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High glucose (HG) increases the production of reactive oxygen species (ROS), leading to
decreased glutamate uptake in Müller cells. The transient receptor potential cation
channel 6 (TRPC6) channel, an oxidative stress-sensitive Ca2+-permeable cationic
channel, is readily detected in Müller cells and highly expressed under HG conditions.
Yet, the effect of high glucose-induced TRPC6 channel activation in Müller cells is poorly
understood. We hypothesized that TRPC6 channel activation mediates high glucose-
induced decreases in Müller cell glutamate uptake. We found RNA interference (RNAi) of
the TRPC6 channel abolished HG-induced decreases in glutamate uptake and cell death.
HG also decreased the expression of the glutamate-aspartate transporter (GLAST), which
is the most important transporter involved in glutamate uptake. The mRNA level of ciliary
neurotrophic factor (CNTF) in rMC-1 cells and the release of CNTF in the culture media
was decreased, but the mRNA levels of IL-6 and vascular endothelial growth factor (VEGF)
were increased under HG conditions. After RNAi silencing in rMC-1 cells, the mRNA levels
of CNTF increased, but IL-6 and VEGF levels decreased. Furthermore, TRPC6
knockdown (KD) decreased expression of glial fibrillary acidic protein (GFAP) and
increased expression of Kir4.1, pointing to inhibition of HG-induced gliosis in rMC-1
cells. ROS and intracellular Ca2+ levels decreased after TRPC6 knockdown. Exposure to
Hyp9 (10 mM), a highly selective TRPC6 channel agonist, can aggravate HG-induced
pathological changes. Collectively, our results suggest TRPC6 channel activation is
involved in HG-induced decreases in glutamate uptake in rMC-1 cells. These findings
provide novel insights into the role of TRPC6 in HG-induced retinal neurovasculopathy and
suggest TRPC6 is a promising target for drug development for diabetic retinopathy (DR).
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INTRODUCTION

Diabetic retinopathy (DR) is a leading cause of blindness in
working-aged populations in developed countries and is
traditionally regarded as a disorder of the retinal vessels.
However, recent evidence demonstrates the pathogenesis of DR
includes not only vascular changes, but also neuronal damage
(Puro, 2002). It is becoming clear that changes in neuronal function
and viability occur before blood-retina barrier (BRB) abnormalities
in patients with diabetes and in diabetic animals (Martin et al.,
2004; Barber et al., 1998). Unfortunately, the molecular and cellular
mechanisms involved in the alteration and survival of retinal
neurons in DR are poorly understood.

Retinas exposed to high glucose experience oxidative stress due
to the increased production of reactive oxygen species (ROS),
which is a key contributor to DR development (Lowell and
Shulman, 2005). ROS target various mechanisms that contribute
to DR, among which impairment of the glutamate-aspartate
transporter (GLAST) in Müller cells has emerged as an
important disease mechanism (Li and Puro, 2002). The GLAST
is the only glial-type glutamate transporter in the retina (Harada
et al., 1998). Therefore, glutamate clearance in the retina is mainly
regulated by Müller cells. Glutamate is the major retinal excitatory
neurotransmitter and is toxic when present at high concentrations,
ultimately resulting in neurodegeneration (Sucher et al., 1997). Low
extracellular glutamate levels in the retina are only possible with
normally functioning Müller cells, which transport glutamate into
cells through the GLAST on the cell membrane. It is clear diabetes-
induced neuronal excitotoxicity damage is caused by excessive
glutamate levels, which are typically the result of high levels of ROS
in Müller cells (Puro, 2002; Jadhav et al., 2009). Some studies have
shown reducing ROS production through the use of some
antioxidants, such as superoxide dismutase (SOD), green tea, and
taurine, can rescue the activity of the GLAST in Müller cells under
HG conditions (Zeng et al., 2010; Silva et al., 2013). It is clear ROS
generation is intracellular-Ca2+ dependent, and blocking Ca2+

influx can reduce the production of ROS (Yang et al., 2011).
The transient receptor potential canonical (TRPC) family

(TRPC1–TRPC7) contributes to calcium influx, which is
involved in the regulation of cell proliferation, differentiation,
and various physiological functions (Pedersen et al., 2005). In
particular, TRPC6 is one of the most extensively analyzed TRPC
channels; its expression and function have been investigated in the
retina, central nervous system, kidneys, and cardiovascular system
(Onohara et al., 2006; Tai et al., 2008; Sachdeva et al., 2018). One
study showed that TRPC6 expression levels were significantly
higher in the retina of diabetic mice compared to normal mice,
indicating an upregulation of TRPC6 transcripts under diabetic
conditions, which was considered a response to the oxidative stress
present under HG conditions (Sachdeva et al., 2018). At the cellular
level, the TRPC6 channel has been identified in Müller cells (Da
Silva et al., 2008), monocytes (Wuensch et al., 2010), platelets (Liu
et al., 2008), podocytes (Yang et al., 2013), and hippocampal
neurons (Liu et al., 2017). The ubiquitous distribution of TRPC6
indicates it may play roles in a wide range of physiological
processes. TRPC6 activation contributes to the disease state,
which is highlighted by the rescue of oxidative stress-induced
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dysfunction via TRPC6 channel inhibition (Liu et al., 2017).
Inhibition of the TRPC6 channel in THP-1 cells can reduce the
production of ROS under HG conditions (Li et al., 2019). However,
functional studies investigating the channel have not been
performed in Müller cells. Müller cells, spanning the whole retina
from the inner limitingmembrane to the outer limiting membrane,
are the predominant macroglia and retinal-supporting cells. Their
structural characteristics make Müller cells ideal cellular regulators
of physiological and pathological responses in the retinal
vasculature and neurons (Reichenbach and Bringmann, 2013).
Thus, the effect and mechanism by which TRPC6 channels
function in Müller cells under HG conditions need to
be investigated.

Here, we hypothesized that the TRPC6 channel mediates
decreased glutamate uptake in Müller cells, because TRPC6
channel activation increases intracellular Ca2+ concentrations,
which is required for ROS generation. To address our hypothesis,
we selected rat Müller cells (rMC-1), which are known to express
TRPC6. The levels of TRPC6, GLAST, Kir 4.1, and GFAP in rMC-
1 cells under HG conditions were analyzed by Western blotting.
Glutamate uptake assays were used to determine the activity of the
GLAST. Cell viability was assayed by CCK-8 assays. Cell apoptosis
was evaluated by TUNEL assays and caspase-3 activity.
Intracellular ROS levels were measured using the CM-
H2DCFDA assay. A cell-based fluorometric assay was used to
measure intracellular Ca2+ concentrations in rMC-1 cells loaded
with a fluorescent Ca2+ indicator. The release of CNTF, IL-6, and
VEGF from rMC-1 cells, and the mRNA levels of CNTF, IL-6, and
VEGF in rMC-1 cells were evaluated by ELISA and qRT-PCR.
MATERIALS AND METHODS

Cell Culture and TRPC6 siRNA
Transfection
A rat Müller cell line (rMC-1) was purchased from Kerafast Inc.
(Boston, MA). Cells were cultured in DMEM media plus 10%
fetal bovine serum and 1% penicillin streptomycin and
maintained at 37°C in a humidified 5% CO2 atmosphere. The
medium was changed every 48 h. Cells cultured in 5 mmol/L
glucose served as the control. Cells cultured in 25 mmol/L
glucose represented the high glucose (HG) condition. rMC-1
cells grown in mannitol (20 mmol/L) served as the osmotic
control. rMC-1 cells were used within passages 10 to 20.

To knock down the expression of TRPC6, we transfected the
rMC-1 cells with siRNA, specifically targeting rat TRPC6 (sense,
5 ’- CAUACAUGUUUAAUGAUCAtt-3 ’ , antisense, 5 ’-
UGAUCAUUAAACAUGUAUGct-3’) or negative control
(NC) siRNA (sense, 5’-UUCUCCGAACGUGUCACGUTT-30,
and antisense, 50-ACGUGACACGUUCGGAGAATT-3’). The
oligonucleotides were mixed with the Lipofectamine RNAiMAX
Transfection Reagent (Life Technologies, Grand Island, NY,
USA) according to the manufacturer’s protocol. After rMC-1
cells were grown to 50% confluency in different plates, cells were
transfected. Media was replaced with HG media 7 h after
transfection, and incubation continued for 48 h.
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Analysis of Cell Viability
The viability of rMC-1 cells was evaluated by CCK-8 assays using
a microplate reader. Briefly, rMC-1 cells were seeded in 96-well
plates at a density of 10 × 103 cells/well and cultured for 48 h.
Then, cells were incubated in DMEM in the presence or absence
of high glucose combined with or without Hyp9 (5 and 10 mM)
for 48 h. Subsequently, the cells were incubated with the CCK-8
reagent for 2 h at 37°C. Finally, the optical density at 490 nm was
measured with a microplate reader (Bio-Tek, Inc., Winooski, VT,
USA). Measurements of each of these conditions were repeated
three times in the same plate.

Enzyme-Linked Immunosorbent Assays
(ELISAs)
Cells in 96-well plates were incubated in 50 ml culture media with
or without HG for 48 h, and the culture supernatants were
collected. The concentrations of CNTF, VEGF, and IL-6 were
determined by enzyme-linked immunosorbent assays (ELISAs)
kits (R&D Systems, Minneapolis, MN, USA), according to the
manufacturer’s instructions.

Quantitative Real-Time PCR Analysis
(qRT-PCR)
Total RNA was extracted from cultured rMC-1 cells using
TRIzol (Life Technologies Inc., Gaithersburg, USA) according
to the manufacturer’s protocol. mRNA levels of CNTF, VEGF,
and IL-6 were quantified by qRT-PCR. The sequences of the
primers were as follows: CNTF (NCBI RefSeq NM_013166.1), F
5 ’ - CGACTCCAAGAGAACCTCCA-3 ’ and R 5 ’ -
CCTTCAGTTGGGGTGAAATG-3’, IL-6 (NCBI RefSeq NM_
012589.2), F 5’- TCCTACCCCAACTTCCAATGCTC-3’ and R 5’-
TTGGATGGTCTTGGTCCTTAGCC-3’, VEGF (NCBI RefSeq
NM_ 031836.3), F 5’- GCACCCACGACAGAAGG-3’ and R 5’-
TGAACGCTCCAGGATTTA-3’, b-actin (NCBI RefSeq NM_
031144.3), F 5’-CACTGCCGCATCCTCTTCCTC-3 and R 5’-
TGCTGTCGCCTTCACCGTTCC-3’. b-actin served as the
internal control. CNTF, VEGF, and IL-6 mRNA levels were
normalized to b-actin levels, which served as the endogenous
control to ensure equal starting amounts of cDNA. The control
groupwas set as the calibrator with a value of 1, and the other groups
were compared to this calibrator.

Western Blot Analyses
rMC-1 cells, treated as described previously, were homogenized in
lysis buffer (0.05 M Tris-HCl, pH 7.4, 0.15 M NaCl, 0.25%
deoxycholic acid, 1% NP-40, 1 mM EDTA). The protein samples
were separated by SDS-PAGE and electroblotted onto a
polyvinylidene fluoride membrane (Millipore, Bedford, MA,
USA). After being blocked in 4% skim milk, the membrane was
incubated at 4°C overnight with rabbit anti-TRPC6 (1:500; Abcam,
Shatin, Hong Kong), rabbit anti-GLAST (1:500; Abcam, Shatin,
Hong Kong), rabbit anti-Kir4.1 (1:1,000; Abcam, Shatin, Hong
Kong), and rabbit anti-GFAP (1:5,000; Abcam, Shatin, Hong
Kong) antibodies. Anti-beta-actin (1:1,000 dilution, Cell Signaling
Technology, Beverly, MA, US) was used as a loading control. The
Frontiers in Pharmacology | www.frontiersin.org 3
intensity of the bands was quantified by densitometry using Image J
software (NIH, USA).

Immunohistochemistry and Transferase-
Mediated dUTP Nick-End Labeling
Staining
To detect individual apoptotic cells, staining for transferase-
mediated dUTP nick-end labeling staining (TUNEL) was carried
out using a DeadEnd™ fluorometric TUNEL system kit
(Promega, Madison, WI, US) according to the manufacturer’s
instructions. Cell nuclei were counterstained with DAPI (1 mg/
ml; Beyotime Institute of Biotechnology, Jiangsu, China).
Samples were observed under a confocal laser scanning
microscope (Zeiss LSM510; Carl Zeiss, Thornwood, NY). The
numbers of total and TUNEL-positive nuclei were counted and
analyzed using ImageJ/Imaris software.

Intracellular Ca2+ Measurements
Intracellular Ca2+ levels were quantitatively determined by Fluo3/
AM fluorescence. rMC-1 cells were incubated with the Ca2+

indicator (Fluo3-AM; 10 mM) for 0.5 h at 37°C in the dark, after
which rMC-1 cells were washed twice to remove excess stain.
Finally, the FLUo3-dependent fluorescence was determined by a
FACScan at 488-nm excitation and 530-nm emission wavelengths.

Measurement of Intracellular ROS
Generation
rMC-1 cells prepared with different treatments as described
above were seeded in 96-well plates and grown to 85%
confluence. The generation of intracellular ROS was detected
by the dichlorodihydrofluorescein (DCF) method using 5-(and-
6)- carboxy-2’,7’-dichlorodihydrofluorescein diacetate (carboxy-
H2DCFDA). The cells were gently washed with PBS and
incubated with 3 mM carboxy-H2DCFDA in phenol red–free
medium at 37°C for 30 min. Cells were washed with and
maintained in SBS before images were captured using a cell
imaging system. Image J software was used for analysis of
fluorescent intensity.

Glutamate Uptake Assay
rMC-1 cells were cultured in 24 well plates. The culture medium
was removed, and the cells were incubated with medium
containing mannitol and 5 mmol/L glucose or 25 mmol/L
glucose for 24 h at 37°C. To determine the glutamate uptake
capacity in rMC-1 cells after pretreatment, the cells were washed
and incubated for 30 min in Kreb’s solution containing 119 mM
NaCl, 2.5 mM CaCl2, 4.7 mM KCl, 1.0 mM MgCl2, and 1.2 mM
KH2PO4. Then, rMC-1 cells were exposed to 10 mmol/l
unlabeled glutamate and 0.5 mCi/ml of L-[2,3-3H] glutamate
(New England Nuclear, Boston, MA, USA) for 60 min. L-
glutamate uptake was terminated by rapid removal of the
incubation buffer, and the cells were washed twice with ice-
cold PBS. rMC-1 cells were subsequently lysed, and small
aliquots were removed from each well for the determination of
protein content. L-[2,3-3H]-glutamate content was determined
by scintillation counting.
February 2020 | Volume 10 | Article 1668
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Detection of Activated Caspase-3
The enzymatic activity of the caspase-3 class of proteases in
rMC-1 cells was measured by a caspase-3 colorimetric assay kit
(Promega, Madison, WI, USA) as previously described (Ma et al.,
2018). The cleavage of a caspase-3 colorimetric substrate
(DEVD-pNA) was measured at 405 nm using a microplate
reader (Auto Bio Labtech Instruments, Co, Ltd, China).

Data Analysis
All experiments were performed at least three times, and the values
were presented as mean ± SD; statistical significance was assessed
using two-tailed Student’s t test or one-way ANOVA, followed by
Tukey’s post hoc test. P values are indicated with *, **, and ***,
which correspond to values of 0.05, 0.01, and 0.001, respectively.
RESULTS

Effects of the TRPC6 Channel on Müller
Cell Glutamate Uptake
The glutamate uptake assay showed that TRPC6 silencing
(Supplementary Figure 1) could ameliorate glutamate uptake
activity in retinal Müller cells under HG conditions. Exposure to
10 mM Hyp9 reduced glutamate uptake activity under HG
conditions (Figure 1).

The synaptic glutamate levels in the retina are mainly regulated
by the GLAST in Müller cells. DR caused downregulation of the
inwardly rectifying potassium channel Kir4.1, possibly resulting in
dysfunction of the GLAST (Napper et al., 1999). To determine the
effect of TRPC6 channel activation on the expression of the GLAST
and Kir 4.1, Western blot analysis was performed. We determined
GLAST and Kir4.1 expression in Müller cells decreased under HG
conditions (Figure 2). TRPC6 knockdown increased GLAST and
Kir 4.1 expression significantly (Figures 2 and 6).

Effect of the TRPC6 Channel on HG-
Induced Müller Cell Viability and Apoptosis
To evaluate the influence of the TRPC6 channel on Müller cell
viability, CCK-8 assays were used. Our results from three
independent experiments are summarized in Figure 3. rMC-1
cells showed high cell viability under HG conditions after TRPC6
knockdown. Exposure to Hyp9 resulted in a concentration-
dependent reduction in cell viability.

Consistent with previous reports, HG caused extensive cell
apoptosis. In contrast, cells exposed to normal glucose
concentrations or normal glucose plus mannitol (to exclude
potential osmotic effects caused by excess glucose) underwent
apoptosis at a much lower rate. HG caused significant cell
apoptosis and increases in caspase-3 activity (Figure 5D). TRPC6
knockdown prevented cell apoptosis and decreased cellular
caspase-3 activity (Figures 4 and 5C). These data indicate the
TRPC6 channel plays a key role in HG-induced cell apoptosis.

Effect of the TRPC6 Channel on ROS
Generation in Müller Cells
To examine the effects of the TRPC6 channel on Ca2+

concentrations in Müller cells, cells were loaded with a
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fluorescent Ca2+ indicator dye, and the fluorescence ratio (F420/
F480) was measured after excitation at 420 and 480 nm and served
as a direct index of Ca2+ concentration. A shown in Figure 5A, HG
increased the Ca2+ concentration in normal cells, but TRPC6
knockdown significantly decreased Ca2+ concentrations.

Previous studies have shown that Ca2+ signaling is required
for ROS production (Duan et al., 2007). As ROS are involved in
apoptosis and glutamate excitotoxicity (Flora et al., 2007), ROS
production due to HG conditions was studied using the ROS-
sensitive fluorescent dye CM-H2DCFDA. As shown in
Figure 5B, HG promoted intracellular ROS accumulation in
normal cells, but decreased concentrations in TRPC6
knockdown cells. Application of Hyp9 increased ROS
accumulation under HG conditions in normal cells.

Effect of the TRPC6 Channel on HG-Induced
Müller Cell Gliosis
The gliosis of Müller cells is characterized by an upregulation of
the immunoreactivity against intermediate fi lament
constituents vimentin and GFAP. GFAP protein was used as a
key marker of Müller cell gliosis under HG conditions. The
GFAP protein level in the HG group was higher than in the
normal control group (Figure 2). TRPC6 knockdown
significantly decreased the protein levels of GFAP under HG
conditions (Figure 6).

Effect of the TRPC6 Channel on CNTF, IL-6,
and VEGF Levels in Müller Cells and
Supernatants
We sought to examine the effects of TRPC6 knockdown on the
mRNA expression and release of CNTF, IL-6, and VEGF in
rMC-1 cells using an RNAi approach to reduce TRPC6 levels.
FIGURE 1 | Effect of the TRPC6 channel on rMC-1 cell glutamate uptake
under HG conditions. Glutamate uptake assays were performed in seven
groups: control, Hyp9, mannitol, HG, HG + siNC, HG + siTRPC6, and HG +
Hyp9 groups (n = 4). Data shown are mean ± SD, *p < 0.05, **p < 0.01.
February 2020 | Volume 10 | Article 1668
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HG treatment resulted in low mRNA expression and release of
CNTF in or from rMC-1 cells (Figures 7B and E), but high levels
of IL-6 (Figures 7A and D) and VEGF (Figures 7C and F).
TRPC6 knockdown increased the mRNA expression and release
of CNTF in or from rMC-1 cells and decreased the levels of IL-6
and VEGF. Exposure to 10 mM Hyp9 under HG conditions
enhanced the effects of HG-induced changes (Figure 7).
DISCUSSION

Hyperglycemia is a major risk factor for various human diseases.
Multiple studies have reported that the excitotoxicity caused by
elevated glutamate in the extracellular space in experimental
models of diabetes plays an important role in the
pathophysiology of DR (Lieth et al., 1998; Lieth et al., 2000;
Kowluru et al., 2001). Our results indicate Müller cells treated
with 25 mM glucose exhibit decreased glutamate uptake activity
Frontiers in Pharmacology | www.frontiersin.org 5
because of decreased expression of the GLAST. The GLAST in
Müller cells is mainly responsible for maintaining low synaptic
glutamate levels in the retina. Significant decreases in glutamate
transport mediated via the GLAST in Müller cells begins after
just 4 weeks in diabetic rat models (Puro, 2002), which is
consistent with reports showing significantly increased
glutamate accumulation in diabetic rat retinas (Lieth et al.,
1998; Lieth et al., 2000). Although the mechanism of
dysfunction of the GLAST in Müller cells under HG remains
unknown, Li et al. suggested that the dysfunction of GLAST is
mainly caused by increased ROS levels (Li and Puro, 2002). In
our study, inhibiting the generation of ROS under HG conditions
by downregulating the TRPC6 channel enhanced the expression
of the GLAST and improved the glutamate uptake activity of
Müller cells under HG conditions. Some other studies showed
that pro-inflammatory cytokines, such as IL-6 and TNFa, which
trigger astrocyte activation, can cause a reduction in excitatory
amino acid transporter (EAAT) expression. Activation of NFkB
FIGURE 2 | The protein levels of GLAST, Kir4.1, and GFAP in rMC-1 cells under HG conditions. (A) Western blotting was used for TRPC6, GLAST, Kir4.1, GFAP,
and actin in rMC-1 cells under HG conditions. (B) Densitometric analyses of TRPC6, GLAST, Kir4.1, and GFAP protein levels were standardized against actin protein
levels. Data are expressed as mean ± SD; n = 3 for each group; *p < 0.05, **p < 0.01, ***p < 0.001.
FIGURE 3 | The effect of the TRPC6 channel on rMC-1 cell viability under HG conditions. (A) Decreasing TRPC6 expression in rMC-1 cell prevents HG-induced
reductions in cell viability. (B) rMC-1 cells were treated with different concentrations (5 and 10 mM) of Hyp9. Activation of the TRPC6 channel by Hyp9 reduced cell
viability, which was concentration dependent. The data are expressed as mean ± SD, as a percentage of control; n = 3 for each group; *p < 0.05, **p < 0.01.
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FIGURE 4 | HG-induced rMC-1 cell apoptosis was inhibited by silencing TRPC6. TUNEL assays were used to detect cell apoptosis in rMC-1 cells. (A) The green
staining cells under HG conditions were found. (B) The percentage of TUNEL positive cells compared with the HG group. The HG group was set as 100%. The data
are expressed as mean ± SD; n = 3 for each group; *p < 0.05.
FIGURE 5 | The effect of the TRPC6 channel on intracellular Ca2+ concentrations, ROS generation, and caspase-3 activity under HG conditions. (A) Representative
images showing Fluo3 fluorescence as a function of cytosolic free Ca2+ in rMC-1 cells in different groups. (B) Densitometric analyses between different groups in (A).
(C) Generation of intracellular ROS was detected by the DCF method using carboxy-H2DCFDA. ROS production was inhibited by TRPC6 knockdown. (D) The high
caspase-3 activities in rMC-1 cells under HG conditions were prevented by TRPC6 knockdown. The data are expressed as mean ± SD; n = 3 for each group;
*p < 0.05, **p < 0.01, ***p < 0.001.
Frontiers in Pharmacology | www.frontiersin.org February 2020 | Volume 10 | Article 16686
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suppresses the transcription of EAATs. Loss of EAAT protein is
associated with reduced glutamate uptake (Furman and Norris,
2014). In this study, we found that the level of IL-6 under HG
condition decreased with TRPC6 knockdown. However, whether
the NFkB pathway is involved in glutamate uptake is unknown
and requires further research.
Frontiers in Pharmacology | www.frontiersin.org 7
The Kir4.1 channel is the major inwardly rectifying channel
in Müller cells and is widely thought to support K+ and
glutamate uptake by Müller cells (Pannicke et al., 2006).
Downregulation of the Kir4.1 channel when exposed to
oxidative stress leads to an imbalance in K+ concentration,
abnormal membrane depolarization, and subsequent swelling
FIGURE 6 | TRPC6 knockdown enhanced the protein content of GLAST and Kir4.1, but decreased the protein content of GFAP in rMC-1 cells under HG
conditions. (A) Western blotting was used for TRPC6, GLAST, Kir4.1, GFAP, and actin in rMC-1 cells. (B) Densitometric analyses of TRPC6, GLAST, Kir4.1, and
GFAP protein levels were standardized against actin protein levels. The data are expressed as mean ± SD, with the mean values for control set at 100%; n = 3 for
each group; *p < 0.05, **p < 0.01, ***p < 0.001.
FIGURE 7 | Effect of the TRPC6 channel on IL-6, CNTF, and VEGF expression and production in rMC-1 cells under normal glucose or HG conditions. The protein
levels of IL-6 (D), CNTF (E), and VEGF (F) secreted by rMC-1 in the medium were quantified by ELISA. mRNA levels of IL-6 (A), CNTF (B), and VEGF (C) were
determined by real-time PCR, and their values were standardized to b-actin mRNA levels in the same RNA sample. The data are expressed as mean ± SD; n = 3 for
each group; *p < 0.05, **p < 0.01, ***p < 0.001.
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of Müller cells contributing to Müller cell dysfunction, resulting
in gliosis and dysfunction of the GLAST, neuronal excitation,
glutamate toxicity, and neuronal death (Francke et al., 2001;
Pannicke et al., 2004; Olsen and Sontheimer, 2008). In our study,
the Kir4.1 channel expression level decreased under HG
conditions, GLAST expression levels decreased, and glutamate
uptake was compromised simultaneously, which was consistent
with previous studies.

The activity of Müller cells in response to oxidative stress
may have cytoprotective properties in the early stages after
damage and can be neuroprotective. However, this reaction can
lead to a greater level of response described as gliosis, presenting
as high levels of GFAP, which is detrimental to retinal tissue and
exacerbates neuronal death, resulting in an increase in the
retinal and vitreal levels of inflammatory factors, such as IL-6,
while also decreasing levels of neuroprotective factors, such as
CNTF (Bringmann et al., 2009). Some evidence indicates
neuronal cell death is induced by the gliosis of Müller cells
via the synthesis and secretion of inflammatory and
neuroprotein factors. High IL-6 and decreased CNTF levels
have been shown to contribute to retinal degeneration and
neurodegeneration in DR (Bringmann et al., 2006; Bringmann
et al., 2009). Furthermore, IL-6 has been found to be associated
with vascular dysfunction and the promotion of angiogenesis,
which suggest IL-6 may be a promising new therapeutic target
to prevent diabetes-induced vascular damage (Rojas et al.,
2010). In this study, we found the contents of CNTF secreted
by Müller cells decreased under HG conditions. Knockdown of
TRPC6 enhanced the secretion of CNTF and activation of
TRPC6, while Hyp9 decreased the CNTF content. The
opposite results were detected in the IL-6 content in the
medium and expression of GFAP in Müller cells. The results
showed that TRPC6 KD can prevent the gliosis of Müller cells
and may provide a neuroprotective external environment for
neurons in the retina.

Studies have suggested DR is a neurovascular disease of the
retina, and the relationship between the excitotoxicity mediated
by glutamate and the breakdown of the blood-retinal barrier
(BRB) induced by VEGF is an interesting pathway linked to
neurodegeneration with vascular impairment. Müller cells can
produce many vasoactive growth factors. VEGF, a potent
angiogenic and permeability growth factor, is known to be an
important cause of BRB breakdown during the development and
progression of retinal vascular diseases. It has been demonstrated
that hyperglycemia induces an increase in extracellular glutamate
levels in Müller cells, and subsequently, increased VEGF
production and BRB breakdown was detected (Kusari et al.,
2010; Shen et al., 2010). In this study, we have presented evidence
that enhanced secretion of VEGF from Müller cells under HG
conditions decreased with levels of extracellular glutamate,
which were inhibited by silencing TRPC6. Application of Hyp9
increased the secretion of VEGF. Further study is warranted to
establish whether TRPC6 KD can prevent BRB breakdown
in DR.

Studies indicate Müller cells respond to oxidative stress and
begin to die as DR progresses. Müller cells in the diabetic retina
Frontiers in Pharmacology | www.frontiersin.org 8
show roughly 15% cell death after 7 months (Feenstra et al.,
2013). The death of Müller cells in the diabetic retina is
associated with decreases in protective growth factors (Fu
et al., 2015). Müller cells participate in the establishment of the
BRB, which is comprised of the tight junctions between vascular
endothelial cells and pericytes (Bringmann et al., 2006). The loss
of Müller cells in diabetes has also been associated with
aneurysm formation, a clinical characteristic of DR (Hori and
Mukai, 1980). The consequences of Müller cell death promote
the loss of retinal blood barrier integrity and increase vascular
permeability. However, the mechanism by which Müller cells die
is not clear. In this study, the decreased cell viability of Müller
cells under HG conditions was inhibited by TRPC6 knockdown.
The cell viability decreased after application of Hyp9, which was
concentration dependent. The apoptosis of Müller cells under
HG conditions was caspase 3-dependent, and silencing TRPC6
reduced cell death and the activity of caspase 3. These results
indicate the TRPC6 channel is involved in Müller cell death
induced by HG.

In summary, we described the high expression of TRPC6 in
retinal Müller cells under high glucose conditions and
downregulation of TRPC6 expression could enhance GLAST
expression and improve glutamate uptake. Decreased
intracellular Ca2+ concentrations caused by downregulating
TRPC6 expression can decrease the production of ROS.
Furthermore, silencing TRPC6 under HG conditions prevented
the apoptosis of Müller cells and reduced the secretion of IL-6
and VEGF from Müller cells, while increasing CNTF expression.
Our results suggest the TRPC6 channel may play a key role in the
pathophysiology of DR, and downregulation of the channel may
act as an antioxidative agent against neurovascular changes in
retinal Müller cells in DR by decreasing intracellular Ca2+

concentrations. Thus, this evidence suggests TRPC6 may be a
promising target for further research and therapeutic
development in DR.
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this manuscript will
be made available by the authors, without undue reservation, to
any qualified researcher.
AUTHOR CONTRIBUTIONS

All authors listed have made substantial, direct, and intellectual
contribution to the work and approved it for publication.
FUNDING

This work was supported by the National Key R&D Program of
China [2016YFC0904800 and 2019YFC0840607]; the National
Sc i ence and Techno logy Major Pro jec t o f China
February 2020 | Volume 10 | Article 1668

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Ma et al. TRPC6 in Müller Cells
[2017ZX09304010]; the Program of the National Natural Science
Foundation of China [Grant No.81770947, 81700842]; the
Excellent Medical Young Talent Projects of Shanghai General
Hospital (Grant No.06N1702019).
ACKNOWLEDGMENTS

The authors would like to thank the Duoease Scientific Service
Center for the excellent language editing service and the
suggestions for figure revision.
Frontiers in Pharmacology | www.frontiersin.org 9
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.
2019.01668/full#supplementary-material
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