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Drug targets are biomacromolecules or biomolecular structures that bind to specific drugs
and produce therapeutic effects. Therefore, the prediction of drug-target interactions
(DTIs) is important for disease therapy. Incorporating multiple similarity measures for drugs
and targets is of essence for improving the accuracy of prediction of DTIs. However,
existing studies with multiple similarity measures ignored the global structure information
of similarity measures, and required manual extraction features of drug-target pairs,
ignoring the non-linear relationship among features. In this paper, we proposed a novel
approach MDADTI for DTIs prediction based on MDA. MDADTI applied random walk with
restart method and positive pointwise mutual information to calculate the topological
similarity matrices of drugs and targets, capturing the global structure information of
similarity measures. Then, MDADTI applied multimodal deep autoencoder to fuse multiple
topological similarity matrices of drugs and targets, automatically learned the low-
dimensional features of drugs and targets, and applied deep neural network to predict
DTIs. The results of 5-repeats of 10-fold cross-validation under three different cross-
validation settings indicated that MDADTI is superior to the other four baseline methods. In
addition, we validated the predictions of the MDADTI in six drug-target interactions
reference databases, and the results showed that MDADTI can effectively identify
unknown DTIs.

Keywords: drug-target interactions, multiple similarity measures, random walk with restart, positive pointwise
mutual information, multimodal deep autoencoder
INTRODUCTION

Drug targets are a kind of biological macromolecule in the body that have a pharmacodynamics
function by interacting with drugs, such as certain proteins and nucleic acids. Drugs achieve disease
treatment by binding specific targets and changing gene function of their targets. The prediction of
drug-target interactions (DTIs) is a crucial process in drug discovery and it can facilitate the
understanding of drug action mechanism, disease pathology, and drug side effect (Keiser et al., 2009;
Lounkine et al., 2012; Núñez et al., 2012). Drug targets are the main carriers of drug action in drug
therapy; thus, the prediction of DTIs is of great significance for disease therapy.
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Drug-target interactions prediction can be viewed as a binary
classification problem, where the goal is to learn a classifier that
can distinguish true and false DTIs. For this problem, drug-drug
similarities and target-target similarities are helpful, assuming
that similar drugs tend to share similar targets and vice versa
(Klabunde, 2007). Many studies applied a single similarity
measure of drugs and that of targets, i.e., chemical structural
similarity of drugs and amino acid sequence similarity of targets,
to predict DTIs (Jacob and Vert, 2008; Yamanishi et al., 2008;
Bleakley and Yamanishi, 2009; Xia et al., 2010; van Laarhoven
et al., 2011; Gönen, 2012). However, both drugs and targets have
different types of similarity measures and they utilize different
attributes of drugs and targets, such as gene expression
similarities of drugs and target proteins, drug side-effect-based
similarity, proximity in protein-protein interactions and so on. It
is demonstrated that drugs with similar expression patterns are
likely to share common target proteins (Hizukuri et al., 2015;
Vilar and Hripcsak, 2016) and drugs with similar target protein
binding profiles tend to cause similar side effects, implying a
direct correlation between target protein binding and side-effect
similarity (Campillos et al., 2008; Hizukuri et al., 2015). Thus,
only utilizing chemical structural similarity of drugs and amino
acid sequence similarity of targets may miss information that is
relevant to predicting new interactions.

With the development of high-throughput sequencing
technology, massive multi-omics data have been generated,
which provide abundant resources for predicting DTIs,
including drug-side-effect association data from SIDER2 (Kuhn
et al., 2015), drug-disease association data and target protein-
disease association data from KEGG Disease (Kanehisa et al.,
2016), protein-protein interaction data from HIPPIE (Alanis-
Lobato et al., 2016), etc. Based on these data, a variety of
similarity measures for drugs and targets can be calculated,
which describe characteristics of drugs and targets from
various aspects, and there is information complementarity
among them. Thus, methods for predicting DTIs using
multiple similarity measures of drugs and multiple similarity
measures of targets are generated.

Perlman et al. used forward selection and backward elimination
for feature selection. They selected 10 features from 15 features
consisting of 5 similarity measures of drugs and 3 similarity
measures of targets, and they applied logistic regression classifier
to predict DTIs (Perlman et al., 2011). Olayan et al. used multiple
similarity networks of drugs and multiple similarity networks of
targets to construct a heterogeneous networkwith the knowndrug-
target interaction network, and then they manually extracted 12
different path-category-based features from it; finally, they applied
random forest to predict DTIs (Olayan et al., 2017). Nascimento et
al. linearly weighted 10 drug similarity measures and 10 target
similarity measures to obtain the feature of drugs and targets,
respectively, and then they computed the Kronecker product of
themas the feature of drug-target pairs thatwere fed intoKronecker
regularized least squares (KronRLS) to predict DTIs (Nascimento
et al., 2016). Hao et al. used Similarity Network Fusion (SNF)
method to fuse two similarity measures of drugs and two similarity
measures of targets into one drug similaritymeasure and one target
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similarity measure, respectively, forming features of drugs and
targets, and then input them into dual network integrated logistic
matrix factorization (DNILMF) to predict DTIs (Hao et al., 2017).
Zheng et al. linearly weighted two similarity measures of drugs and
three similarity measures of targets as the feature of drugs and
targets, respectively, and then they applied Multiple Similarities
Collaborative Matrix Factorization (MSCMF) to predict DTIs
(Zheng et al., 2013). Compared with methods using a single
similarity measure of drugs and targets, these methods achieved
more accurate predictions because of fusing multiple
similarity measures.

The similarity measure of drugs (targets) can be regarded as a
similarity network with drugs as nodes and drug-drug similarity
values as the weights of edges. These methods mentioned above
directly applied multiple similarity measures to predict DTIs that
only calculated the similarity between two nodes in isolation and
did not consider the global topological connectivity patterns
within network, ignoring the global structure information of the
similarity network. Researches demonstrated that considering
the global structure of network can improve the performance
(Köhler et al., 2008; Fang and Gough, 2013; Peng et al., 2018). In
addition, these methods relied on manual extraction features of
drug-target pairs, ignoring the non-linear relationship among
features, and failed to provide satisfactory prediction results.

Deep learning is a deep neural network structure with
multiple hidden layers. It combines low-level features to form
more abstract high-level features, discovering effective feature
representations of data. Compared with traditional machine
learning methods, the greatest advantage of deep learning
methods is that they can extract features automatically, which
do not need to perform data processing, such as feature selection,
dimension reduction, format conversion, and so on. A number of
studies applied deep learning to learn high-level features from
the training data automatically and predict bioinformatics tasks
(Pan et al., 2016; Deng et al., 2017; Fu and Peng, 2017;
Gligorijević et al., 2018). Fu et al. used stacked autoencoder to
learn high-level features from miRNA and disease similarity
automatically, and then these features were passed to Deep
Neural Network (DNN) to predict miRNA-disease associations
(Fu and Peng, 2017). Pan et al. extracted raw sequence
composition features from RNA and protein sequences, then
applied stacked autoencoder to learn hidden high-level features,
which are fed into random forest to predict RNA-protein
interactions (Pan et al., 2016). These studies demonstrated that
deep learning has powerful ability to learn high-level features
from original data automatically, which greatly enhanced the
performance of the methods and made them show satisfactory
results. Gligorijević et al. proposed a new deep learning model-
Multimodal Deep Autoencoder (MDA). They applied MDA to
learn low-dimensional features of proteins from multiple
networks and realized the fusion of multiple networks. Finally,
they trained SVM with low-dimensional features of proteins to
predict protein functions and achieved great performance
(Gligorijević et al., 2018).

Therefore, to automatically learn features from multiple
similarity measures to predict DTIs, we introduced MDA and
January 2020 | Volume 10 | Article 1592
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proposed MDADTI, a novel approach for drug-target
interactions prediction based on MDA. MDADTI applied
Random Walk with Restart (RWR) method and Positive
Pointwise Mutual Information (PPMI) to calculate topological
similarity matrices of drugs (targets), capturing the global
structure information of similarity measures. Then it fused
multiple topological similarity matrices of drugs and targets
with MDA to automatically learn the low-dimensional features
of drugs and targets. Finally, it sent them to Deep Neural
Network (DNN) for predicting DTIs. Furthermore, we
validated the predictions of the MDADTI in drug-target
interactions reference databases.
MATERIALS AND METHODS

Multiple similarity measures of drugs (targets) describe the drug-
drug similarity from various aspects, such as drug side-effects
and chemical structure. Multiple similarity measures can provide
complementary information for drugs or targets. Combining
multiple similarity measures can improve prediction accuracy.
Existing methods for predicting DTIs with multiple similarity
measures directly took multiple similarity measures as inputs,
ignoring their global structure information. Moreover, they
required manual extraction features of drug-target pairs,
limiting the size of the dataset used to train the model,
ignoring the non-linear relationship among features, resulting
Frontiers in Pharmacology | www.frontiersin.org 3
in the lower predictive performance. Multimodal Deep
Autoencoder (MDA) can fuse multiple similarities and learn
high-level features automatically. This paper proposed a novel
approach MDADTI based on MDA to predict drug-target
interactions. MDADTI first applied Random Walk with Restart
(RWR) method and Positive Pointwise Mutual Information
(PPMI) to calculate topological similarity matrices of drugs
(targets), capturing global structural information of each
similarity measure; then it fused multiple topological similarity
matrices of drugs (targets) with MDA, and realized the
automatic learning and dimension reduction of drug features
(target features); finally, the extracted low-dimensional features
were sent into Deep Neural Network (DNN) to predict DTIs.
Figure 1 shows the overall framework of the MDADTI method.

Materials
We evaluated the performance of our method with five datasets,
including enzyme (E), ion channels (IC), G-protein-coupled
receptors (GPCR), nuclear receptors (NR), and DrugBank_FDA.
Each dataset contains 3 types of data: (1) DTIs data; (2) multiple
similarity measures for drugs; (3) multiple similarity measures
for targets.

These five datasets (E, NR, IC, GPCR, and DrugBank_FDA)
were provided by Olayan et al., 2017. The DTIs data of E, NR, IC,
and GPCR were originally collected by Yamanishi et al., 2008
and have been applied to many drug-target interactions
prediction studies (Mei et al., 2012; Ba-Alawi et al., 2016; Lim
FIGURE 1 | The overall framework of MDADTI method. (A) MDADTI applied RWR method and PPMI to calculate topological similarity matrices of drugs (targets);
(B) MDA was applied to fuse multiple topological similarity matrices of drugs (targets) and automatically learned the low-dimensional features of drugs (targets);
(C) DNN was applied to predict DTIs.
January 2020 | Volume 10 | Article 1592
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et al., 2016; Lu et al., 2017). The multiple similarity measures for
drugs and targets we used in this paper in the four datasets were
computed by Nascimento et al., 2016 in the first place.
DrugBank_FDA dataset was extracted from 5.0.3 version of
DrugBank database (Wishart et al., 2007). It only included
DTIs information of drugs approved by the FDA and single
human target proteins; these proteins are not part of protein
complexes. Multiple similarity measures of DrugBank_FDA for
drugs and targets were computed by Olayan et al., 2017.

Table 1 is the summary of drug-target interactions data in five
datasets. As can be seen from Table 1, the number of negative
interactions is larger than that of positive interactions in these
five datasets called imbalanced data, which can reduce the
predictive performance. Thus, we applied Synthetic Minority
Over-sampling Technique (SMOTE) (Chawla et al., 2002) to
manage the imbalanced datasets. SMOTE can syntactically
generate positive samples of these datasets to balance the
minority class and enhance the prediction efficiency of the
classifier (Waris et al., 2016; Khan et al., 2017).

Table 2 shows a variety of similarity measures for drugs and
targets in five datasets used in this paper. In NR, GPCR, IC, and E
datasets, for drugs, the similarities of drugs were calculated based
on distinct chemical structure fingerprints, side-effects profiles;
nine various similarity measures of drugs were obtained. For
targets, various amino acid sequence profiles of proteins,
different parameterizations of the Mismatch (MIS) and the
Spectrum (SPEC) kernels, and target proteins functional
annotation based on Gene Ontology (GO) terms, proximity in
the protein-protein interaction (PPI) network were considered as
target information source to measure and calculate the
similarities of targets; nine various similarity measures of
targets were obtained.

In DrugBank_FDA dataset, different similarity measures
between drugs were computed based on the following: different
types of molecular fingerprints, drug interaction profile, drug
side-effects profile, drug profile of the anatomical therapeutic
class (ATC) coding system, drug-induced gene expression
profile, drug-disease profiles, and drug pathways profiles; 25
various similarity measures of drugs were obtained.
Furthermore, different similarity measures of target proteins
were calculated based on the following protein amino acid
sequence, their GO annotations, proximity in the PPI network,
protein domain profiles and gene expression similarity profiles of
protein encoding genes; 17 various similarity measures of targets
were obtained. Chemical structures of drugs were extracted from
DrugBank (Wishart et al., 2007), while the target protein
sequences were extracted from UniProt (Boutet et al., 2016).
Frontiers in Pharmacology | www.frontiersin.org 4
Methods
Problem Description
We defined a set of DTIs and it is composed of a set of drugs D =
{ di,i = 1,......, nd } and a set of targets T = { tj,j = 1,......,nt }, where
nd represents the number of drugs and nt represents the number
of targets. We also defined the interactions between D and T as a
binary matrix Y whose element values are 0 or 1, where yij = 1
represents the drug di interacts with the target tj. We defined the
set of similarity matrices between drugs in D as D̂S, whose
dimensions are nd*nd; Similarly, we also defined the set of
similarity matrices between targets in T as T̂S, whose
dimensions are nt*nt. Element values in different similarity
matrices represent how much drugs or targets are similar to
each other based on different measures. The values of all
elements in each matrix are in the range of [0, 1]. Our goal is
to predict novel (i.e., unknown) interactions in Y based on the
matrix Y, similarity matrices of drugs in D̂S and similarity
matrices of targets in T̂S.
Preprocessing of Multiple
Similarity Measures
A similarity matrix of drugs can be regarded as a similarity
network with drugs as nodes and drug-drug similarity values as
the weights of edges. The similarity network of drugs only
calculates the similarity between two drug nodes in isolation
and does not consider the relation among more drugs, thus
cannot directly include the global structure information of
the network. The topological similarity of drugs can describe
the topological similarity between all pair of drug nodes in the
similarity network. If the topological similarity value between
two drug nodes is much larger, it indicates that they have similar
positions in the similarity network and have similar functions.
The topological similarity of drugs includes both the original
information of the similarity network and its global structure
information. Therefore, the topological similarity of drugs can
solve the problem of losing information caused by original
similarity network, which only considers the similarity between
two drugs nodes and ignores the global structure of the similarity
network. In this paper, we applied Random Walk with Restart
(RWR) method and Positive Pointwise Mutual Information
(PPMI) (Cao et al., 2016; Fan et al., 2019) to calculate the
topological similarity of drugs in each similarity network and
capture the global structure information of the similarity
network. The detailed process is as follows:

(1) Given a similarity network  DS
b = {S(1),.…..,S(n)}, we

performed RWR on each similarity network S(j) in D̂S to
TABLE 1 | Summary of drug-target interaction data.

Datasets Number of drugs Number of targets Number of positive interactions Number of negative interactions Total number of interactions

NR 54 26 90 1314 1404
GPRC 223 95 635 20550 21185
IC 210 204 1476 41364 42840
E 445 664 2926 292554 295480
DrugBank_FDA 1482 1408 9881 2076775 2086656
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TABLE 2 | Summary of multiple similarity measures of drugs and targets.

Dataset Entity Information source Similarity measures

Drug Chemical structure fingerprints TAN-Tanimoto Kernel
LAMBDA-Lambda-k Kernel
MARG-Marginalized Kernel
MINMAX-MinMax Kernel
SIMCOMP-Graph kernel
SPEC-Spectrum Kernel

Side-effects AERS-bit-AERS bit
AERS-freq-AERS freq
SIDER-Side-effects Similarity

Target Functional annotation GO - Gene Ontology Semantic Similarity
Sequences MIS-k3m1-Mismatch kernel

(k = 3, m = 1)
MIS-k4m1-Mismatch kernel
(k = 4, m = 1)
MIS-k3m2-Mismatch kernel
(k = 3, m = 2)
MIS-k3m2-Mismatch kernel
(k = 4, m = 2)
SPEC-k3-Spectrum kernel
(k = 3)
SPEC-k4-Spectrum kernel
(k = 4)
SW-Smith-Waterman
alignment score

Protein-protein Interactions PPI-Proximity in
protein-protein network

DrugBank_FDA Drug Molecular fingerprints CDK_Standard, CDK_Graph,
CDK_Extended, CDK_Hybridization, KR, MACCS, PubChem, SIMCOMP, EC4, FC4, EC6, FC6, Lambda,
Marginalized, MinMaxTanimoto, Tanimoto, Spectrum

ATC code _FDA_FirstLevel,
FDA

Drug interaction profile D_interactions_FDA
side-effects SIDER-Side-effects Similarity
Drug- induced gene expression Cmap_v2_MCF7
Drug pathways profiles KEGG_Drug_2_Pathway
Drug disease profiles KEGG_Drug_Compound_

DGroup_2_Disease
Target Amino acid sequence mismatch_kernel_3_1,

mismatch_kernel_3_2,
mismatch_kernel_4_1,
mismatch_kernel_4_2,
spectrum_kernel_3,
spectrum_kernel_4
Merged_SWAlign_Edited

GO annotations CC_WANG_BMA
_GO_similarity,
BP_Wang_BMA_combined,
MF_Wang_BMA_combined

Proximity in the PPI network shortest_path_networkX_distance_UP_ID_Sim_Perlman,
shortest_path_networkX_
distance_UP_ID_Sim_Dnorm

Protein domain profiles protein2ipr_binaryMatrix
_cosSim,
protein2ipr_binaryMatrix
_jaccardSim

Gene expression similarity profiles Cmap_v2_MCF7
Target disease
profiles

KEGG_Gene_2_Disease

Target pathway
profiles

KEGG_Gene_2_Pathway
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obtain the topology structure feature of drug nodes. The RWR
approach can be formulated as the following recurrence relation:

p tð Þ
i = ap t−1ð Þ

i
cS jð Þ + 1 − að Þp 0ð Þ

i (1)

where p(t)i is a row vector of drug i and its eth element indicates
the probability of reaching the eth drug node after t steps starting
from drug i, p(0)i is the initial one-hot vector, a is the probability
of restart, and S(j)b is the one-step probability transition matrix
obtained by applying row-wise normalization of the similarity
matrix S(j). The calculation formula of the topological structure
feature of drug node i is as follows:

pi =o
T

t=1
p tð Þ
i (2)

where T is the total number of random walk steps. Repeat this
process for each node i in the similarity network S(j) to obtain
topology feature matrix  P(S(j)) ∈ Rnd�nd .

(2) Based on the topological structure feature matrix P(S(j)), we
applied PPMI (Chen et al., 2016) to calculate the topological
similarity between all pair of nodes, and obtained the topological
similarity matrix X(S(j)) ∈ Rnd�nd of the similarity network S(j),
capturing the global structure information. The topological
similarity between node i and node k is defined as:

X
S jð Þð Þ

ik = max 0, log2
P

S jð Þð Þ
ik oiokP

S jð Þð Þ
ik

oiP
S jð Þð Þ

ik okP
S jð Þð Þ

ik

0
@

1
A (3)

where P(S(j))
ik represents the elements of the ith row and the kth

column of the topological structure feature matrix P(S
(j)).

The preprocessing procedure for multiple similarity measures
of targets is the same as that of drugs.

Feature Learning for Drugs and Targets With MDA
Fusing multiple drug-drug similarity measures and multiple
target-target similarity measures contributes to obtaining
abundant information about drugs and targets. Capturing non-
linear relationships among features can improve the accuracy of
DTIs prediction. Therefore, we applied MDA to fuse multiple
similarity measures of drugs and targets and automatically learn
low-dimensional feature matrices of drugs and targets,
respectively, capturing the non-linear relationship among
features. After the pretreatment, we obtained multiple
topological similarity matrices of drugs X(S(j)) ∈ Rnd�nd , j ∈ ½1,…
…n� that contain both original information of similarity
measures and their global structure information. In this paper,
we applied MDA to fuse multiple topological similarity matrices
of drugs and automatically learn the low-dimensional feature
matrix of drugs H(d)

c ∈ Rnd�d . As an unsupervised neural
network model, MDA uses backpropagation algorithm to train
and adjust the model parameters, so that the input data can still
be restored to the original features by encoding and decoding
process. The structure of MDA is shown in Figure 2.
Frontiers in Pharmacology | www.frontiersin.org 6
Encoding is the process that MDA learns the hidden features
of input data with multi-layer non-linear functions. We first
calculated the non-linear embedding H(S(j)) of each topological
similarity matrix X(S(j)) in the first hidden layer of MDA:

H S jð Þð Þ = s W
S jð Þð Þ

1 X S jð Þð Þ + B
S jð Þð Þ

1

� �
(4)

whereW(S(j))
1 and B(S(j))

1 are weight matrix and bias matrix, j∈[1,…
n], s(x) = 1

1+e−x is the sigmoid activation function.
Then, we computed the low-dimensional feature matrix of

drugs H(d)
c ∈ Rnd�d by applying multiple non-linear functions

(i.e., multiple hidden layers) on the feature representation
obtained by concatenating features from all topological
similarity matrices obtained in the previous layer:

H dð Þ
c = s W1 H S 1ð Þð Þ,……,H S nð Þð Þh i

+ B1

� �
(5)

where ½H(s(1)), ::::::,H(s(n))�is the concatenated matrix of N
embedding H(S(j)) obtained in the previous layer; W1 and B1
are weight matrix and bias matrix, and s(x) is the sigmoid
activation function.

Decoding is the process that MDA reconstructs input data
from hidden features with multi-layer non-linear functions.
Hidden features are obtained through encoding process. We

reconstructed multiple topological similarity matrices dX(S(j)) from
the feature matrix H(d)

c of drugs with a multi-layer non-linear
function:

d
X S jð Þð Þ = s W

S jð Þð Þ
2 H dð Þ

c + B
S jð Þð Þ

2

� �
(6)

where W(S(j))
2 and B(S(j))

2 are weight matrix and bias matrix, j∈
[1, ……, n], s(x) is the sigmoid activation function.

To get the feature matrix of drugs H(d)
c , MDA obtained the

unknown parameters q in the encoding and decoding process by

minimizing the reconstruction error of X(S(j)) and dX(S(j)) :

q̂ = argminL qð Þ =   q
argmino

    n

j=1
loss X S jð Þð Þ, d

X S jð Þð Þ
� �

(7)

where q = fW1,B1,W
(S(j))
1 ,B(S(j))

1 ,W(S(j))
2 ,B(S(j))

2 g is the set of
unknown parameters in the encoding and decoding process,
and n represents the number of drug topological similarity
matrices, and loss(*) is cross-entropy function.

The learning process of the feature matrix H(t)
c of targets is the

same as that of feature matrixH(d)
c of drugs. The hyperparameters

of training MDA include epoch, batch size, and learning rate
with values of 100, 32, and 0.001, respectively.

Deep Neural Network for DTIs Prediction
We formulated the problem of DTIs prediction as a binary
classification problem. We introduced Deep Neural network
January 2020 | Volume 10 | Article 1592
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(DNN) to predict DTIs. The DNN of our method consists of 5
fully-connected layers, including 1 input layer, 3 hidden layers,
and 1 output layer. The choice of the number of hidden layers
depends on experiments. After a lot of experiments, MDADTI
achieved best predicted results when DNN consists of 3 hidden
layers and the number of each layer is 300, 200, and 100. All
the neuron units in the layer i are connected to the previous layer
(i-1) and then generated outputs with non-linear transformation
function f:

oj = f o
H

i=1
wioi + bi

� �
(8)

where H is the number of neurons in hidden layer; fwi,bigHi=1 are
the weights and bias of neuron j which sums up all the hidden
units; f(*) is Relu activation function, which is a non-linear
function that can capture hidden patterns in the input data
(Chen et al., 2016) and can reduce gradient vanishing at the
same time.

In order to predict DTIs, we concatenated the feature matrix
of drugs H(d)

c and the feature matrix of targets H(t)
c to get the

feature matrix of drug-target pairs Hc. Then we used Hc to train
DNN, and the final output layer utilized sigmoid = 1

1+e−x function
to predict the interaction possibility of the drug-target pair. If the
Frontiers in Pharmacology | www.frontiersin.org 7
probability exceeds 0.5, we determine that there is potential
interaction between the drug and the target.

Model Training
MDADTI was trained using the Keras 1.0.1 library with
Tensorflow as the backend. The model ut i l i zed a
backpropagation algorithm to calculate the loss function value
between the output and the label, then it calculated its gradient
relative to each neuron, and updated the weight according to the
gradient direction. We chose cross-entropy function as the loss
function:

C = −
1
nox ot y lna + 1 − yð Þ ln 1 − að Þ½ � (9)

where C is the output of cross-entropy cost function, x represents
the indexof the training samples (i.e., drug-target pairs), t represents
the index of different labels, y represents the true label for sample x
whose value is 0 or 1, and a represents the predicted output for
samplex. Since the closer thepredictedoutput is to the true label, the
smallerCvaluewe canget, our goal is tominimize the cross-entropy
function to get the best prediction of DTIs.

In the process of training the model, choosing a good
optimizer not only accelerate the training of the model but also
FIGURE 2 | Structure diagram of MDA. The MDA consists of two parts: encoder and decoder, the inputs of encoder are multiple topological similarity matrices X (S (j) ) ,

the hidden layer in the red box is feature layer whose output is the low-dimensional feature matrix of drugs H(d)
c , the output of decoder are multiple reconstructed

topological similarity matrices dX (S (j) ) .
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contribute to obtaining relatively good experimental results. It is
observed that momentum-based stochastic gradient descent
(SGD) can effectively train deep learning models (Sutskever
et al., 2013). Thus, we chose SGD with momentum as
optimizer to minimize the objective function.

Overfitting is a common problem in deep learning. It means
that the model works well on the training set, and its predictive
effect on the test set is poor, which results in weak generalization
ability of the model. We used Dropout and EarlyStopping to
prevent overfitting. Dropout (Srivastava et al., 2014) is a
common regularization technique in neural networks, referring
to randomly ‘dropping' (i.e., setting to zero) the output of a
neuron with some fixed probability p. It means that the start-up
effects on the downstream of these neurons are neglected in the
forward propagation, and the weights are not updated in the
backpropagation. The effect of dropout is that the network is less
sensitive to the change of the weight of a certain neuron; it also
leads to increased generalization ability and reduced overfitting.
We used dropout in each fully connected layer of DNN and set
dropout rate of p = 0.5, which seems to be close to optimal for a
wide range of networks and tasks (Srivastava et al., 2014).
EarlyStopping refers to stopping training model when the
performance of the model on the validation set begins to
decline. Thus, the overfitting problem caused by overtraining
can be avoided. We implemented EarlyStopping by training our
model with the training set and computing the accuracy on the
validation set. We monitored the accuracy of MDADTI on
validation set at the end of every epoch and stop the training
when accuracy does not rise for 10 consecutive epochs.
RESULTS

Experimental Setup and Model Evaluation
In this paper, we applied the area under the ROC (receiver-
operating characteristics) curve (AUC) and the area under the
precision-recall curve (AUPR) to evaluate the performance of
MDADTI model. An AUC value of 1 indicates that the
performance is perfect, and an AUC value of 0.5 indicates
random predictive performance. Similar to the AUC score,
AUPR values closer to 1 indicates that the performance is
better. The calculation formulas for True Positive Rate (TPR),
False Positive Rate (FPR), and precision and recall related to
AUC and AUPR are as follows:

TPR = recall = TP=(TP + FN) (10)

FPR = FP=(FP + TN) (11)

precision = TP=(TP + FP) (12)

where TP represents true positive, TN represents true negative,
FP represents false positive, and FN represents false negative;
these formulas are based on the confusion matrix.

The performance of DTIs prediction methods was evaluated
under 5-repeats of 10-fold cross-validation (CV), and both AUC
Frontiers in Pharmacology | www.frontiersin.org 8
and AUPR were used as the evaluation metrics. We calculated an
AUC score in each repetition of CV and reported a final AUC
score that was the average over the five repetitions. The AUPR
score was calculated in the same manner. The drug-target
interaction matrix Y has nd rows for drugs and nt columns for
targets. We conducted CV under three different settings
as follows:

• CVS1: CV on drug-target pairs—random entries in Y (i.e.,
drug-target pairs) were selected for testing.

• CVS2: CV on drugs—random rows in Y (i.e., drugs) were
blinded for testing.

• CVS3: CV on targets—random columns in Y (i.e., targets)
were blinded for testing.

Under CVS1, we applied 5-repeats of stratified 10-fold cross-
validation to evaluate the performance of MDADTI model. In
each round, we used 90% of elements in Y as training data and
the remaining 10% of elements as test data. Under CVS2, in each
round, we used 90% of rows in Y as training data and the
remaining 10% of rows as test data. Under CVS3, in each round,
we used 90% of columns in Y as training data and the remaining
10% of columns as test data. These three settings CVS1, CVS2
and CVS3 refer to the DTIs prediction for 1) new (unknown)
pairs, 2) new drugs, and 3) new targets, respectively.

For datasets GPCR, IC, E, and DrugBank_FDA, in order to
determine the layer configurations of MDA (the number of
layers and the number of neurons in each layer) in MDADTI
model, we applied 5-repeats of stratified 10-fold cross-validation
under CVS1 to evaluate the performance of MDADTI models
with different layer configurations of MDA. Stratified 10-fold
cross-validation can make the category ratio in each fold be
consistent with that in the whole dataset.

For the small dataset NR, considering the overfitting problem
on the small dataset of MDADTI model, for each CV setting, we
applied transfer learning strategy (Pan and Yang, 2009) to
predict DTIs. We first pretrained MDADTI model under
CVS1 setting with the drug-target interactions in the E dataset.
Then we froze all layers of the pretrained models except the
output layer, i.e., only set weights of the output layer to be
trainable. Finally, we finetuned the pretrained model with drug-
target interactions data in NR dataset and predicted DTIs under
CVS1. The transfer learning process under CVS2 and CVS3
settings are the same as that under CVS1 setting.

In order to focus on the differences between MDADTI and
other methods on NR, GPCR, IC, E, and DrugBank_FDA
datasets, we applied 5-repeats of 10-fold cross-validation under
three different settings to compare the performance of MDADTI
with DDR (Olayan et al., 2017), KronRLS-MKL(Nascimento
et al., 2016), NRLMF(Liu et al., 2016), and BLM-NII (Mei
et al., 2012).

The Results of MDADTI With Different
Layer Configurations of MDA
For GPCR, IC, E, and DrugBank_FDA datasets, in order to
determine the layer configurations of two MDAs for extracting
drug and target features in the MDADTI model, we applied 5-
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repeats of 10-fold cross-validation under CVS1 to evaluate the
performance of MDADTI models with different layer
configurations of MDAs. Figure 3 is a layer configurations
diagram of MDA whose layer configurations is [n*m, n*100,
n*75, 50, n*75, n*100, n*m]. It consists of 7 layers of neurons,
including 1 input layer n*m, where n is the number of input
similarity measures and m is the number of columns of each
similarity matrix, i.e., the number of drugs (targets); 1 output
layer n*m, 2 encoding layers n*100 and n*75, 2 decoding layers
n*75 and n*100, and 1 feature layer with 50 neurons.

For each dataset, we input all similarity measures listed in
Table 2 into three different MDADTI models whose layer
configurations of two MDAs are different, and then we trained
them to predict DTIs. The performance of MDADTI models for
different layer configurations of two MDAs in four datasets
under 5-repeats of 10-fold cross-validation is provided in
Table 3; nd and nt are the number of drugs and targets in each
of the four datasets, respectively. The AUC and AUPR values in
bold are highest among three sets of evaluation indicator values
corresponding tree different layer configurations of MDAs.

From Table 3 we observed that for GPCR dataset, MDADTI
achieved the highest AUC and AUPR when two MDAs have only
one feature layer. Therefore, the MDA extracting the drug
features is configured as [ n*nd,50,n*nd ], and the MDA
extracting target features is configured as [ n*nt,25,n*nt ] when
we applied MDADTI to predict DTIs in GPCR dataset. The AUC
and AUPR of MDADTI are 0.980 and 0.978, respectively. For IC
Frontiers in Pharmacology | www.frontiersin.org 9
dataset, MDADTI achieved the highest AUC and AUPR when
two MDAs have only one feature layer. Therefore, the MDA
extracting drug features is configured as[ n*nd,50,n*nd ], and the
MDA extracting target features is configured as [ n*nt,50,n*nt ]
when we applied MDADTI to predict DTIs in IC dataset. The
AUC and AUPR of MDADTI are 0.991 and 0.987, respectively.
For E dataset, MDADTI achieved the highest AUC and AUPR
when two MDAs have 1 encoding layer, 1 feature layer, and 1
decoding layer. Therefore, the MDA extracting drug features is
configured as [ n * nd, n * 200, 100, n * 200, n * nd ] and the MDA
extracting target features is configured as [ n * nt, n * 200, 100, n *
200, n * nt ] when we applied MDADTI to predict DTIs in E
dataset. The AUC and AUPR of MDADTI are 0.983 and 0.980,
respectively. For DrugBank_FDA dataset, MDADTI achieved the
highest AUC and AUPR when two MDAs have 1 encoding layer,
1 feature layer, and 1 decoding layer. Therefore, the MDA
extracting drug features are configured as [ n*nd,n*200,100,n *
200, n * nd ]and theMDA extracting target features are configured
as [ n * nt, n * 200 , 100, n * 200, n * nt ] when we applied
MDADTI to predict DTIs in DrugBank_FDA dataset. The AUC
and AUPR of MDADTI are 0.963 and 0.959, respectively.

For the small dataset NR, we applied transfer learning strategy
to predict DTIs, and also applied 5-repeats of 10-fold cross-
validation to evaluate MDADTI and obtain AUC and AUPR.
Finally, we obtained AUC and AUPR of MDADTI in NR, GPCR,
IC, E, and DrugBank_FDA datasets. AUC are 0.966, 0.980, 0.991,
0.983, and 0.963, respectively; AUPR are 0.959, 0.978, 0.987,
FIGURE 3 | The layer configurations diagram of MDA. The layer configurations are [n*m, n*100, n*75, 50, n*75, n*100, n*m]. It consists of 7 layers of neurons,
including 1 input layer n*m, where n is the number of input similarity measures, and m is the number of columns of each similarity matrix, i.e. the number of drugs
(targets), 1 output layer n*m, 2 encoding layers n*100 and n*75, 2 decoding layers n*75 and n*100, 1 feature layer with 50 neurons.
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0.980, and 0.959, respectively. Figure 4 shows the ROC curve and
precision-recall curve of the first repeat of 10-fold cross-
validation in five datasets. The mean_AUC and mean_AUPR
are the average AUC and average AUPR of MDADTI in the first
repeat of 10-fold cross-validation. The train/valid accuracy-
epoch and loss-epoch curves for each dataset are provided in
Figure S1 of Supplementary Material while selecting fold1 as
the test set and the remaining as train set when we performed the
first repeat of 10-fold cross-validation. From Figure S1 we can
observe that the change law of accuracy and loss of our model
while validating is consistent with that while training, which
demonstrates that overfitting has been effectively processed for
each dataset. The hyperparameters of MDADTI model for each
dataset under CVS1 setting are provided in Table S1 of the
Supplementary Material.

Comparisons With Other Methods
In order to focus on the differences between MDADTI and other
methods on NR, GPCR, IC, and E datasets under three different
CV settings, we provided a detailed comparison with DDR,
KronRLS-MKL, NRLMF, and BLM-NII methods. For
DrugBank_FDA dataset, we only compared our method
MDADTI with BLM-NII and NRLMF under three cross-
validation settings because of the large amount of data in
DrugBank_FDA dataset and the high-complexity of DDR and
KronRLS-MKL methods, resulting in their longer runtime than
our method.

DDR: First, it applied a similarity selection procedure to select
a set of informative and less-redundant set of similarities for
drugs and for target proteins. Then it manually extracted 12
different path-category-based feature matrices from the
heterogeneous network, which consists of known drug-target
Frontiers in Pharmacology | www.frontiersin.org 10
interaction network and similarity networks for drugs and
targets. Finally, it sent feature matrices to the Random Forest
(RF) to predict DTIs.

KronRLS-MKL: First, it computed the weighted combination
of multiple drug kernels and target kernels to get the final drug
kernel and target kernel, then it computed the Kronecker
product of final drug kernel and target kernel as the drug-
target pairwise kernel. Finally, it applied Kronecker regularized
least squares (KronRLS) to predict DTIs.

NRLMF: NRLMF represented the properties of a drug and a
target as two latent vectors in the shared low dimensional latent
space. For each drug-target pair, the interaction probability is
modeled by a logistic function of the drug-specific and target-
specific latent vectors. Moreover, the neighborhood
regularization based on the drug similarities and target
similarities is utilized to further improve the prediction ability
of the model.

BLM-NII: BLM-NII integrated Bipartite Local Model (BLM)
method with a neighbor-based interaction-profile inferring (NII)
procedure to form a DTI prediction approach, where the RLS
classifier with GIP kernel was used as the local model.

For comparison with these methods under CVS1 setting, we
used 5-repeats of 10-fold cross-validation based on drug-target
pairs to evaluate the predictive performance of DDR, KronRLS-
MKL, NRLMF, and BLM-NII. (Figure 5A) shows the
comparison of AUC and AUPR of MDADTI, DDR, KronRLS-
MKL, NRLMF, and BLM-NII on five datasets under CVS1
setting. It can be seen from the figure that the performance of
MDADTI has improved compared with the other methods. For
NR, GPCR, IC, and E datasets, the growth rates of AUC of
MDADTI compared to DDR, KronRLS-MKL, NRLMF, and
BLM-NII are as follows: (NR: 4.43%, 9.65%, 1.79%, 6.74%),
TABLE 3 | The comparison results of MDADTI models with different layer configurations of two MDAs under 5-repeats of 10-fold cross-validation on four datasets. The
AUC and AUPR values in bold are highest among three sets of evaluation indicator values corresponding tree different layer configurations of MDAs in each dataset.

Datasets Different layer configurations of MDAs AUC AUPR

GPCR drug [n*nd,50,n*nd] 0.980 0.978
target [n*nt,25,n*nt]
drug [n*nd,n*75,50,n*75,n*nd] 0.965 0.963
target [n*nt,n*50,25,n*50,n*nt]
drug [ n*nd,n*150,n*75,50,n*75,n*150,n*nd] 0.930 0.925
target [ n*nt,n*75,n*50,25,n*50,n*75,n*nt]

IC drug [n*nd,50,n*nd] 0.991 0.987
target [ n*nt,50,n*nt]
drug [n*nd,n*75,50,n*75,n*nd] 0.944 0.923
target [n*nt,n*75,50,n*75,n*nt]
drug [ n*nd,n*150,n*75,50,n*75,n*150,n*nd] 0.914 0.906
target n*nt,n*150,n*75,50,n*75,n*150,n*nt]

E drug [n*nd,100,n*nd] 0.956 0.947
target [n*nt,100,n*nt]
drug [n*nd,n*200,100,n*200,n*nd] 0.983 0.980
target [n*nt,n*200,100,n*200,n*nt]
drug [n*nd,n*300,n*200,100,n*200,n*300,n*nd] 0.893 0.886
target [n*nt,n*300,n*200,100,n*200,n*300,n*nt]

DrugBank_FDA drug [n*nd,100,n*nd] 0.925 0.912
target [n*nt,100,n*nt]
drug [n*nd,n*200,100,n*200,n*nd] 0.963 0.959
target [n*nt,n*200,100,n*200,n*nt]
drug [n*nd,n*300,n*200,100,n*200,n*300,n*nd] 0.946 0.938
target [n*nt,n*300,n*200,100,n*200,n*300,n*nt]
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FIGURE 4 | The ROC and precision-recall curves of the first repeat of 10-fold cross-validation for five datasets; the left is the ROC curve and the right is the
precision-recall curve. (A) The ROC and precision-recall curves for NR dataset; (B) The ROC and precision-recall curves for GPCR dataset; (C) The ROC and
precision-recall curves for IC dataset; (D) The ROC and precision-recall curves for E dataset; (E) The ROC and precision-recall curves for DrugBank_FDA dataset.
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(GPCR: 1.77%, 3.16%, 2.08%, 3.81%), (IC: 0.20%, 0.92%, 0.71%,
1.02%), and (E: 1.03%, 0.61%, 0.72%, 1.34%). The growth rates of
AUPR of MDADTI compared to DDR, KronRLS-MKL,
NRLMF, and BLM-NII are as follows: (NR: 14.98%, 82.31%,
32.64%, 45.52%), (GPCR: 22.25%, 44.03%, 39.12%, 89.90%), (IC:
5.34%, 10.16%, 14.37%, 20.22%), and (E: 2.17%, 9.25%, 11.87%,
39.20%). For DrugBank_FDA dataset, we only compared our
method with NRLMF and BLM-NII, and the growth rates of
AUC of MDADTI compared to NRLMF and BLM-NII are 7.96%
and 34.87%, respectively. In terms of AUPR, our method has
improved by 213.40% than NRLMF that performs better
between these two baselines methods.

The experimental results show that MDADTI is superior to
DDR, KronRLS-MKL, NRLMF, and BLM-NII under CVS1
setting. The above comparison does not guarantee the efficacy
and superiority of our proposed method. The possibility of
getting good results by chance cannot be ignored. Thus, we
Frontiers in Pharmacology | www.frontiersin.org 12
performed paired t-test at significance level p = 0.05 to check if
the differences between our method and the other methods are
statistically significant or not under CVS1 setting. The specific
details are as follows: we obtained 50 AUCs and 50 AUPRs for
each method after performing five repeats of 10-fold cross-
validation. In order to check if the differences between our
method and each of baseline methods are statistically
significant or not, i.e., check if mean AUCs (AUPRs) (mean
AUC is the mean value of 50 AUCs) of them have significant
differences, for each baseline method, we performed paired t-test
based on 50 AUCs (AUPRs) of our method MDADTI and 50
AUCs (AUPRs) of the baseline method, respectively. We also
combined bootstrap method to increase the sample size and used
2000 bootstrap samples for performing paired t-test.

The p-values of AUC and AUPR between our method and the
other methods under CVS1 setting are reported in Table S4(a) of
Supplementary Material, whereas p-values are less than 0.05 to
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demonstrate the statistical superiority of our method. For NR,
GPCR, IC, and E dataset, in terms of AUC, from Table S4(a) we
can observe that MDADTI outperforms the other baseline
methods, being statistically significant in most cases at the
significance level of 0.05, except one comparison case with
DDR in IC dataset, one comparison case with NRLMF in NR
dataset, and four comparison cases with the other four
competing methods in E dataset. In terms of AUPR, we can
observe that MDADTI outperforms other baseline methods,
being statistically significant in all cases at the significance level
of 0.05. For DrugBank_FDA dataset, in terms of AUC, we can see
that our method performs best, and it outperforms NRLMF and
Frontiers in Pharmacology | www.frontiersin.org 13
BLM-NII methods, being statistically significant at the
significance level of 0.05. In terms of AUPR, we can see that
our method also performs best, and it outperforms NRLMF and
BLM-NII methods, being statistically significant.

For comparison with these methods under CVS2 and CVS3
setting,weused5-repeatsof 10-fold cross-validationbasedondrugs
and targets to evaluate the predictive performance of MDADTI,
DDR, KronRLS-MKL, NRLMF and BLM-NII . The
hyperparameters of MDADTI model for each dataset under
CVS2 and CVS2 settings are provided in Table S2 and Table S3
of SupplementaryMaterial, respectively. The comparison of AUC
and AUPR amongMDADTI, DDR, KronRLS-MKL, NRLMF, and
FIGURE 5 | Comparison of AUC and AUPR among MDADTI, DDR, KronRLS-MKL, NRLMF, and BLM-NII methods on NR, GPCR, IC, E, and Drugbank_FDA
datasets under CVS1, CVS2, and CVS3 setting. (A) Comparison of AUC and AUPR under CVS1 setting; (B) Comparison of AUC and AUPR under CVS2 setting;
(C) Comparison of AUC and AUPR under CVS3 setting. The symbols +/- denote if the differences between our method MDADTI and other methods are statistically
significant (+) or not (-) at the significance level of 0.05.
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BLM-NII methods on NR, GPCR, IC, E, and DrugBank_FDA
datasets under CVS2 and CVS3 settings are provided in Figure 5B
and Figure 5C. The screenshot of MDADTI when it predicts DTIs
in GPCR dataset under CVS2 setting is provided in Figure S2 of
Supplementary Material. The program flow chart of the code of
MDADTI under CVS1,CVS2,and CVS3 settings is provided in
Figure S3 of Supplementary Material.

From Figure 5B we can see that under CVS2 setting in NR,
GPCR, IC, and E datasets, for AUPR, the performance of
MDADTI is improved on these four datasets, and the growth
rates are 9.86%, 36.51%, 5.80%, 10.96%, respectively, compared
with the best method DDR among the baseline methods. For
AUC, compared with these four methods, MDADTI performed
better on E dataset, which was 11.26%, 5.33%, and 8.22% higher
than KronRLS-MKL, NRLMF, and BLM-NII, respectively;
MDADTI performed moderately on the other three datasets.
For DrugBank_FDA dataset, our method performed better than
NRLMF and BLM-NII methods in both AUC and AUPR.

Under CVS3 setting, from Figure 5C we can see that for NR,
GPCR, IC, and E datasets, the AUPR of MDADTI has a certain
improvement in GPCR, IC, and E datasets. The AUPR has
increased by 42.62%, 20%, and 17.07% in GPCR, IC, and E
datasets, respectively, compared with the best performing
method DDR; for AUC, the AUC of MDADTI is the highest
in E dataset compared with the other methods, which was
increased by 2.17% than the AUC of DDR. For IC dataset, the
AUC of MDADTI was increased by 9.30%, 1.08%, and 5.62%
compared with KronRLS-MKL, NRLMF, and BLM-NII,
respectively. Our method performed moderately in the GPCR
dataset, but our method performed poorly on NR dataset. After
analysis, it is found that the data volume of the E dataset is
295480 and the large amount of samples make deep learning
model perform better; however, the data volume of the NR
dataset is only 1404, which is relatively small and does not meet
the requirements for data volume of deep learning. Although we
applied transfer learning method to predict DTIs of NR datasets
under CVS3 setting, the train set of CVS3 setting contains
relatively little information, which affects the effect of transfer
learning and leads to poor prediction results . For
DrugBank_FDA dataset, our method performed better than
NRLMF and BLM-NII methods in both AUC and AUPR.

As a kind of data-driven method, deep learning methods are
superior to traditional machine learning methods when the
amount of data is quite large. By comparing the performance
of our method on the five datasets, our method performed best
on E and DrugBank_FDA datasets and performed worst on NR
dataset, which is consistent with the theory of deep learning.

Similar to CVS1 setting, we performed paired t-test at
significance level p = 0.05 to check if the differences between
our method and the other methods are statistically significant or
not under CVS2 and CVS3 settings. The p-values of AUC and
AUPR between our method and the other methods under CVS2
and CVS3 settings are tabulated in Table S4(b) and Table S4(c)
of Supplementary Material, respectively.

For CVS2 setting, in terms of AUC, from Table S4(b) we can
see that our method outperforms KronRLS-MKL in GPCR
Frontiers in Pharmacology | www.frontiersin.org 14
dataset, being statistically significant at the significance level of
0.05, and it also outperforms KronRLS-MKL, NRLMF, and
BLM-NII in E dataset. For DrugBank_FDA dataset, our
method MDADTI performs best compared with NRLMF and
BLM-NII methods, and it outperforms them, being statistically
significant. In terms of AUPR, from Table S4(b) we can see that
our method performs best in five datasets and it outperforms
other baseline methods, being statistically significant in most
cases at the significance level of 0.05, except two comparison
cases with DDR in IC and E datasets.

For CVS3 setting, in terms of AUC, from Table S4(c) we can
see that our method outperforms KronRLS-MKL method in
GPCR dataset, being statistically significant at the significance
level of 0.05. Our method also outperforms KronRLS-MKL,
NRLMF, and BLM-NII methods in IC dataset, being
statistically significant. For E and DrugBank_FDA datasets, our
method outperforms all baseline methods, being statistically
significant at the significance level of 0.05. In terms of AUPR,
from Table S4(c) we can see that our method MDADTI
performs best in GPCR, IC, E, and DrugBank_FDA datasets,
and it outperforms all baseline methods, being statistically
significant in all cases. The comparison of AUC and AUPR
between MDADTI with transfer learning and MDADTI without
transfer learning on NR dataset is reported in Table S6 of
Supplementary Material. The performance of MDADTI with
SMOTE method and MDADTI without SMOTE method is
reported in Table S7 of Supplementary Material.

All above analyses demonstrate that MDADTI is superior to
DDR, KronRLS-MKL, NRLMF, and BLM-NII. The main reason
is that different from DDR, KronRLS-MKL, NRLMF, and BLM-
NII, which directly took the original multiple similarity measures
as input and manually extracted the features of the drug-target
pairs, MDADTI applied RWR method and PPMI to capture the
global structure information of the similarity measures, and
applied the multi-layer nonlinear functions of MDA to capture
the complex non-linear relationship among features, and
automatically learned the deep feature representation of drugs
and t a r g e t s , wh i ch a r e h e l p f u l t o imp rov e th e
predictive performance.

For large datasets GPCR, IC, and E, MDA reduced the
dimension of drug feature and target feature while automatically
learning them. The dimension of drug feature in GPCR dataset is
reduced from 223 to 50, and the dimension of target feature is
reduced from 95 to 25. The dimension of drug feature and target
feature in IC dataset are reduced from 210 and 204 to 50,
respectively. The dimension of drug feature and target feature in
E dataset are reduced from 1482 and 1408 to 100, respectively.
Dimensionality reduction accelerates the training speed and saves
the time costs running on large datasets of MDADTI model.

We observed that the predictive performance of MDADTI is
greatly improved in NR dataset under CVS1 setting, which
indicates that our transfer learning strategy helps MDADTI
achieve superior performance with a small amount of labeled
data. This is because we used DTIs in E datasets to pretrain
MDADTI model, and froze all layers except the output layer of
the pretrained model, that is, set the parameters of these frozen
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layers to be untrainable. These parameters contain the
knowledge learned from the E dataset, which are also
applicable to the NR dataset. Therefore, our transfer learning
strategy can make MDADTI predict DTIs more accurately on
small datasets.

According to statistics, about one-third of the small molecule
drugs in the world drug market are activators or antagonists of
GPCRs, which are related to many diseases, and GPCR is the
target of about 40% of modern drugs (Marinissen and Gutkind,
2001). MDADTI has a significant improvement in predictive
performance on GPCR datasets under CVS1 setting. Therefore,
MDADTI can be used as an effective tool to predict GPCR target
and has great significance for drug development and
disease treatment.

Effectiveness of Feature Learning for
Drugs and Targets With MDA
In order to evaluate the effectiveness of feature learning for drugs
and targets with MDA for improving the predictive performance
of MDADTI, we designed another RWR_DNN method to be
compared with MDADTI. Firstly, RWR_DNN takes multiple

similarity measures for drugs (targets) as original inputs.
Then, it uses RWR and PPMI method to calculate multiple
topological similarity matrices for drugs (targets). Next, it
averages multiple topological similarity matrices of drugs
(targets) to form the feature of drugs (targets). Finally, the
features of drugs and targets are concatenated together and
sent into DNN for predicting DTIs. Similarly, we applied 5-
repeats of 10-fold cross-validation under CVS1, CVS2, and CVS3
setting to evaluate the performance of RWR_DNN. The
hyperparameters of RWR_DNN method on NR, GPCR, IC,
and E dataset under three settings are the same with that of
MDADTI, which are reported in Table S1–S3 of the
Supplementary Material.

The comparison results of RWR_DNN and MDADTI on NR,
GPCR, IC, and E datasets in 5-repeats of 10-fold cross-validation
are shown in Figure 6, where Figure 6 (A) is the comparison of
AUC and Figure 6 (B) is the comparison of AUPR. We can see
the AUC and AUPR values of MDADTI are higher than that of
RWR_DNN in all cases. The results demonstrate that MDA can
automatically learn deep feature representations of drugs and
targets from multiple topological similarity matrices and
effect ive ly improve the predict ive performance of
MDADTI method.

Prediction and Validation of
Unknown DTIs
In this paper, we used NR, GPCR, IC, E, and DrugBank_FDA
datasets to evaluate the performance of our proposed method
MDADTI, and for each dataset, we used 5-repeats of 10-fold
cross-validation to evaluate the performance of MDADTI
method. Since the negative samples in the NR, GPCR, IC, E
and DrugBank_FDA datasets are unknown DTIs, we evaluated
the practical ability of MDADTI model in predicting new
(unknown) interactions. New interactions are predicted high-
Frontiers in Pharmacology | www.frontiersin.org 15
probability drug-target pairs, but they are unknown DTIs in NR,
GPCR, IC, E, and DrugBank_FDA datasets.

In order to implement this, we used the trained model to
predict unknown DTIs in each dataset and output the interaction
probability of a drug-target pair. Then we ranked them in
descending order according to the predicted probability.
Finally, we selected the top 100 predicted unknown DTIs and
validated them in six reference databases, i.e., to check if they are
included in any of six reference databases: ChEMBL (Gaulton
et al., 2011), DrugBank (Knox et al., 2010), KEGG (Kanehisa
et al., 2011), Matador (Günther et al., 2007), CTD (Davis et al.,
2016), and STITCH (Kuhn et al., 2007). These six reference
databases are online databases that include a large number of
proved known DTIs and they are used by related literature to
evaluate the actual ability of their methods in predicting
unknown DTIs (Liu et al., 2016; Nascimento et al., 2016;
Olayan et al., 2017).

Table 4 shows the top 30 unknown interactions predicted by
the MDADTI model on E dataset. In this table, DTIs in bold
indicate that they exist in one or more reference databases, and
the third column shows their predicted probability. For each
drug-target pair, the reference databases containing it are
displayed in the last column of the table, where C is the
abbreviation of ChEMBL, D is the abbreviation of DrugBank,
M is the abbreviation of Matador, K is the abbreviation of KEGG,
T is the abbreviation of CTD, and S is the abbreviation of
STITCH. For example, the DTI ranking No. 1 is D00528,
hsa1549 and its predicted interaction probability is 1.0, which
is validated in the Matador database. It can be seen from the table
that 21 out of 30 unknown interactions are validated in at least
one of the six reference databases.

In order to visualize the validation of unknown DTIs more
intuitively, we visualized 100 high-probability unknown DTIs in
E dataset. Figure 7 is the network visualization of the top 100
unknown DTIs in E dataset predicted by MDADTI model.
Yellow and blue nodes represent drugs and targets,
respectively. Solid lines represent verified interactions while
dashed lines represent unverified interactions. It can be seen
from the figure that there are potential interactions between a
drug and multiple targets, and some of them have been verified
in six reference databases. For example, 33.33% (3/10) of the
potential targets of drug D00002 have been verified in reference
databases; D00002 represents nicotinamide adenine dinucleotide
(NADH), which is widely used in many diseases like
tuberculosis, Alzheimer's, and Parkinson disease. 44.44% (4/9)
of the potential targets of D00043 are validated in the reference
databases, and D00043 represents isofluorphate, a powerful
miotic used mainly in the treatment of glaucoma. 60% (3/5) of
the potential targets of drug D00410 are validated in reference
databases, and D00410 represents metyrapone, an inhibitor of
the enzyme steroid 11-beta-monooxygenase, which is used as a
test of the feedback hypothalamic-pituitary mechanism in the
diagnosis of Cushing syndrome. 57.14% (4/7) of the potential
targets of drug D00528 are verified in the reference database. We
also observed that a target may interact with multiple drugs, and
some of them are verified in six reference databases. For example,
January 2020 | Volume 10 | Article 1592
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hsa1559 interacts with D00510, D00217, and D00437 at the same
time, and all of them are verified in six reference databases.
hsa5150 interacts with D00528, D00501, and D00691, and all of
them are verified in six reference databases.

Finally, Table 5 summarizes the validated proportion of top
N unknown DTIs (N = 10, 30, 50, 100) on five datasets. The
validated proportion of top 10 unknown DTIs are 50%, 80%,
80%, 100%, 80%, respectively. The fractions of validated DTIs of
MDADTI, NRLMF, BLM-NII among the predicted Top N(N =
10, 30, 50) DTIs in NR,GPCR,IC, and E datasets are provided in
Table S5. The fractions of validated DTIs of NRLMF, BLM-NII
are provided by (Liu et al., 2016). Since these databases are still
being updated, the proportion of new DTIs predicted by
MDADTI model will increase in the future. All the above
analyses proved that MDADTI can effectively predict unknown
DTIs because MDADTI model integrated multiple similarity
measures of drugs and targets, which provides abundant
information for predicting DTIs. Moreover, MDADTI not only
considered the original information of similarity measure but
also captured the global structure information of similarity
measures, which improved the prediction accuracy of DTIs.
Frontiers in Pharmacology | www.frontiersin.org 16
The most important reason is that MDADTI applied MDA to
automatically learn the deep representation of drug feature and
target feature from multiple topological similarity matrices of
drugs and targets, which contributes to the effective prediction of
unknown DTIs.
DISCUSSION

We proposed a novel method MDADTI to predict DTIs based
on MDA. Compared with existing methods, MDADTI applied
RWR and PPMI to calculate the topological similarity matrices
of drugs and targets, capturing the global structure information
of the similarity measures. Then MDA was applied to fuse
multiple topological similarity matrices and learn the feature of
drugs and targets while capturing the non-linear relationship
among features. In addition, MDA also reduced the dimension of
the feature of drugs and targets, which speeded up the training of
MDADTI. To evaluate the performance of MDADTI, we
compared MDADTI with DDR, KronRLS-MKL, NRLMF, and
BLM-NII under three different cross-validation settings. The
FIGURE 6 | The comparison of AUC and AUPR between MDADTI and RWR_DNN method on NR, GPCR, IC and E dataset under CVS1, CVS2 and CVS3 setting.
(A) Comparison of AUC (B) Comparison of AUPR.
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TABLE 4 | Top 30 unknown DTIs predicted by MDADTI model on E dataset. DTIs in bold indicate that they are validated in one or more reference databases.

Rank Drug Target Probability Databases

1 D00528 hsa1549 1.0 M
2 D00542 hsa1571 0.9997 M
3 D00501 hsa5150 0.9997 C
4 D00437 hsa1559 0.9997 M
5 D00043 hsa11330 0.9995 M
6 D00528 hsa5150 0.9992 D K
7 D00410 hsa1543 0.9988 M
8 D00691 hsa8564 0.9985 S
9 D00437 hsa1585 0.9981 M
10 D00410 hsa1585 0.9981 M
11 D00139 hsa1543 0.9972 M
12 D00043 hsa2147 0.9965 M
13 D01441 hsa5594 0.9884 T
14 D00126 hsa246 0.9869 M
15 D00043 hsa1504 0.977
16 D00217 hsa1559 0.9683 T
17 D01223 hsa3988 0.9644 M
18 D00038 hsa5742 0.9640 T
19 D01223 hsa5538 0.9616
20 D00002 hsa31 0.9553
21 D01441 hsa1021 0.9546 T
22 D00528 hsa5743 0.9467 T
23 D00139 hsa5742 0.9344
24 D00217 hsa1558 0.9338 T
25 D00043 hsa1636 0.9326 M
26 D00002 hsa7298 0.9207
27 D03670 hsa1579 0.8932
28 D01441 hsa3551 0.8806
29 D00097 hsa5743 0.8787 D M
30 D00043 hsa686 0.8688
Frontiers in Pharma
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FIGURE 7 | Network visualization of the top 100 unknown DTIs in E dataset. Yellow and blue nodes represent drugs and targets, respectively. Solid lines represent
verified interaction and dashed lines represent unverified interactions. There are 40 unknown DTIs that were verified.
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results showed that MDADTI achieved higher AUC and AUPR
in five datasets than the other four methods under CVS1 setting.
The predictive performance of MDADTI was greatly improved
especially in GPCR and NR datasets. For CVS2 and CVS3
settings, our method has a great improvement in AUPR in five
datasets, and it performed better in large datasets, like E and
DrugBank_FDA datasets. These results proved that MDADTI is
better than the other four baseline methods in predicting DTIs.

In addition, we evaluated the actual ability of MDADTI
method to predict new interactions. For each dataset, we
applied the trained MDADTI model to predict unknown
interactions and selected the top 100 predictions to validate
them in the six reference databases: ChEMBL, DrugBank, KEGG,
Matador, STITCH, and CTD. The results showed that MDADTI
method can effectively identify unknown DTIs.

Since our method currently only predicts whether there is an
interaction between a drug and a target, we plan to predict the
binding affinity scores for drug-target pairs in the next step.
Frontiers in Pharmacology | www.frontiersin.org 18
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