-induced neuronal death in vitro (Alves
et al., 2019).

Finally, demonstrating P2Y1 contributing to seizure
pathology at least in part via driving inflammation,
anticonvulsive and neuroprotective effects conferred by P2Y1

antagonism were lost when mice were pre-treated with
minocycline, which is in good agreement with our previous
results examining the effects of P2Y1 signaling on the
hippocampus (Alves et al., 2019). It has to be noted that
minocycline treatment reduced cortical neurodegeneration
following status epilepticus. It is, however, unlikely that
this reduction in cell death had an impact on our results
as both groups were pre-treated with minocycline. The cell-
specific contribution of P2Y1 to the observed effects remains,
however, to be elucidated. It is tempting to speculate that
effects provided by P2Y1 antagonism are due to P2Y1 driving
microglia activation. Indeed, our results show a dramatic
increase in P2Y1 immunoreactivity on microglia post-status
epilepticus and the broad-spectrum anti-inflammatory drug
minocycline has been shown to act predominately on this
glial cell type (Abraham et al., 2012; Alves et al., 2019).
Importantly, a role for P2Y1 on microglia activation has been
repeatedly demonstrated previously (Davalos et al., 2005; Farber
and Kettenmann, 2006; De Simone et al., 2010) with
studies showing P2Y1-mediated signaling on microglia to
affect neurodegeneration during ischemia and traumatic brain
injury (Shinozaki et al., 2017; Fukumoto et al., 2018). Moreover,
microglia are the first cells to respond during brain inflammation
FIGURE 4 | Decreased status epilepticus-induced cortical damage via P2Y1

antagonism. (A) Representative images (20× lens) and corresponding graph
showing a decrease in neuronal damage in the cortex 24 h post-status
epilepticus in mice treated with the P2Y1 antagonist MRS25 (n = 7 Veh, 9
MRS23, and 8 MRS25). (B) Representative images (20x lens) and
corresponding graph showing slightly more Fluoro-Jade B (FjB)-positive cells
in ipsilateral cortex 24 h post-status epilepticus in mice treated with both
minocycline and the P2Y1 antagonist MRS25 (n = 4/group). **p < 0.01.
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and microglia also respond rapidly to acute neuronal
hyperactivity during seizures via NMDA-type glutamate
receptors (Davalos et al., 2005; Eyo et al., 2014). We cannot
rule out, however, a contribution of other cell types such as
neurons or astrocytes. To fully prove the cell-specific
contribution to P2Y1-mediated effects, this would require the
use of cell-specific P2Y1-deficient mice. Nevertheless, our results
strongly suggest that the anticonvulsive and neuroprotective
effects mediated via P2Y1 signaling are due to P2Y1 driving
inflammatory processes.

In conclusion, our study extends previous data confirming
anticonvulsive and neuroprotective properties of P2Y1 antagonism
during status epilepticus, further suggesting P2Y1-based treatment
as possible new therapy for drug-resistant status epilepticus.
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