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Capsule networks (CapsNets), a new class of deep neural network architectures
proposed recently by Hinton et al., have shown a great performance in many fields,
particularly in image recognition and natural language processing. However, CapsNets
have not yet been applied to drug discovery-related studies. As the first attempt, we in this
investigation adopted CapsNets to develop classification models of hERG blockers/
nonblockers; drugs with hERG blockade activity are thought to have a potential risk of
cardiotoxicity. Two capsule network architectures were established: convolution-capsule
network (Conv-CapsNet) and restricted Boltzmann machine-capsule networks (RBM-
CapsNet), in which convolution and a restricted Boltzmann machine (RBM) were used as
feature extractors, respectively. Two prediction models of hERG blockers/nonblockers
were then developed by Conv-CapsNet and RBM-CapsNet with the Doddareddy's
training set composed of 2,389 compounds. The established models showed excellent
performance in an independent test set comprising 255 compounds, with prediction
accuracies of 91.8 and 92.2% for Conv-CapsNet and RBM-CapsNet models,
respectively. Various comparisons were also made between our models and those
developed by other machine learning methods including deep belief network (DBN),
convolutional neural network (CNN), multilayer perceptron (MLP), support vector machine
(SVM), k-nearest neighbors (kNN), logistic regression (LR), and LightGBM, and with
different training sets. All the results showed that the models by Conv-CapsNet and RBM-
CapsNet are among the best classification models. Overall, the excellent performance of
capsule networks achieved in this investigation highlights their potential in drug discovery-
related studies.

Keywords: deep learning, hERG, classification model, Capsule network, convolution-capsule network, restricted
Boltzmann machine-capsule networks
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INTRODUCTION

The human ether-a-go-go-related gene (hERG) encodes a
potassium channel protein, which is important for cardiac
electrical activity and the coordination of heartbeat. Blockade
of the hERG potassium channel can result in a potentially fatal
disorder called long QT syndrome, as well as serious
cardiotoxicity, which has led to the withdrawal of several
marketed drugs and the failure of many drug research and
development projects (Fermini and Fossa, 2003; Recanatini
et al., 2005; Sanguinetti and Tristani-Firouzi, 2006; Bowes
et al., 2012; Nachimuthu et al., 2012; Zhang et al., 2012; Shah,
2013; Kalyaanamoorthy and Barakat, 2018; Mladenka et al.,
2018). Therefore, drug candidates that can bind with hERG
should be eliminated as early as possible in drug discovery
studies. At present, various in vitro experimental assays, such
as fluorescent measurements (Dorn et al., 2005), radioligand
binding assay (Yu et a l . , 2014) , and patch-c lamp
electrophysiology (Stoelzle et al., 2011; Gillie et al., 2013;
Danker and Moller, 2014), have been developed to measure
the hERG binding affinity of chemicals. Nevertheless, these
assays are often expensive and time-consuming, implying that
they are not suitable for the evaluation of hERG binding affinity
for a large number of chemicals in the early stage of drug
discovery. Furthermore, the preconditions for the use of these
analytical techniques are that the chemical compounds have
been synthesized and are available in hand, which are usually not
applicable in the era of virtual high-throughput screening. An
alternative strategy is to use in silico methods; compared with
experimental assays, in silicomethods are cheaper and faster, and
also do not involve any of the aforementioned preconditions.

To date, various in silico prediction models have been
developed for hERG channel blockade. These models can be
classified into structure-based and ligand-based models.
Structure-based models utilize molecular docking to predict
the binding mode and binding affinity of compounds to hERG.
However, the structure-based methods often have some
limitations such as protein flexibility, inaccurate scoring
function, and solvent effect (Jia et al., 2008; Li et al., 2013).
Ligand-based models can further be classified into several
categories based on structural and functional features (Zolotoy
et al., 2003; Aronov, 2005), quantitative structure-activity
relationship (QSAR) models (Perry et al., 2006; Yoshida and
Niwa, 2006; Tan et al., 2012), pharmacophore models (Cavalli
et al., 2002; Aronov, 2006; Durdagi et al., 2011; Yamakawa et al.,
2012; Kratz et al., 2014; Wang et al., 2016), and machine learning
models (Wang et al., 2008; Klon, 2010; Wacker and Noskov,
2018). Compared with other models, machine learning models
have attracted more attention in recent years due to the
remarkable performance of machine learning methods in the
handling of classification issues. For example, Wang et al. (2012)
established binary classification models using Naïve Bayes (NB)
classification and recursive partitioning (RP) methods, which
achieved prediction accuracies of 85–89% in their test sets.
Zhang and coworkers (Zhang et al., 2016) used five machine
learning methods to develop models that can discriminate hERG
Frontiers in Pharmacology | www.frontiersin.org 2
blockers from nonblockers, and they found that k-nearest
neighbors (kNN) and support vector machine (SVM) methods
showed a better performance than others. Broccatelli et al. (2012)
derived several classification models of hERG blocker/
nonblocker by using random forests (RF), SVM, and kNN
algorithms with descriptor selections via genetic algorithm
(GA) methods, and their prediction accuracies ranged from 83
to 86%. Didziapetris and Lanevskij (2016) employed a gradient-
boosting machine (GBM) statistical technique to classify hERG
blockers/nonblockers, and this offered overall prediction
accuracies of 72–78% against different test sets. Very recently,
Siramshetty et al. (2018) employed three methods (kNN, RF, and
SVM) with different molecular descriptors, activity thresholds,
and training set compositions to develop predictive models of
hERG blockers/nonblockers, and their models showed better
performance than previously reported ones.

There have been remarkable advances in deep learning
methods since a fast learning algorithm for deep belief nets was
proposed by Hinton in 2006 (Hinton et al., 2006a). They have
widely been applied to fields particularly computer vision, speech
recognition, natural language processing, audio recognition,
social network filtering, machine translation, bioinformatics,
and various games (Collobert and Weston, 2008; Bengio, 2009;
Dahl et al., 2012; Hinton et al., 2012; LeCun et al., 2015;
Defferrard et al., 2016; Mamoshina et al., 2016), where they
have produced results comparable to or in some cases superior to
human experts. In recent years, deep learning has also been
applied to drug discovery, and it has demonstrated its potentials
(Lusci et al., 2013; Ma et al., 2015; Xu et al., 2015; Aliper et al.,
2016; Mayr et al., 2016; Pereira et al., 2016; Subramanian et al.,
2016; Kadurin et al., 2017; Ragoza et al., 2017; Ramsundar et al.,
2017; Xu et al., 2017; Ghasemi et al., 2018; Harel and Radinsky,
2018; Hu et al., 2018; Popova et al., 2018; Preuer et al., 2018;
Russo et al., 2018; Segler et al., 2018; Shin et al., 2018; Cai et al.,
2019; Wang et al., 2019a; Yang et al., 2019). However, there are
still some issues that limit the application of deep learning in drug
discovery. For example, deep learning usually requires a large
number of samples for model training. Unfortunately, there are
often a very limited number of agents (usually hundreds or
thousands) in drug discovery-related studies due to high cost and
the lengthy process involved in obtaining samples and their
associated properties. In addition, commonly used deep
learning algorithms or networks, such as convolutional neural
network (CNN), are primarily designed for two-dimensional
(2D) image recognition. In these networks, some special
algorithms, such as the pooling algorithm in CNN, are adopted
to reduce the dimensionality of the representation, which might
lead to a loss of information.

To overcome the shortcomings of traditional deep learning
networks, Hinton group (Sabour et al., 2017) proposed new deep
learning architectures known as capsule networks (CapsNets),
which introduced a novel building block that is used in deep
learning to improve the model hierarchical relationships inside
the internal knowledge representation of a neural network.
CapsNets have shown great potential in some fields (Xi et al.,
2017; Afshar et al., 2018; Lalonde and Bagci, 2018; Qiao et al.,
January 2020 | Volume 10 | Article 1631
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2018; Vesperini et al., 2018; Zhao et al., 2018; Wang et al., 2019b;
Peng et al., 2019). However, CapsNets have not yet been applied
to drug discovery-related studies. As the first attempt, in this
study, we established two classification models of hERG
blockers/nonblockers by using modified capsule network
architectures. The models were evaluated using a test set and
an external validation set, which are independent of the
training set. Furthermore, our models were also compared
with others.

The rest of this paper is organized as follows. The Materials
and Methods section describes the implementation of the two
capsule networks [convolution-capsule network (Conv-
CapsNet) and RBM-CapsNet] developed in this study, as well
as the data sets used and computational modeling details. The
modeling, evaluation, and comparison with other models are
presented in the Results section. The strengths of the capsule
networks are analyzed in theDiscussion section which is followed
by a final summary.
MATERIALS AND METHODS

Convolution-Capsule Network
Architecture
The architecture of Conv-CapsNet is schematically shown in
Figure 1, which is similar in nature to that of the Hinton's
original Capsule Network, except for one additional hidden
feature layer. Apparently, Conv-CapsNet contains four layers: a
convolutional layer, a hidden feature layer, a PrimaryCaps layer,
and a DigitCaps layer. It is composed of 179 nodes for input,
which are based on the feature vector size of the molecules. With
mapping from the input vector, the hidden feature layer with 128
dimensional nodes was generated by one convolutional
operation and one fully connected operation. The PrimaryCaps
layer comprises eight capsules (ui), and each capsule in this layer
includes eight-dimensional features. Furthermore, we computed
Frontiers in Pharmacology | www.frontiersin.org 3
the contribution (û jji) of each capsule (ui) in PrimaryCaps to that
(vj) in DigitCaps by using Eq. 1.

û jji = Wij � ui (1)

The final layer (DigitCaps) has a two-dimensional capsule (vj)
per digit class (two classes in this investigation). Each of these
capsules received input from all the capsules in the PrimaryCaps
layer through Eq. 2-1, Eq. 2-2, and Eq. 2-3.

cij =
exp bij

� �

Sk exp bikð Þ (2� 1)

sj = Skcijû jji (2� 2)

vj =
‖ sj ‖2

1 + ‖ sj ‖2
sj

‖ sj ‖
(2� 3)

Finally, we computed the length of each digit capsule to
predict the class of chemical molecules from Eq 3.

Lk = Tk max 0,m+ − ‖ vk ‖ð Þ2+l 1 − Tkð Þ

� max 0, ‖ vk ‖−m−ð Þ2 (3)

In view of the small size of the dataset in this account, we
added the L2 regularization behind the convolutional operation
to prevent the network from overfitting (Ng, 2004).

Hyperparameter Optimization
For the hyperparameter optimization of the Conv-CapsNet
architecture, the different numbers of fi lters in the
convolutional layer, nodes in the hidden feature layer, and
dimensions in PrimaryCaps were explored. Additionally, the
dynamic routing iterations between two capsule layers were
tested from 1 to 3 with an increment of 1. For each group of
the parameter settings, the performance of the model was
evaluated by five-fold cross-validation based on the training
FIGURE 1 | Architecture of convolution-capsule networks (Conv-CapsNet). The input is one-dimensional vector containing 179 components. The convolution layer
has 32 filters of size 1×3. The hidden feature layer and PrimaryCaps layer consist of 128 and 64 nodes, respectively. The weight matrix between PrimaryCaps layer
and DigitCaps layer is 8×8×2×2, and two dynamic routing iterations were adopted.
January 2020 | Volume 10 | Article 1631
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set. Once the highest accuracy was achieved with all the
candidate settings, the best setting was subsequently applied to
the test set and external validation set. We employed early
stopping to reduce the overfitting problem, which is a
technique commonly used for the reduction of overfitting
(Caruana et al., 2001). With the early stopping, original
training set was randomly divided into a new training set and
a validation set (4:1). When the error in the validation set was
less than that from the previous iteration, the training was
immediately stopped. The final optimal hyperparameters for
Conv-CapsNet are listed in Table 1.

Model Training of Conv-CapsNet
The Conv-CapsNet weights were randomly initialized using a
truncated normal distribution with the standard deviation being
set as 0.01 during training. Both the convolutional and hidden
feature layers adopted the rectified linear unit (Relu) as the
activation function. To reduce the internal-covariate-shift, we
used batch normalization to normalize the input distribution of
each layer to a standard Gaussian distribution (Hinton et al.,
2011; Ioffe and Szegedy, 2015). The adaptive moment estimation
(Adam) method was employed for optimization (Kingma and
Ba, 2014).

Table 2 summarizes the algorithm and training procedure for
Conv-CapsNet. CW, W1, and W2 represent the parameters in
the convolutional, hidden feature, and PrimaryCaps layers,
respectively. The convolutional and the first two fully
connected operations are represented by conv, fc1, and fc2,
respectively; conv_layer, hf_layer, and pc_layer denote the
output from the convolutional, hidden feature, and
PrimaryCaps layers, respectively. Through a feature vector
extraction process in the convolutional layer, the hidden
feature layer, and the PrimaryCaps layer (lines 1–4), pc_layer
was packed as capsules u (line 5). Here, û denotes the
contribution of one layer to the next layer. Next, the routing
algorithm was used to generate the digit capsules (lines 6–13).
Len is the length of the output of DigitCaps layer (lines 14). Lines
15–20 are for the network parameter update using a
gradient step.
Frontiers in Pharmacology | www.frontiersin.org 4
Restricted Boltzmann Machine-
Capsule Network
Architecture
Figure 2 displays the architecture of RBM-CapsNet, which
consists of three layers: a hidden feature layer, a PrimaryCaps
layer, and a DigitCaps layer. In RBM-CapsNet, two restricted
Boltzmann machines (RBMs) replaced the convolutional and
fully connected operations in Conv-CapsNet. The first RBM
encodes the original vector (179-dimension) for the feature space
(the hidden feature layer), which is subsequently used as the
input for the next RBM. The RBMs used energy function (Eq. 4)
as the loss function (Hinton and Salakhutdinov, 2006b).

E v, hð Þ = − aT � v + bT � h + vT � w � h� �
(4)

The capsule networks still consist of PrimaryCaps and
DigitCaps, which are the same as in Conv-CapsNet. The
detailed definitions of all the parameters in Eq. 1, 2, 3, and 4
are listed in the Supplementary Material.

Hyperparameter Optimization
To optimize the hyperparameters in the RBM-CapsNet
architecture, all the combinations of one to five RBM
operations and 32, 64, 128, 256, and 512 nodes in each RBM
were tested. The basic optimization procedure for the
hyperparameters related to the capsules is very similar with
that for Conv-CapsNet. The performance of each RBM-
TABLE 2 | Algorithm and training procedure of convolution-capsule networks
(Conv-CapsNet).

Algorithm: Conv-CapsNet training algorithm, using a mini-batch stochastic
gradient descent (SGD) for simplicity.
Input: mini batch feature vector (x);

Number of Conv-CapsNet training epoch (S);
Number of dynamic routing iterations (iter).

Output: Length of each capsules (Len).
1: For n=1 to S do
2: conv_layer ← conv(x, CW)
3: hf_layer ← fc1(conv_layer, W1)
4: pc_layer ← fc2(hf_layer, W2)
5: u ← Encapule(pc_layer)

6: For all capsule i in PrimaryCaps layer:û jji ←Wijui………… {contribution

computes Eq. 1}
7: For all capsule i in PrimaryCaps layer and capsule j in DigitCaps layer:bij ← 0
8: For m=1 to iter do
9: For all capsule i in PrimaryCaps layer: ci ← softmax(bi) ……{softmax
computes Eq. 2-1}

10: For all capsule j in DigitCaps layer:sj ←oicij û jji …{dynamic computes Eq.

2-2}
11: For all capsule j in DigitCaps layer: vj ← squash (sj) ………{squash
computes Eq. 2-3}
12: For all capsule i in PrimaryCaps layer and capsule j in DigitCaps

layer:  bij ←bij + û jji � vj
13: End for
14: Len← Length  of   v
15: L← loss  of   v………………………………………{loss computes Eq. 3}
16:  W←W − ∂L= ∂W
17: CW←CW − ∂L= ∂CW
18: W1←W1 − ∂L= ∂W1
19: W2←W2 − ∂L= ∂W2
20: End for
TABLE 1 | Hyperparameter settings of convolution-capsule networks
(Conv-CapsNet).

Hyperparameter Setting

L2 normalization term 0.001
Activation Relu
Batch size 148
Iteration epoch 300
Learning rate of network 0.001
Optimizer Adam
Filter 32
Kernel_size 3
Number of nodes in the hidden feature layer 128
Number of nodes in the PrimaryCaps layer 64
Routing time 2
Dimension of each capsule 8
Length of PrimaryCaps 2
Length of DigitCaps 2
January 2020 | Volume 10 | Article 1631
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CapsNet architecture was examined by five-fold cross-validation.
The candidate RBM-CapsNet architecture that provided the
highest accuracy was validated using the test set and external
validation set. The detailed information on the optimized
hyperparameters in RBM-CapsNet is summarized in Table 3.

Model Training of Restricted Boltzmann Machine-
Capsule Network
The training process was divided into two stages. First, two RBMs
were pre-trained one by one with the loss function shown in Eq.
4. Second, the parameters of RBMs from pre-training were taken
as initial values and the whole network was fine-tuned by back-
propagation algorithm with end-to-end (Rumelhart et al., 1986).

Table 4 summarizes the algorithm and training procedure for
RBM-CapsNet. q1 and q2 represent the parameters of the hidden
feature and PrimaryCaps layers, respectively. f1 and f2
represent the operations in RBM1 and RBM2, respectively. The
hf_layer and pc_layer denote the output from the hidden feature
and PrimaryCaps layers, respectively. After training RBM1 and
Frontiers in Pharmacology | www.frontiersin.org 5
RBM2 individually (lines 1–6), the pc_layer was packed as
capsules u (line 10). The routing algorithm was then used to
generate the digit capsules (lines 11–18). Len is the length of the
output of DigitCaps layer (lines 19). Lines 20 to 24 are for a
network parameter update using a gradient step (∂L/∂W
represents the gradient of the contribution matrix, and ∂L/∂q1
and ∂L/∂q2 represent the gradients of the parameters for the
hidden feature and PrimaryCaps layers, respectively).

Data Sets
In this investigation, the Doddareddy's hERG blockade data set
was used to establish our models (Doddareddy et al., 2010), which
includes literature compounds tested on the hERG channel and
Food and Drug Administration (FDA)-approved drugs. This data
set contains a total of 2,644 compounds, including 1,112 positives
(hERG blocker, IC50 < 10 mM) and 1,532 negatives (hERG
nonblocker, IC50 > 30 mM). Doddareddy et al. partitioned this
data set into a training set and a test set (Doddareddy et al., 2010).
For comparison, the same partition scheme for the training and
test sets as that by Doddareddy et al. was adopted in this
invest igation. Furthermore, we used Doddareddy 's
experimentally validated dataset (a total of 60 compounds: 50
agents from the Chembridge database and 10 from an in-house
compound library) as an external validation set to assess the
generalization ability of our models. In order to compare the
performance of our models with others reported in the literature,
we also used the same data sets as those in the literature, including
Hou's (Wang et al., 2012; Wang et al., 2016), Zhang's (Zhang et al.,
2016), Sun's (Sun et al., 2017), Siramshetty's (Siramshetty et al.,
2018), and Cai's (Cai et al., 2019) data sets. Here, it is necessary to
mention that an integrated data set of hERG blockade, which is the
largest database to date, has been collected by Sato et al. (2018).
However, we did not use this data set because it was not accessible.
Another reason was that this data set has not been used to develop
prediction models so far, and hence, a comparison study involving
the data set was not feasible.
TABLE 3 | Hyperparameter settings of restricted Boltzmann machine-capsule
networks (RBM-CapsNet).

Hyperparameter Setting

Numbers of RBM 2
Number of nodes in the hidden feature layer 256
Number of nodes in the PrimaryCaps layer 128
Iteration of RBM 100
Iteration of network 200
Learning rate of RBM 0.001
Learning rate of network 0.005
Activation Relu
Batch size 148
Optimizer Adam
Routing time 2
Dimension of each capsule 8
Length of PrimaryCaps 2
Length of DigitCaps 2
FIGURE 2 | Architecture of restricted Boltzmann machine-capsule networks (RBM-CapsNet). The input is one-dimensional vector containing 179 components. The
hidden feature layer and PrimaryCaps layer consist of 256 and 128 nodes, respectively. The weight matrix between PrimaryCaps layer and DigitCaps layer is
8×8×2×2, and two dynamic routing iterations were adopted.
January 2020 | Volume 10 | Article 1631
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Molecular Characterization
In this investigation, a combination of MACCS (MDL Molecular
Access) molecular fingerprints (166 bits) and 13 molecular
descriptors was utilized to characterize the chemical
compounds, which has been used by Zhang et al. and showed
a good predictive performance in hERG blockade classification
modeling (Zhang et al., 2016). Another reason why we adopted
this characterization method (MACCS+13 descriptors, a total of
179 features) is because of their short length which is important
for the reduction of the number of parameters in the modeling
and the training time. By the way, the 13 molecular descriptors
were selected because they are thought to be very related to
ADMET properties and have been widely used in the modeling
of various ADMET properties (Hou and Wang, 2008; Hou et al.,
2009; Wang et al., 2012; Zhang et al., 2016). A detailed list of
these descriptors are given as follows: the octanol-water
partitioning coefficient, apparent partition coefficient at pH =
7.4, molecular solubility, molecular weight, number of hydrogen
bond donors, number of hydrogen bond acceptors, number of
rotatable bonds, number of rings, number of aromatic rings, sum
of the oxygen and nitrogen atoms, polar surface area, molecular
fractional polar surface area, and molecular surface area.
Frontiers in Pharmacology | www.frontiersin.org 6
All the molecular fingerprints and molecular descriptors were
computed with RDKit (Landrum, 2018) and PaDEL-Descriptor
(Yap, 2011), respectively. Because the values of the different
descriptors might span significantly different numerical ranges,
their values were scaled to the same range (0, 1) by using the
following formula:

x* =
x −min

max −min
(5)

where x is the original value, x* is the scaled value, and max and
min are the maximum and minimum values of a
descriptor, respectively.

Model Assessment
All the models were assessed based on their accuracy (Q), sensitivity
(SE), and specificity (SP). Q reflects the total prediction effect of a
classifier. SE and SP represent the predictive power for positives and
negatives, respectively. The definitions are given as follows (TP, true
positive/blocker; TN, true negative/nonblocker; FP, false positive/
blocker; and FN, false negative/nonblocker):

Q =
TP + TN

TP + FP + TN + FN
(6)

SE =
TP

TP + FN
(7)

SP =
TN

FP + TN
(8)

The classification capability of models was measured by area
under the receive operating characteristic curve (AUC), which is
an important indicator to illustrate the classification
performance by changing its discrimination threshold.

Another measurement of the quality of binary (two-class)
classifications is the Matthew's correlation coefficient (MCC).
The MCC considers the balance ratios of the four confusion
matrix categories (TP, TN, FP, and FN), and reflects the
predictive power of models objectively without the influence of
the disproportionate ratio of positives to negatives in the dataset.
The MCC was calculated by using the following equation:

MCC =
TP � TN − FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FP + TNð Þ FP + TPð Þ FN + TNð Þ FN + TPð Þp (9)

Computations
All the calculations were carried out with a single dual-processor,
16-core 2.1 GHz Intel® Xeon® E5-2683 v4 CPU with 126 GB
memory and two NVIDIA Tesla P100 GPU accelerators. The
software modules that were used to implement this project
included Scikit-learn 0.18.1, Python 3.6.4, Anaconda 5.1.0 (64-
bit), and TensorFlow 1.4.0.
RESULTS

Selection of the Optimal Capsule Network
Architectures and Model Development
Hinton et al raised the concept of capsule network and proposed the
first capsule network architecture prototype (Sabour et al., 2017). To
TABLE 4 | Algorithm and training procedure of restricted Boltzmann machine-
capsule networks (RBM-CapsNet).

Algorithm: RBM-CapsNet training algorithm, using a mini-batch stochastic
gradient descent (SGD) for simplicity.
Input: mini batch feature vector (x);

Number of RBM training epoch (S1);
Number of Capsule training epoch (S2);
Number of dynamic routing iterations (iter).

Output: Length of each capsules (Len).
1: For n=1 to S1 do
2: hf layer← f1(x, q1)………………………………………{RBM1 training}
3: End for
4: For n=1 to S1 do
5: pc layer← f2(hf layer, q2)…………………………………{RBM2 training}
6: End for
7: For n=1 to S2 do
8: hf layer← f1(x, q1)
9: pc layer← f2(h1 layer, q2)
10: u←Encapule (pc layer )

11: For all capsule i in PrimaryCaps layer:û jji ←Wijui…………{contribution

computes Eq. 1}
12: For all capsule i in PrimaryCaps layer and capsule j in DigitCaps layer:bij ← 0
13: For m=1 to iter do
14: For all capsule i in PrimaryCaps layer: ……{softmax computes Eq. 2-1}

15: For all capsule j in DigitCaps layer:   sj ←  oicij û jji………{dynamic computes

Eq. 2-2}
16: For all capsule j in DigitCaps layer:vj ← squash(sj )…………{squash
computes Eq. 2-3}

17: For all capsule i in PrimaryCaps layer and capsule j in DigitCaps layer:  bij

←bij + û jji � vj
18: End for
19: Len← Length  of   v
20: L← loss  of   v………………………………………{loss computes Eq. 3}
21: W←W − ∂L= ∂W
22: q1← q1 − ∂ L= ∂ q1
23: q2← q2 − ∂ L= ∂ q2
24: End for
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find the optimal capsule network architectures for the modeling of
hERG blockade, we tried to construct a number of capsule networks
with different architectures following Hinton's principle. Here, the
Doddareddy's training set (positives: 1,004; negatives: 1,385) was
adopted to train all the models, and the five-fold cross-validation
method was used to monitor the training processes. In the five-fold
cross-validation, the training set was randomly divided into five
subsets. Of the five subsets, four subsets were used as the training
data, and the remaining subset was used as the validation data for
testing the model. The cross-validation process was repeated five
times, with each of the five subsets used exactly once as the
validation data. The average of the results from the five runs was
calculated to produce a single estimation. The five-fold cross-
validation results for the training set are given in Table 5.
According to these results, Conv-CapsNet and RBM-CapsNet
showed the best performance. For the Conv-CapsNet model, the
prediction accuracies for the hERG blockers (SE) and the hERG
nonblockers (SP) were 88.6 and 89.1%, respectively, and the overall
prediction accuracy (Q) was 88.9%. For the RBM-CapsNet model,
the prediction accuracies for hERG blockers and nonblockers were
84.3 and 89%, respectively and the overall prediction accuracy was
87.0%. Importantly, the MCC values of Conv-CapsNet and RBM-
CapsNet were 0.774 and 0.734, respectively, which were also the
highest among all the MCC values (Table 5); a higher MCC value
often indicates a better prediction power of model. Therefore, the
architectures of Conv-CapsNet and RBM-CapsNet were chosen as
our capsule network architectures, and a detailed description for
these architectures was given in theMaterials and Methods section.

Validation of Our Models’ Prediction Ability
Against hERG Blockers/Nonblockers by
Doddareddy’s Test Set and External
Validation Set
In the above subsection, we obtained the optimal architectures of
capsule networks. With these capsule network architectures, two
classification models of hERG blockers/nonblockers, Conv-
Frontiers in Pharmacology | www.frontiersin.org 7
CapsNet and RBM-CapsNet models have been developed. To
verify the predictive ability of these models, two test sets that are
independent of the training set were used: Doddareddy's test set
(positives: 108; negatives: 147) and external validation set
(positives: 18; negatives: 42).

Table 6 summarizes the prediction results of the Conv-
CapsNet and RBM-CapsNet models. From Table 6, we can see
that both models show excellent prediction ability to the
Doddareddy's test set and external validation set. With the
Conv-CapsNet model, of the 108 blockers in the test set, 102
were correctly predicted, indicating a prediction accuracy of
94.4% for the blockers (SE). For the 147 nonblockers, 132
(TN) were properly predicted. The accuracy for the prediction
of nonblockers (SP) was 89.8%. Of all the 255 agents (blockers
and nonblockers), 234 were correctly predicted and 20 were
wrongly predicted (see Table 6). The overall prediction accuracy
(Q) and AUC measure were 91.8% and 0.940 (see Figure 3),
respectively. For the external validation set, of the 18 blockers, 16
(TP) were correctly discriminated from nonblockers. The
prediction accuracy for the blockers (SE) was 88.9%. Of the 42
nonblockers, 30 (TN) were correctly predicted, indicating a
prediction accuracy of 71.4% for the nonblockers (SP). Totally,
46 out of 60 compounds were correctly predicted. The overall
prediction accuracy (Q) and AUC measure were 76.7% and
0.806, respectively. With the RBM-CapsNet model, in the test
set, 99 (TP) out of 108 blockers were correctly predicted,
indicating a prediction accuracy of 91.7%. Out of 147
nonblockers, 136 (TN) were correctly predicted, indicating a
prediction accuracy of 92.5% for nonblockers. This model
achieved an overall prediction accuracy of 92.2%. For the
external validation set, the prediction accuracies for blockers
(SE) and nonblockers (SP) were 94.4 and 71.4%, respectively.
TABLE 5 | Prediction results of hERG blockers/nonblockers classification
models developed by capsule networks with different architectures.

Capsule network architecture SE SP MCC SD Q (%)

Original CapsNet 80.4% 86.7% 0.673 0.0141 84.1%
FC+FC 82.6% 86.7% 0.694 0.0195 85.0%
Conv+FC 82.2% 86.4% 0.687 0.0166 84.6%
Conv+FC+FC (Conv-CapsNet) 88.6% 89.1% 0.774 0.0109 88.9%
Conv+Conv+FC+FC 84.5% 85.3% 0.693 0.0142 84.9%
Conv+Conv+Conv+FC+FC 81.9% 86.9% 0.685 0.0173 84.9%
One RBM 83.1% 86.5% 0.694 0.0182 84.9%
Two RBMs (RBM-CapsNet) 84.3% 89.0% 0.734 0.0160 87.0%
Three RBMs 84.5% 85.5% 0.696 0.0160 85.0%
Four RBMs 81.2% 86.0% 0.673 0.0108 83.9%
Five RBMs 84.1% 86.4% 0.701 0.0156 85.4%
*Conv, convolutional operation; FC, fully connected operation; RBM, restricted Boltzmann
machine; Conv-CapsNet, convolution-capsule network; RBM-CapsNet, restricted Boltz-
mann machine-capsule network (The training set used was the Doddareddy's training set,
and five-fold cross-validation was used to monitor the training performance. SE (%),
sensitivity; SP (%), specificity; MCC, Matthew's correlation coefficient; SD, standard
deviation; Q (%), overall accuracy). Conv-CapsNet and Conv-CapsNet showed the best
performance.
TABLE 6 | Prediction accuracies of hERG blockade classification models
developed by different methods with the same Doddareddy's training set.

Model SE SP MCC Q (%) AUC

Doddareddy's test set (255/P:108, N:147)
Conv-CapsNet 94.4% 89.8% 0.835 91.8% 0.940
RBM-CapsNet 91.7% 92.5% 0.840 92.2% 0.944
CNN 87.0% 85.0% 0.715 85.9% 0.933
MLP 82.4% 86.4% 0.687 84.7% 0.920
DBN 72.2% 80.8% 0.533 80.8% 0.903
SVM 90.7% 84.4% 0.743 87.1% 0.933
kNN 69.4% 96.6% 0.703 85.1% 0.928
Logistic regression 88.8% 83.7% 0.710 85.5% 0.858
LightGBM 79.6% 82.3% 0.617 81.2% 0.810

Doddareddy's external validation (60/P:18, N:42)
Conv-CapsNet 88.9% 71.4% 0.554 76.7% 0.806
RBM-CapsNet 94.4% 71.4% 0.604 78.7% 0.811
CNN 94.4% 52.4% 0.441 65.0% 0.725
MLP 88.9% 57.1% 0.426 66.7% 0.707
DBN 88.9% 52.4% 0.386 63.3% 0.683
SVM 88.9% 52.4% 0.386 63.3% 0.660
kNN 77.8% 52.4% 0.279 60.0% 0.624
Logistic regression 83.3% 52.4% 0.332 61.7% 0.623
LightGBM 61.1% 59.5% 0.190 60.0% 0.609
January 20
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(TP, true positive; TN, true negative; FP, false positive; FN, false negative; SE (%), sensi-
tivity, SE = TP/(TP + FN); SP (%), specificity, SP = TN/(TN + FP); Q (%), overall accuracy,
Q = [TP + TN)/(TP + TN + FP + FN)].
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The overall prediction accuracy (Q) and the MCC values were
78.7% and 0.604, respectively. AUC for the test and external
validation sets were 0.944 (see Figure 3) and 0.811, respectively.
All of these results clearly demonstrate that the established
Conv-CapsNet and RBM-CapsNet models can not only
correctly classify the training set compounds but also have an
outstanding predictability for external agents outside of the
training set.

Comparison of Our Models With Other
Models Developed With the Same
Doddareddy’s Training Set
To compare the performance of our models with that of others,
we adopted commonly used machine learning methods to
develop prediction models of hERG blockers/nonblockers with
the same Doddareddy's training set. These machine learning
methods include deep belief network (DBN), CNN, multilayer
perceptron (MLP), SVM, kNN, logistic regression (LR), and
LightGBM. Hyperparameters for these methods were
optimized by five-fold cross-validation in advance, and the
optimal hyperparameter values are listed in Tables S1–S4,
respectively. The prediction results to the Doddareddy's test set
and external validation set are also given in Table 6. From Table
6, we can see that the prediction accuracies of the seven models
are obviously lower than those of our Conv-CapsNet and RBM-
CapsNet models.

Comparison of Our Models With Other
Models Developed With Training Sets
Different From Doddareddy’s Training Set
It has been well known that the performance of a prediction
model is often strongly dependent on the training set used.
Therefore, to make a more objective comparison, we collected
various hERG blockade classification models developed with
training sets different from Doddareddy's training set. With
these training sets, we established a series of new prediction
models by the Conv-CapsNet and RBM-CapsNet methods. To
avoid a possible influence of molecular features, the same
Frontiers in Pharmacology | www.frontiersin.org 8
molecular features used in the literature were used. Table 7
summarizes the prediction accuracies of various models reported
in the literature together with those of models by Conv-CapsNet
and RBM-CapsNet.

Entry 1–3 of Table 7 list models developed with Hou's
training set 1 (positives: 283; negatives: 109), training set 2
(positives: 272; negatives: 120), and training set 3 (positive:
314; negative: 306), respectively. In Hou's training sets 1 and 2,
a threshold of 40 µM was used to distinguish hERG blockers and
nonblockers (blockers: IC50 < 40 µM; nonblockers: IC50 ≥ 40
µM). With training sets 1 and 2, Hou et al. established three
models by RP, NB, and SVM methods, and the SVM models
showed the best performance on their test sets. In Hou's training
set 3, a threshold of 30 µM was used to define hERG blockers and
nonblockers. A Bayesian classification model developed by Hou
et al. with Hou's training set 3 gave a prediction accuracy of 85%
on their test set. With Hou's training sets 1–3, we also separately
established models by Conv-CapsNet and RBM-CapsNet
methods. As shown in Table 7 , our models showed
comparable or superior performance compared with Hou's
models. Entry 4 in Table 7 shows models established by
Zhang's training set (positives: 717; negatives: 210), in which a
threshold of 30 µM was used to define hERG blockers and
nonblockers. With the training set, Zhang et al. built two models
by using SVM and kNN methods, which gave prediction
accuracies of 83.5 and 82.2%, respectively, on their test set.
Our models, developed by Conv-CapsNet and RBM-CapsNet,
exhibited a better performance on the same test set (prediction
accuracies: 84.5 and 85.2%, respectively). Entry 5 in Table 7
displays models developed with Sun's training set, which is a big
data set consisting of 3,024 agents (positives: 483; negatives:
2,541) with a threshold of 30 µM for defining hERG blockers and
nonblockers. With the training set, Siramshetty et al. established
two models by using LibSVM and RF methods, and their
prediction accuracies on the test set were 71.0 and 74.0%,
respectively. Our models offered much higher prediction
accuracies (Conv-CapsNet: 83.3%; RBM-CapsNet: 86.3%).
Entry 6 in Table 7 shows models built with Siramshetty's
FIGURE 3 | Receiver operating characteristic (ROC) curves for Doddareddy's test set by (A) convolution-capsule networks (Conv-CapsNet) and (B) restricted
Boltzmann machine-capsule networks (RBM-CapsNet), respectively.
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training set T3 which were extracted from the ChEMBL
database. In this training set, agents with a binding affinity of
less than 1 µM were defined as hERG blockers, and those with a
binding affinity of greater than 10 µM were defined as hERG
nonblockers. With the training set, Siramshetty et al. established
two models by using LibSVM and RF methods, and their
prediction accuracies on their test set were 78.0 and 81.0%,
respectively. Our Conv-CapsNet and RBM-CapsNet models gave
prediction accuracies of 87.1 and 87.8%, respectively, which are
obviously higher than those of LibSVM and RF models. Very
recently, Cai et al. developed a deep learning model, termed
deephERG, to predict hERG blockers with a large dataset
containing 7,889 compounds (Cai et al., 2019). To make a
comparison, we also used the same datasets to train and test
hERG blocker prediction models. With the same validation set
and evaluation method as those in Cai's work, our Conv-
CapsNet (AUC = 0.974) and RBM-CapsNet (AUC = 0.978)
showed a better performance than their deephERG (AUC =
0.967) (see Table S5). Collectively, for different training sets
given here, the models developed by Conv-CapsNet and RBM-
CapsNet were among the best models established by various
machine learning methods.
DISCUSSION

Since the first capsule networks were proposed by Hinton's group
in 2017 (Sabour et al., 2017), they have attracted considerable
attention because of their performance. For example, despite the
simple three-layer architecture of the original capsule networks,
they have achieved state-of-the-art results with 0.25% test error
on Mixed National Institute of Standards and Technology
Frontiers in Pharmacology | www.frontiersin.org 9
database (MNIST) without data augmentation, which is better
than the previous baseline of 0.39% (Sabour et al., 2017). The
excellent performance of capsule networks is mainly due to the
introduction of the capsules and dynamic routing algorithms. A
capsule is a set of neurons that forms a vector. These vectors
contain information including the magnitude/prevalence, spatial
orientation, and other attributes of the extracted feature. In the
capsule networks, capsules are “routed” to any capsule in the
next layer via a dynamic routing algorithm, which takes into
account the agreement between these capsule vectors, thus
forming meaningful part-to-whole relationships not found in
standard CNNs. In other words, capsule networks are capable of
catching and holding more fine information than traditional
deep neuron networks, one benefit of which is that the amount of
input data can be significantly reduced.

Although CapsNets were just proposed very recently, they
have already been successfully applied in many fields (Afshar
et al., 2018; Kumar, 2018; Lalonde and Bagci, 2018; Li et al., 2018;
Liu et al., 2018; Mobiny and Van Nguyen, 2018; Qiao et al., 2018;
Zhao et al., 2018; Peng et al., 2019). Among these applications,
majorities are related to image recognition. For example, Afshar
et al. (2018) established a CapsNet for brain tumor classification
by recognizing brain magnetic resonance imaging (MRI) images
and proved that it could successfully overcome the defects of
CNNs. Kumar (2018) proposed a novel method for traffic sign
detection using a CapsNet that achieved outstanding
performance, the input of which was traffic sign images. Li
et al. (2018) built a CapsNet to recognize rice composites from
unmanned aerial vehicle (UAV) images. This is understandable
because CapsNets were originally developed to overcome the
defects associated with image recognition in the traditional deep
learning networks.
TABLE 7 | Prediction results of various hERG blockade classification models developed with training sets different from Doddareddy's training set.

Entry Model Training set Test set SE SP Q

1 RP (Wang et al., 2016) Hou's training set 1
(P: 283; N: 109)

Hou's test set 1
(P: 129; N: 66)

79.8% 75.8% 78.5%
NB (Wang et al., 2016) 82.2% 75.8% 80.0%
SVM (Wang et al., 2016) 90.7% 65.2% 82.1%
Conv-CapsNet 85.7% 78.8% 82.0%
RBM-CapsNet 84.1% 80.3% 82.0%

2 RP (Wang et al., 2016) Hou's training set 2
(P: 272; N: 120)

Hou's test set 2
(P: 140; N: 55)

80.0% 74.5% 78.5%
NB (Wang et al., 2016) 81.4% 80.0% 81.0%
SVM (Wang et al., 2016) 85.0% 74.5% 82.1%
Conv-CapsNet 82.1% 81.8% 82.0%
RBM-CapsNet 81.4% 83.6% 82.0%

3 Bayesian (Wang et al., 2012) Hou's training set 3
(P: 314; N: 306)

Hou's test set 3
(P: 63; N: 57)

86.9% 83.1% 85.0%
Conv-CapsNet 87.3% 86.0% 86.8%
RBM-CapsNet 88.9% 84.2% 86.8%

4 SVM (Zhang et al., 2016) Zhang's training set
(P: 717; N: 210)

Zhang's test set
(P: 188; N: 48)

95.8% 34.0% 83.5%
kNN (Zhang et al., 2016) 92.6% 40.4% 82.2%
Conv-CapsNet 88.8% 66.7% 84.5%
RBM-CapsNet 90.4% 64.6% 85.2%

5 LibSVM (Siramshetty et al., 2018) Sun's training set
(P: 483; N: 2541)

Sun's test set
(P: 53; N: 13)

68.0% 85.0% 71.0%
RF (Siramshetty et al., 2018) 72.0% 85.0% 74.0%
Conv-CapsNet 83.0% 84.6% 83.3%
RBM-CapsNet 86.8% 84.6% 86.3%

6 LibSVM (Siramshetty et al., 2018) Siramshetty's training set
T3 (P: 1406; N: 1708)

Doddareddy's test set
(P: 108; N: 147)

64.0% 89.0% 78.0%
RF (Siramshetty et al., 2018) 68.0% 91.0% 81.0%
Conv-CapsNet 85.2% 88.4% 87.1%
RBM-CapsNet 83.3% 91.2% 87.8%
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In image recognition, the input data is a two-dimensional
array. In this two-dimensional array data, adjacent data points
are often highly correlated. Small changes in any points generally
do not affect image recognition in traditional deep learning
methods. However, in issues related to drug discovery, such as
the evaluation of ADMET properties (like the prediction of
hERG blockers), one-dimensional vectors that describe small
molecular structures and properties are usually used as the
network input, for example, molecular fingerprints and
descriptors. Generally, there is no direct logical relationship
between the components in each vector for this kind of input.
Importantly small changes in vector components might have a
significant impact on the entire molecular structure and its
associated properties. Nevertheless, these small changes in
vector components are often overlooked in traditional deep
learning methods. In addition, the relative positions of vector
components are often critical though there is no direct logical
relationship between them because a vector component
represents a substructure or property. In this situation, capsule
networks, which adopt vector neurons, are expected to have a
better performance in handling this kind of issue (like the hERG
blocker modeling) than other deep scalar neuron networks.

As expected, the two established capsule networks, Conv-
CapsNet and RBM-CapsNet, showed excellent performance in
the classification of hERG blockade. Although this is the first
application of capsule networks in the classification of hERG
blockers/nonblockers, the established models are still among the
best classification models for hERG blockers/nonblockers. There
can be no doubt that the use of capsules or vector neurons is one
of the main reasons that contribute to the excellent performance
of our models. Here each capsule represents a combination of
substructures and/or properties. Analogy to the case in image
recognition, the length of each capsule is the probability that the
combination of substructures or properties exists in a molecule,
and the orientation may represent the relative position of the
combination of substructures in a compound. Obviously, our
capsule networks can learn some combinations of substructures
and/or properties that are important for the hERG blockers or
nonblockers. Even so, we have to acknowledge that the
prediction models of hERG blockers/nonblockers developed by
the new capsule networks are still like a black box. Some
Frontiers in Pharmacology | www.frontiersin.org 10
questions regarding the models are difficult to answer. For
example, we can't exactly know what the combination of
substructures and/or properties is, and which features are
important to the model and which samples are hard to classify.
Overall, the application of capsule networks in drug discovery is
still in its infancy. Further improvement of capsule networks and
applications in drug discovery are necessary in future studies.
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