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The development of epilepsy, a process known as epileptogenesis, often occurs later in
life following a prenatal or early postnatal insult such as cerebral ischemia, stroke, brain
trauma, or infection. These insults share common pathophysiological pathways involving
innate immune activation including neuroinflammation, which is proposed to play a critical
role in epileptogenesis. This review provides a comprehensive overview of the latest
preclinical evidence demonstrating that early life immune challenges influence neuronal
hyperexcitability and predispose an individual to later life epilepsy. Here, we consider the
range of brain insults that may promote the onset of chronic recurrent spontaneous
seizures at adulthood, spanning intrauterine insults (e.g. maternal immune activation),
perinatal injuries (e.g. hypoxic–ischemic injury, perinatal stroke), and insults sustained
during early postnatal life—such as fever-induced febrile seizures, traumatic brain injuries,
infections, and environmental stressors. Importantly, all of these insults represent, to some
extent, an immune challenge, triggering innate immune activation and implicating both
central and systemic inflammation as drivers of epileptogenesis. Increasing evidence
suggests that pro-inflammatory cytokines such as interleukin-1 and subsequent signaling
pathways are important mediators of seizure onset and recurrence, as well as neuronal
network plasticity changes in this context. Our current understanding of how early life
immune challenges prime microglia and astrocytes will be explored, as well as how
developmental age is a critical determinant of seizure susceptibility. Finally, we will
consider the paradoxical phenomenon of preconditioning, whereby these same insults
may conversely provide neuroprotection. Together, an improved appreciation of the
neuroinflammatory mechanisms underlying the long-term epilepsy risk following early life
insults may provide insight into opportunities to develop novel immunological anti-
epileptogenic therapeutic strategies.

Keywords: epilepsy, seizure, immune response, cytokines, interleukin-1, brain injury, neuroinflammation, development
in.org February 2020 | Volume 11 | Article 21

https://www.frontiersin.org/article/10.3389/fphar.2020.00002/full
https://www.frontiersin.org/article/10.3389/fphar.2020.00002/full
https://www.frontiersin.org/article/10.3389/fphar.2020.00002/full
https://loop.frontiersin.org/people/28153
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:Bridgette.Semple@monash.edu
https://doi.org/10.3389/fphar.2020.00002
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2020.00002
https://www.frontiersin.org/journals/pharmacology
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2020.00002&domain=pdf&date_stamp=2020-02-04


Semple et al. Early Life Immune Challenges and Epilepsy
INTRODUCTION

Epilepsy may develop later in life following a prenatal or early
postnatal insult such as cerebral ischemia, stroke, brain trauma, or
infection. These so-called “acquired epilepsies” account for
approximately one-third of all human epilepsies (Engel, 1996;
Thomas and Berkovic, 2014), and present clinically after a latent
period of variable length (months to years) following the precipitating
insult. During this time the brain undergoes progressive changes in
neuronal connectivity and intrinsic excitability to ultimately result in
an increased propensity for spontaneous recurrent seizures (a process
known as “epileptogenesis”) to occur (Lowenstein, 1996; Herman,
2002). While diverse in nature, early life insults that have been
associated with the subsequent development of epilepsy share
common pathophysiological pathways involving innate immune
activation, including neuroinflammation, which is proposed to play
a critical role in epileptogenesis (Vezzani et al., 2011a; Becker, 2018).

The developing brain undergoes significant dynamic changes
during fetal and early postnatal life, rendering it particularly
vulnerable to insults and stressors which can have either
transient or permanent effects on neuronal function (Herlenius
and Lagercrantz, 2004). Indeed, the developing brain at baseline
has an increased propensity for seizure activity compared to the
adult brain (Hauser, 1995), thought to be attributed at least in
part to the abundant excitatory circuits but fewer inhibitory
circuits in the neonatal brain (Nardou et al., 2013). Further, the
developing brain appears to be primed to respond to immune
challenges in such a way that predisposes the brain towards
seizure induction (Bilbo and Schwarz, 2012; Nasr et al., 2019).
Immune challenges and the subsequent immune response,
including neuroinflammation, are increasingly recognized as an
important factor in the pathophysiology of seizure generation,
seizure-related neuropathology, and epileptogenesis (Galic et al.,
2008; Riazi et al., 2010; Vezzani et al., 2011a).

Several mechanisms have been proposed to explain how and
why prenatal, perinatal, and postnatal insults, such as those
described above, result in a vulnerability to develop acquired
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epilepsy later in life. For example, modulation of gene
transcription and epigenetic programming, acquired channel
and synaptopathies, and neuronal network connectivity all
likely play an important role, as discussed elsewhere (Becker,
2018). Here, we focus on evidence surrounding the hypothesis
that inflammation promotes epileptogenesis, elaborating on data
regarding soluble inflammatory mediators as well as cellular
contributions in this process.

Neuroinflammation, defined as an inflammatory response
within the brain or spinal cord, is a common consequence of
brain injuries, insults, and immune challenges (Disabato et al.,
2017). Characterized by the release of inflammatory mediators
including pro- and anti-inflammatory cytokines, complement
proteins and danger signals, activation of innate immune cells,
astrocytes and microglia, and recruitment of blood-derived
leukocytes into the central nervous system (CNS),
neuroinflammation is also a common feature of temporal lobe
epilepsy (TLE) in both patients and animal models (Ravizza
et al., 2011; Vezzani et al., 2011a; De Vries et al., 2016). As
reviewed in depth elsewhere, increasing evidence suggests that
inflammation represents a causal mechanism that can also
initiate and perpetuate seizure activity (Vezzani et al., 2011a;
Webster et al., 2017), contributing to both ictogenesis (the onset
of a seizure) and epileptogenesis (Vezzani et al., 2019).

In this review, we will consider the most common early life
insults linked to the development of epilepsy later in life—
including prenatal immune activation, perinatal injuries, and
immune challenges sustained during early postnatal life (such as
infections, neurotrauma, and even seizures themselves) (Figure 1).
While not all of the described insults are purely immune-mediated
—and indeed, are known to involve other biological mechanisms
(e.g. environmental stress and neurotrauma)— we have
incorporated these insults here in review to highlight how a
range of distinctly different insults during early life can similarly
yield a propensity for later life epilepsy. Much of the mechanistic
evidence to date is preclinical, utilizing rodent models at postnatal
day (p) 0–5 to correspond roughly to the third trimester prenatal
FIGURE 1 | Schematic summary of prenatal, perinatal, and postnatal insults to the developing human brain that initiate an inflammatory immune response, including
the release of pro-inflammatory cytokines interleukin (IL)-1b, tumor necrosis factor alpha (TNFa), IL-6 and others. Experimental models have revealed that these
cytokines promote astrocyte and microglial reactivity, and contribute to neuronal dysfunction by several mechanisms including alterations in neurotransmitter receptor
subunit expression. These changes may lead to hyperexcitability or a reduced seizure threshold, resulting in an increased vulnerability to epilepsy. Epilepsy may
develop over time and can be accelerated or triggered by a second-hit insult, such as a later life immune challenge.
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in humans, p7–12 equivalent to the human infant at birth, and p21
to model the transition to early childhood (Semple et al., 2013).
Specifically, we focus on evidence of the neurobiological
mechanisms underlying the chronic consequences of such
insults; in particular, the neuroinflammatory response. Together,
this review provides a wide-ranging overview of how and why
epilepsy may develop after insults to the developing brain via
neuroimmune modulation. Such an understanding is necessary to
inform the development and appropriate application of novel
therapeutic agents targeting the relevant biological mechanisms,
with the goal of disrupting and preventing the epileptogenic
process from occurring.
PRENATAL INSULTS

Prenatal life is a time of unique immunological status for a
developing fetus, which is intricately associated with maternal
health status. A large and growing body of literature provides
evidence that infections and other immune challenges sustained
during pregnancy can influence fetal brain development, with in
utero exposure to infections and/or inflammation considered to
be an environmental risk factor for neurodevelopmental and
psychiatric disorders including autism and schizophrenia (Solek
et al., 2018; Guma et al., 2019).

Epidemiological data has suggested a relationship between
maternal infections and a high incidence of childhood epilepsy in
offspring (Norgaard et al., 2012). Several large population-based
cohort studies have reported the greatest risk of epilepsy in the
offspring of mothers who sustained infections resulting in fever
during early to mid-pregnancy (Sun et al., 2008; Sun et al., 2011).
Experimentally, this scenario can be modeled in rodents by
evoking an infection-like immune challenge to pregnant dams,
then assessing the seizure susceptibility of the resulting offspring.
Lipopolysaccharide (LPS), a component of the cell wall of gram-
negative bacteria and commonly used experimental immunogen
to model a bacterial infection, results in persistent changes in
neuronal excitability in vitro (Gullo et al., 2014), and exacerbates
hippocampal excitability in electrical kindling models in vivo
(Auvin et al., 2010b). When embryos are exposed to LPS via
inoculation of the pregnant dam at gestational days 15–16, a
second challenge at p21—injection of the L-glutamate analog
kainic acid (KA)—revealed increased seizure susceptibility
compared to those exposed to saline control (Yin et al., 2015).
This finding was associated with exacerbated, long-lasting
astrogliosis, and worsened spatial learning ability when
assessed at adulthood (Yin et al., 2015). Astrocytes, as the most
numerous glial cells in the CNS, play many essential roles in
tissue homeostasis, synaptic transmission, and neuroimmune
responses (Farina et al., 2007; Clarke and Barres, 2013).
Accumulating compelling evidence suggests that aberrant
astrocyte activation contributes to the pathophysiology of
epilepsy (De Lanerolle et al., 2010; Yin et al., 2015; Patel et al.,
2019). Together with epidemiological evidence that systemic
inflammation increases an individuals' susceptibility to seizures
by lowering their seizure threshold (Yuen et al., 2018), these
Frontiers in Pharmacology | www.frontiersin.org 3
studies provide the foundation for the hypothesis that
inflammation is a critical modulator of brain excitability.

Polyinosinic:polycytidylic acid (poly I:C) is an experimental
substrate frequently used to mimic viral infections. When
administered to gestating animals in a model known as
maternal immune activation (MIA), this toll-like receptor 3
(TLR3) agonist results in long-lasting physiological
perturbations (Meyer, 2014). Poly I:C administration to
pregnant mice between embryonic days 12 to 16 results in the
offspring exhibiting increased vulnerability to hippocampal
kindling, with strong evidence supporting a role for the
cytokines interleukin (IL)-6 and IL-1b in these effects (Pineda
et al., 2013). The dependence of these effects on signaling via
TLR3 was demonstrated by use of TLR3 gene deficient mice,
albeit at adulthood, which show a reduced propensity to develop
epileptic seizures after administration of the proconvulsant
pilocarpine (Gross et al., 2017).

Several cytokines are known to have both acute and long-
lasting effects on neuronal excitability, with IL-1b being the best
characterized to date. Systemic or intracerebral administration of
LPS or poly I:C to the mother rodent (or offspring; see the section
Infections in Postnatal Life) provokes an acute elevation of pro-
inflammatory cytokines via gene transcription of nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-kB) in
neurons and glia of the mother and offspring (Pineda et al.,
2013). By triggering a systemic immune response in the mother,
gestational infections mimicked by LPS or poly I:C appear to also
comprise the fetal placental barrier, allowing entry of maternally
derived cytokines and other molecules (e.g. glucocorticoids) into
the fetal circulation, where they can influence the developing
fetal brain (Meyer, 2014). The extent to which maternally derived
factors cross the placenta—a process known as “vertical
transfer”—is incompletely understood, but appears to be
cytokine-specific, and may be via either direct or passive
transport (Zaretsky et al., 2004; Gilmore et al., 2005; Dahlgren
et al., 2006). Regardless, abundant studies have demonstrated
that a wide range of cytokines are increased in the fetal brain
within hours after MIA in pregnant rodents, including IL-1b,
tumor necrosis factor alpha (TNFa), and IL-6 (Solek et al., 2018).
Activated microglia are likely to be a major source of
inflammatory mediators in this context (Perry and Holmes,
2014). These cytokines can then act both directly and
ind i rec t l y to modula te neurona l exc i t ab i l i t y and
neurotransmission—for example, by altering the subunit
composition of glutamatergic and gamma-aminobutyric acid
(GABA)-ergic receptors (Vezzani et al., 2011a; Vezzani et al.,
2011b; Vezzani and Viviani, 2015).

In the poly I:C MIA model, antibody blocking experiments were
used to demonstrate that both IL-1b and IL-6 are required for an
increased propensity for recurrent seizures (Pineda et al., 2013).
Further evidence that IL-1b has a causative or modulatory role in
network excitability stems from studies demonstrating anticonvulsive
effects when IL-1b levels are reduced; either by intracerebral injection
of an IL-1 receptor antagonist, transgenic overexpression of the
receptor antagonist, or inhibition of interleukin-converting enzyme
(Ravizza et al., 2008; Vezzani et al., 2011b).
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MATERNAL AND ENVIRONMENTAL
STRESS THROUGHOUT DEVELOPMENT

Environmental stress during pregnancy, and early postnatal life,
may promote the development of epilepsy during later life.
Increasing evidence suggests that early life stress is an
important modulator of limbic epilepsy, likely via effects on
endocrine function, neuroplasticity, neurotransmission, and
cellular electrophysiology (Koe et al., 2009). MIA and other
forms of maternal stress, such as separation of dam from pups
or early handling of pups, may also be considered as an early life
stressor which aggravates epileptogenesis in both status
epilepticus (SE) and kindling models (Salzberg et al., 2007).
Additionally, stress resulting from transport of dams during
pregnancy, as well as maternal behaviors and early postnatal
malnutrition, have all been demonstrated to promote
susceptibility to KA or amygdala kindling-induced seizures of
the offspring during later life (Salzberg et al., 2007; Moriyama
et al., 2013; Simao et al., 2016).

Maternal glucocorticoids as a consequence of a hyperactive
hypothalamic–pituitary–adrenocortical (HPA) axis have been
proposed to be one of the key mechanisms by which maternal
stress mediates network reorganization and epileptogenesis in
the developing offspring (Koe et al., 2009; Kumar et al., 2011;
Jones et al., 2014; Wulsin et al., 2016). Another mechanism is via
disruption of the GABA switch, a developmentally regulated
functional change in GABA signaling from excitatory to
inhibitory that occurs in the first 1–2 postnatal weeks (Ben-
Ari, 2002). Neonatal stress from maternal separation has been
found to delay the timing of the GABA switch in the mouse
hippocampus, with consequences for behavior at adolescence
(Furukawa et al., 2017). This study suggests that early life insults
can disrupt or modify this essential step in GABAergic
maturation and the resulting neuronal excitation/inhibition
balance—which could have consequences for seizure
propensity also. Indeed, the poly I:C MIA model has also been
shown to delay the GABA switch in mice, resulting in
hyperexcitabi l i ty of neuronal networks and higher
susceptibility to seizures at adulthood (Corradini et al., 2018).

Importantly, alterations in the stress response—resulting in
elevated stress hormone levels—have been shown to promote
chronic priming and activation of microglia, which then generate
increased cytokines IL-1b, IL-6, and TNFa in response to a
secondary immune challenge (Frank et al., 2014). This
mechan i sm by wh i ch s t r e s s p romot e s in c r e a s ed
neuroinflammation may thereby contribute to epileptogenesis
in adulthood (Salzberg et al., 2007).
PERINATAL INSULTS

Hypoxic–ischemic injury (HI) is a significant cause of brain
damage in newborn infants, and is associated with a high
incidence of neurodevelopmental disabilities. Neonatal
hypoxic–ischemic encephalopathy, defined as a syndrome of
disturbed neurological function during the first days of life,
Frontiers in Pharmacology | www.frontiersin.org 4
often occurs following moderate to severe HI, and is the most
common cause of neonatal seizures (Volpe, 1989; Zupanc, 2004).
These acute seizures likely result from excitotoxic neuronal
damage and cell death, following compromised oxygen and
glucose supply to the developing brain. Epilepsy is reported in
9–33% of term infants with neonatal HI (Glass et al., 2011), with
injury to the motor cortex, hippocampus, and occipital lobe
being identified as risk factors for epilepsy in this context (Xu
et al., 2019). Ischemic stroke is another common disorder
affecting approximately one in every 4,000 live births, which is
associated with both acute seizures and the subsequent
development of epilepsy (Lynch and Nelson, 2001).

Animal models of perinatal hypoxia, HI, or stroke have
suggested that the propensity for both acute seizures and
epileptogenesis after injury is age-dependent (Jensen et al.,
1998). Using the well-established Rice–Vannucci model of
perinatal HI to p7 pups (Rice et al., 1981), acute seizures are
associated with the extent of brain damage (Bjorkman et al.,
2010), and spontaneous recurrent seizures have been reported in
a subset of animals (Williams et al., 2004; Williams and Dudek,
2007). In another stroke model, involving induction of a
photothrombotic lesion in the sensorimotor cortex of p7
rodents, seizure vulnerability was evaluated in response to the
GABAA receptor antagonist and pro-convulsive agent
pentylenetetrazol (PTZ), an agent widely used to assess brain
excitability (Klioueva et al., 2001). From electroencephalogram
(EEG) analysis performed at 5 and 18 days post-injury (p12 and
p25), early life stroke was found to result in an exacerbated
response to PTZ, with a higher proportion of animals exhibiting
clonic seizures, as well as longer response duration (Brima
et al., 2013).

Hypoxia alone has also been shown to induce spontaneous
tonic–clonic seizures in rodents, when induced at p10–12, but
not in older (p15–60) or younger (p5) rats (Jensen et al., 1991;
Jensen et al., 1992). These animals also displayed increased
susceptibility to convulsant-induced seizures at adulthood,
while hippocampal slices collected postmortem demonstrated
chronic changes in CA1 hippocampal network excitability. Of
note, these abnormalities were evident in the absence of overt
histopathological damage or chronic neurobehavioral deficits
(Jensen et al., 1991). In subsequent studies, hypoxic injury and
HI at p7 have been shown to result in an increased vulnerability
to KA challenge at 6 weeks post-injury (Rodriguez-Alvarez et al.,
2015), as well as spontaneous epileptiform discharges and
recurrent motor seizures by 2–12 months of age—but typically
only in a subset of injured animals with cerebral cystic infarcts
(Kadam et al., 2010; Peng et al., 2015). The frequency and
severity of spontaneous behavioral and electrographic seizures
increases over time, highlighting the progressive nature
of epileptogenesis.

The contribution of inflammation to development of epilepsy
in this context was recently demonstrated, by use of a novel
therapeutic drug Vitexin. This anti-inflammatory botanical
flavonoid was found to reduce cytokine release, neutrophil
infiltration, and blood–brain barrier (BBB) permeability
alongside a reduction in epilepsy susceptibility after HI in
February 2020 | Volume 11 | Article 2
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neonatal rats (Luo et al., 2018). In the clinic, in a small cohort
study of patients with neonatal HI, elevated IL-6, TNFa, and IL-
1b were found to be associated with the subsequent onset of
epilepsy (Numis et al., 2019), suggesting that these cytokines may
hold value as predictive biomarkers of later life epilepsy risk.
POSTNATAL INSULTS

Hyperthermia-Induced Febrile Seizures
Febrile seizures (FS), typically provoked by fever, are common
during infancy and early childhood, affecting approximately 3–
5% of children between 6 months and 5 years of age (Berg and
Shinnar, 1996; Jensen and Baram, 2000). When recurrent or
prolonged (approximately one-third of FS), these complex
seizure events can lead to sustained modification and
dysfunction of hippocampal neurons, which is proposed to
underlie a heightened risk of subsequent epileptogenesis and
neurocognitive dysfunction during later life (Dube et al., 2007;
Huang and Chang, 2009). Epidemiological studies have linked
prolonged FS during childhood with the development of TLE
(Chen et al., 1999; Saltik et al., 2003; Fukuda et al., 2015),
although whether this relationship is indeed causal, and the
underlying mechanisms, remains unclear. Susceptibility to the
convulsant effects of hyperthermia decreases with age in both
humans and rodents, such that investigation into this
phenomenon may provide insight into the mechanisms that
govern this developmentally specific vulnerability during early
life (Jensen and Baram, 2000).

Experimentally, rodent models of hyperthermia-induced FS
typically utilize p10–14 animals (Heida et al., 2004; Heida and
Pittman, 2005), consistent with the time period thought to
represent the neurodevelopmental transition during the first 2
weeks of life in the human (Gottlieb et al., 1977; Semple et al.,
2013). This model results in increased seizure susceptibility by
adulthood, evident as a reduction in seizure threshold and
increased susceptibility to seizure-induced cell death after a KA
second-hit (Dube et al., 2000; Van Gassen et al., 2008).
Approximately 40% of these animals develop spontaneous TLE
alongside neuropathology in the cortex and hippocampus.
Several factors have been proposed as mechanisms of
epileptogenesis in this context, including the effects of altered
brain temperature, changes in the endocannabinoid system,
altered GABAA subunit composition, and inflammation (Feng
and Chen, 2016). In terms of the inflammatory response, the
release and subsequent actions of IL-1b have also been strongly
implicated (Feng and Chen, 2016). In patient populations,
specific IL-1b polymorphisms have been associated with
sporadic development of FS (Kira et al., 2005). Supporting this,
administration of IL-1b after an induced FS in juvenile rats leads
to a significant increase in seizure incidence compared to saline-
treated controls (Fukuda et al., 2015), while IL-1b alone can
mimic the effects of FS on adult seizure susceptibility (Feng et al.,
2016). In another study, only rats in which IL-1b was elevated
chronically went on to develop spontaneous limbic seizures after
FS (Dube et al., 2010). In contrast, administration of the IL-1R
antagonist is anticonvulsive (Heida and Pittman, 2005), while IL-
Frontiers in Pharmacology | www.frontiersin.org 5
1R–deficient mice are resistant to FS, independent of the genetic
background strain (C57Bl or 129/Sv) (Dube et al., 2005). This
mechanism holds strong promise for clinical translation, with
two case reports demonstrating that treatment with the IL-1R
antagonist reduced seizure burden and relapse in children with
febrile infection-related epilepsy syndrome (Kenney-Jung et al.,
2016; Dilena et al., 2019).

Infections in Postnatal Life
Epidemiological evidence has demonstrated that CNS and
systemic infections are another major cause of acquired
epilepsy (Annegers et al., 1988; Marks et al., 1992). Indeed, an
episode of viral encephalitis resulting from, for example, herpes
simplex or cytomegalovirus, has been reported to increase the
risk of subsequent unprovoked seizures by 16-fold (Annegers
et al., 1988). These seizures are also associated with concurrent
neurological consequences, and the increased risk for both
epilepsy and neurobehavioral complications may persist even
after the infection has resolved for at least 20 years (Annegers
et al., 1988; Raschilas et al., 2002; Chen et al., 2006). In the
juvenile rodent, poly I:C and LPS have been extensively utilized
to model infection-like immune challenges during early
postnatal life, and examine the effect of such insults on
brain excitability.

Postnatal Poly I:C
In addition to use in the MIA model of a prenatal immune
challenge, poly I:C is regularly employed to investigate infection-
like immune challenges during early postnatal life. When
injected directly into the rat hippocampus at p13–14, poly I:C
induces fever and a local increase in IL-1b levels (Galic et al.,
2009). Poly I:C facilitates electrical kindling epileptogenesis, as
evident by an increased number of observed limbic seizures
(Dupuis et al., 2016). Animals administered poly I:C at p13
demonstrated a faster seizure onset and prolonged kindled state
compared to when the immune challenge was induced at
adulthood (p74), again highlighting the age-dependent
vulnerability of the early postnatal brain to hyperexcitability
(Dupuis et al., 2016). Although microglia were hypothesized to
play a role in these observations, administration of the
tetracycline antibiotic minocycline, which has reported
microglial suppressive effects (as well as other effects), prior to
kindling, failed to reverse the pro-epileptogenic effects of poly I:C
(Dupuis et al., 2016). In another study, animals exposed to poly I:
C at p14 were found to be more susceptible to lithium-
pilocarpine and PTZ-induced seizures at adulthood, and
exhibited memory deficits in a fear conditioning paradigm
(Galic et al., 2009). These chronic changes were coincidental
with persistently altered levels of glutamate receptor subunits
messenger ribonucleic acid (mRNA) expression, which were able
to be suppressed by neonatal systemic minocycline, implicating a
role for microglial activation as an underlying mechanism (Galic
et al., 2009). Increased seizure susceptibility observed in adult
rodents following poly I:C administration to young pups, similar
to in the MIA context, is understood to depend at least in part
upon early life activation of IL-1b signaling (Galic et al., 2009).
Together, these studies demonstrate that poly I:C exposure is
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pro-epileptic in the early postnatal brain, similar to the prenatal
brain, although the precise mechanisms (and whether these are
age-dependent) remain incomplete.

Postnatal LPS
Perhaps themost common experimental model of postnatal infection
involves administration of LPS, typically to the periphery
(intraperitoneal) to p10–16 rodent pups (Galic et al., 2008; Auvin
et al., 2010a). Depending upon the dose, LPS induces a transient
inflammatory response within the first 12–24 h post-injection which
largely resolves thereafter. Of note, a persistent increase in seizure
susceptibility is evident following low dose LPS at p7–14—compared
to when LPS was administered earlier (p1) or later (p20) (Galic et al.,
2008). This time period coincides with the developmental peak in
synaptogenesis and synaptic pruning, yielding considerable changes
in neuronal circuitry which likely underlies this critical window of
vulnerability. This paradigm has since been used to demonstrate that
LPS exposure increases susceptibility to KA-induced seizures at p35,
alongside impairments in long-term potentiation and exacerbated
hippocampal neurodegeneration (Chen et al., 2013), and pilocarpine-
induced seizures at 2 months of age (Setkowicz et al., 2017). In
another study, KA was administered simultaneously with LPS to p14
pups, revealing long-lasting molecular changes alongside increased
seizure excitability by adulthood. This was enhanced further in the
~50% subset of LPS + KA–treated animals that exhibited an overt
behavioral seizure response FS compared to those that did not, as
evidenced by increased in vitro excitability as well as modified N-
methyl-D-aspartate (NMDA) and GABAA receptor subunit protein
expression in the hippocampus (Reid et al., 2013).

Similarly, LPS has been shown to potentiate fever-induced FS
at p14 in both rats and mice, at least acutely (Eun et al., 2015).
Administered peripherally 2 h prior to hyperthermia-induced
seizure onset, LPS promoted susceptibility of animals to seizures,
alongside enhanced pro-inflammatory cytokine production and
microglial activation. These findings suggest that peripheral
inflammation works synergistically with hyperthermia to
potentiate seizures and exacerbate the resultant immune
response. Whether this combinatorial challenge also predicts
heightened vulnerability to chronic epilepsy has not yet
been examined.

Several studies have noted that the inflammatory challenge
during early life is typically transient; for example, LPS-induced
acute inflammation rarely lasts more than 24 h following
injection. Thus significant changes in the reactivity to seizures
observed in adulthood do not directly result from inflammation
per se, but rather indirectly from the long-term effects of the
acute inflammatory response on the immature brain, and its
subsequent developmental trajectory (Kosonowska et al., 2015;
Janeczko et al., 2018).

LPS administration triggers the abundant release of IL-1b and
TNFa, which can act on receptors such as IL-1R on the
hippocampal dentate gyrus to facilitate enhanced epileptiform
activity (Gao et al., 2014). A central role for these cytokines has
been demonstrated in the context of epileptogenesis following
LPS in the p14 rat, which can be partially prevented by
administration of either IL-1R antagonism or an anti-TNFa
antibody (Galic et al., 2008; Auvin et al., 2010b). LPS-induced
Frontiers in Pharmacology | www.frontiersin.org 6
seizure susceptibility was also recently shown to involve TLR4
activation, signaling via extracellular signal–regulated kinases 1
and 2 (Erk1/2), in a manner dependent on myeloid
differentiation primary response 88 (MyD88) (Shen et al.,
2016). Constitutive activation of Erk1/2 in astrocytes alone was
sufficient to enhance excitatory synaptogenesis, while deleting
MyD88 or suppressing Erk1/2 in astrocytes was able to
ameliorate seizure sensitivity, providing direct evidence for a
developmental role of astrocytes in predisposing towards
epileptogenesis (Shen et al., 2016).

As noted earlier, a particular window of enhanced
vulnerability to seizures has been identified in rodent models
during the second week of postnatal life, coincidental with
significant synaptogenesis and synaptic pruning (Galic et al.,
2008). As microglia are known regulators of synaptic remodeling
(Tremblay et al., 2011), and peak in cell density at around p14–28
(Kim et al., 2015), microglia may also govern this age-dependent
susceptibility (Figure 2). Heightened reactivity due to normal
developmental changes render microglia particularly poised to
mount an exaggerated inflammatory response to early life
seizures or other immune challenges that are encountered at
this time; and this over-reactive immunity may exacerbate acute
neuronal injury thereby contributing to long-term epileptogenic
effects (Tremblay et al., 2011; Kim et al., 2015).

Postnatal Status Epilepticus
SE is defined as a condition in which abnormally prolonged
seizures occur, which may have long-term consequences
including neuronal loss and altered neuronal networks (Trinka
et al., 2015). In experimental animals, a transient episode of SE
can “convert” a previously normal brain into an epileptic one,
providing a model in which to explore mechanisms of
epileptogenesis (Lothman and Bertram, 1993). Of note,
vulnerability to KA appears to be age-specific, with younger
animals (p5–15) exhibiting more severe SE with a shorter
latency, and higher mortality, compared to older animals
(p20–60) (Holmes and Thompson, 1988; Stafstrom et al., 1992).

Microglia, which mediate a significant proportion of the
innate immune capacity of the CNS, are critical for immune
surveillance in the steady state, as well as the response to injury
and disease (Disabato et al., 2017). Chronic microglial activation
is a common component to a wide range of neurodegenerative
conditions including multiple sclerosis, Alzheimer's disease, and
traumatic brain injury (TBI), likely contributing to neuronal
dysfunction and cell loss to facilitate disease progression. KA-
induced SE triggers a time-dependent microglial activation
response including the release of pro-inflammatory cytokines
TNFa and IL-1b (Wyatt-Johnson et al., 2017), which appears to
precede the appearance of neuronal damage (Rizzi et al., 2003;
Ravizza et al., 2005). In this context, IL-1 signaling has again
been implicated, with experiments in which IL-1b was
administered prior to KA reported an increase in the time
spent in seizures via an NMDA receptor–dependent
mechanism (Vezzani et al., 1999).

In some instances, in response to an immune challenge,
microglia are induced to a “primed” state—not activated per se,
but in an intermediate phenotype which renders them able to
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respond more rapidly when subsequently activated, including the
production of greater quantities of pro-inflammatory cytokines
compared to normally activated, non-primed (or quiescent)
microglia (Sparkman and Johnson, 2008). This appears to be
the case after early life KA-induced seizures in p15 rats, followed
by a second-hit exposure of KA at p45. Animals that were
exposed to both KA doses had greater microglial activation,
associated with elevated pro-inflammatory cytokine levels and
increased susceptibility to seizures compared to saline-control
animals that received the KA only at p45 (no prior exposure)
(Somera-Molina et al., 2009). Treatment with Minozac, a small
novel therapeutic compound that inhibits pro-inflammatory
cytokine production, attenuated these effects. These results
implicate cytokines produced by activated microglia as one
mechanism by which early life seizures contribute to increased
vulnerability to neurological insults in adulthood (Somera-
Molina et al., 2009). Similarly, administration of minocycline
following KA at p25 in mice has been shown to reduce
vulnerability to a second SE event at p39, likely to be
attributed to the suppression of microglial activation—
providing further evidence that early life insults such as
seizures act to prime microglia for a subsequent immune
challenge (Abraham et al., 2012).

Early Life Neurotrauma
TBI during early childhood is another well-known cause of
epilepsy. This post-traumatic epilepsy (PTE) has a reported
incidence of up to 35% after severe TBI (Annegers et al., 1980;
Ates et al., 2006; Arndt et al., 2013). While several well-
characterized experimental models have been utilized in adult
rodents to explore PTE after TBI to the mature brain
(D'ambrosio et al., 2004; Bolkvadze and Pitkanen, 2012; Kelly
et al., 2015; Ostergard et al., 2016), there has been a lack of age-
appropriate models to consider the complex interaction between
ongoing brain development and epileptogenesis that occurs after
a TBI during early childhood.

An established model of experimental TBI to the p21 mouse,
utilizing the controlled cortical impact model of unilateral injury to
the parietal lobe, results in progressive neuropathology and chronic
neurobehavioral and neurocognitive dysfunction consistent with
what is commonly observed in toddler-aged children after TBI
(Tong et al., 2002; Pullela et al., 2006). This model has recently been
demonstrated to also reproduce many of the features characteristic
of PTE in humans, including histopathological evidence of circuitry
reorganization, interneuron loss, and hippocampal gliosis (Semple
et al., 2017). Brain-injured mice exhibit both an increased
vulnerability to PTZ-evoked seizures, evident as early as 2 weeks
post-TBI, suggesting that epileptogenesis is underway at this time
creating an environmental primed for the development of PTE. A
proportion of TBI mice were reported to develop at least one
spontaneous seizure within a 7-day video-EEG recording period by
4–6 months post-injury—from 15% after a moderate injury severity
up to over 90% incidence after a severe injury involving
considerable hippocampal pathology (Semple et al., 2017;
Webster et al., 2019).

Although the mechanisms underlying PTE remain unclear,
several lines of evidence point towards a prominent role of
Frontiers in Pharmacology | www.frontiersin.org 7
cytokine signaling, particularly via IL-1 (Webster et al., 2017).
Experimentally, administration of the IL-1R antagonist
attenuates both sub-acute and chronic susceptibility to PTZ-
induced seizures after pediatric TBI in the mouse (Semple et al.,
2017). Genetic data from patient populations has also implicated
specific IL-1b polymorphisms with the risk of PTE after a TBI
(Diamond et al., 2015).

This latter point raises and somewhat addresses an important
question—why do some individuals, a minority, respond to an
early life insult with epilepsy, while others who sustain a similar
insult do not? Our understanding of how environmental factors
(such as an early life insult) interact with genetics to promote
epileptogenesis remains in its infancy. However, there is increasing
evidence that genetic predisposition to epilepsy will increase an
individuals' likelihood of developing late-onset seizures after an
acquired insult. For example, a higher risk of post-stroke epilepsy
was recently reported in individuals with a family history of
epilepsy compared to those without a family history, even when
adjusted for stroke injury severity (Eriksson et al., 2019). Similarly,
in a population-based cohort study of more than 1.6 million
Danish adults and children, a family history of epilepsy was
associated with an approximately 10-fold higher risk of
developing late-onset seizures following a severe brain injury
(Christensen et al., 2009). Limited studies to date have
specifically probed for gene associations with acquired epilepsy
risk, as recently reviewed (Leung et al., 2019). Consistent with the
abovementioned evidence on IL-1b polymorphisms and PTE risk,
a meta-analysis found that specific alleles of both IL-1b and IL-1a
have also been associated with risk of epilepsy after FS
(Saghazadeh et al., 2014). Further investigation into other genes
involved in the inflammatory response, and in a range of patient
populations, are needed to determine the extent to which genetic
variance contributes to an individual's risk of epilepsy after an
early life insult.
INFLAMMATORY PRECONDITIONING—

PROTECTION AGAINST EPILEPSY?

Contrary to the above-described literature, there is also
preclinical evidence that an early life insult inducing a modest
inflammatory response can alternatively attenuate the response
to a second-hi t insul t . This phenomenon, termed
“preconditioning,” occurs when the brain develops resistance
to injury after exposure to a low dose, typically subthreshold
stimuli, such as brief ischemia, hypoxia, or low dose endotoxin.
Preconditioning in the context of brain insults has been well
documented in adult animals, but less so in the immature brain.
Even fewer studies have considered the effect on neuronal
excitability and seizure vulnerability.

Administration of a low dose of LPS (typically in the 0.05–1.0
mg/kg range) (Hickey et al., 2011) is one of the best-
characterized approaches to yield neuroprotection via
preconditioning. Acting via TLR4, LPS is thought to
reprogram the intracellular response to a subsequent insult,
resulting in broad neuroprotection via activation of anti-
inflammatory factors, alongside the downregulation of NF-kB
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(Hickey et al., 2011; Wang et al., 2015; Amini et al., 2018). One
study compared young rats exposed to systemic low dose LPS at
p6 and p30, followed by pilocarpine injection at 2 months of age,
and reported that LPS at p30 only resulted in a reduction in acute
seizures alongside ameliorated seizure-induced changes in
microglial morphology (Kosonowska et al., 2015). Anti-
ictogenic effects have also been reported following TLR3
activation in adult mice, whereby intraventricular poly I:C
administered 6 h prior to a KA challenge was found to prevent
the anticipated increase in hippocampal excitability (Kostoula
et al., 2019). This effect was mimicked by administration of the
cytokine interferon gamma, suggesting that activation of
downstream signaling via interferon regulatory factor 3 is
involved (Kostoula et al., 2019). Of note, poly I:C administered
at 15 min, 1 h, or 24 h prior to KA failed to elicit anti-ictogenic
effects, suggesting that the timing is crucial and likely involves
the activation of transcriptional rather than posttranslational
mechanisms to influence neuronal excitability.

A role for astrocytes in modulating the relative levels of pro-
versus anti-inflammatory mediators has been reported as a
biological mechanism associated with this phenomenon, as
well as microglial priming (Kosonowska et al., 2015). In
addition to modulation of the inflammatory response, several
other cellular and molecular mechanisms have been proposed to
underlie preconditioning neuroprotection, for example, changes
in calcium binding, transcriptional regulation, apoptosis, growth,
and development processes (Friedman et al., 2013; Friedman and
Hu, 2014). The apparent paradox regarding why an early life
insult may induce either seizure susceptibility or resistance
(alongside neuroprotection) is poorly understood. However, it
may be that TLR3 and TLR4 have dual roles whereby activation
of alternative pathways in different cell types yields differential
consequences. It is clear that the preconditioning phenomenon is
both age and dose dependent (Hickey et al., 2011). Further, the
time interval between the first and second insult is likely to be an
Frontiers in Pharmacology | www.frontiersin.org 8
important determinant. For example, although seizure
susceptibility was not examined, one study found that low dose
LPS administered at 48 h before HI in p7 rats was
neuroprotective, whereas administration earlier at 72 h before
HI instead increased the extent of brain damage (Hickey
et al., 2011).
CONCLUSIONS

In this review, we have summarized and critically discussed the
most common known causes of acquired epilepsy following
injury or insult during early life, from maternal infection
exposure through to TBI during young childhood. We have
excluded from our discussion some other causes of acquired
epilepsy, such as brain tumors (Weisman et al., 2018) or
malformation of cortical development (e.g. focal cortical
dysplasia) (Crino, 2015), based on the observation that these
factors often persist throughout a patients' life span—rather than
being a transient early life insult that resolves with time, in the
face of persistent seizure susceptibility, as we have focused on in
this review.

All of the described early life insults induce activation of the
innate immune response, eliciting reactivity of glial cells, release
of pro-inflammatory mediators, and neuronal or network
changes in favor of a more excitable CNS microenvironment,
which appears to facilitate the process of epileptogenesis and
subsequent emergence of spontaneous recurrent seizures (or
increased vulnerability to evoked seizures) at a later time
(Figure 1). To date, the evidence supports that early life
challenges act as risk factors for epilepsy, but do not
necessarily cause epilepsy per se; indeed, genetic predisposition,
environmental factors, and interactions between all of these
variables are likely to determine an individual's risk status (Koe
et al., 2009). Experimental models have been invaluable to
FIGURE 2 | Schematic timeline illustrating key neurodevelopmental processes ongoing through gestational and postnatal periods in the mammalian brain. A wide
range of prenatal, perinatal, and postnatal insults influence the developing brain both acutely but also chronically, driving an increased propensity for neuronal
hyperexcitability and seizure susceptibility during later life. Age-dependent vulnerability to these chronic consequences is thought to be determined, at least in part,
by the state of microglial development (changes in number, phenotype, and activity), as well as maturation of neuronal circuits (a product of synaptogenesis and
synaptic pruning over time). Adapted from Semple et al. (2013) and Lenz and Nelson (2018).
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determine particular developmental windows of increased
vulnerability to insult, whereby the brain is rendered
immunologically primed and more reactive to a second-hit
insult should one occur (Figure 2). Transient cytokine release
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(including IL-1b, TNFb, and IL-6; see Table 1), microglial
priming, and astrocyte reactivity are all mechanisms by which
early life immune challenges can yield long-lasting effects on
seizure threshold. Several other cytokines, chemokines, and
TABLE 1 | Key inflammatory mediators implicated in epileptogenesis after early life insults: experimental evidence.

Mediator Insult Model Species/Age Effect and Potential Mechanisms Reference(s)

IL-1b Bacterial infection
(MIA; postnatal
infections)

Systemic or
intracerebral LPS
administration

Rat, p14
Rat, g15–16

• After p14 LPS, increased IL-1b production in response to KA at
adulthood

• After LPS + sub-convulsive KA, i.c.v. IL-1b increased the
proportion of animals with seizures, while IL-1R antagonist was
anticonvulsive

• IL-1R modifications associated with hyperexcitability,
upregulation of NF-kB, and altered GABAergic subunit
expression

(Heida and Pittman,
2005; Vezzani et al.,
2008; Chen et al.,
2013)

Preterm HI injury In utero HI + LPS
administration

Rat, g18 • Increased placental IL-1b acutely and sub-acutely associated
with fetal neuroinflammation and neuronal injury

(Maxwell et al., 2015)

Viral infection (MIA;
postnatal
inoculation)

Systemic or
intracerebral poly I:C
administration

Mouse, g12–16
Rat, p13–14

• Chronic epilepsy phenotype in offspring prevented by antibodies
to IL-1b and IL-6 (when combined)

• Increased IL-1b associated with kindling epileptogenesis

(Galic et al., 2009;
Pineda et al., 2013;
Dupuis et al., 2016)

Infantile FS Hyperthermia
induction ±
intranasal IL-1b

Rat, p10–12
Mice, p14–15

• Addition of intranasal IL-1b increased seizures following KA at
p70–73, associated with hippocampal cell loss in CA3 region

• Hippocampal IL-1b levels only in rats that developed late-onset
seizures

• Exogenous IL-1b exacerbates FS, while IL-1R–deficient mice
show resistance to FS

• mRNA levels of IL-1R correlates with epilepsy-predictive MRI
signal changes

(Dube et al., 2005;
Dube et al., 2010;
Fukuda et al., 2014;
Fukuda et al., 2015;
Patterson et al., 2015)

Status epilepticus KA kindling; lithium-
pilocarpine

Rat, p9–15 • Upregulated IL-1b and IL-1R acutely and chronically (to 8
weeks), associated with glial activation

(Holmes and
Thompson, 1988; Rizzi
et al., 2003; Omran
et al., 2012)

Trauma Controlled cortical
impact

Mouse, p21 • Upregulation of IL-1b and IL-1R acutely; prevention of chronic
seizure susceptibility by treatment with IL-1R antagonist

(Semple et al., 2017)

IL-6 Bacterial infection Systemic or
intracerebral LPS
administration

Mouse, p10–14
Rat, p6

• Increased IL-6 acutely post-LPS associated with chronically
activated microglia

(Kosonowska et al.,
2015)

Infantile FS Hyperthermia
induction ± IL-6
administration

Rat, p23–28 • IL-6 dose-dependently reduced hyperthermia-induced seizures
—anticonvulsive effect

(Fukuda et al., 2007)

Viral infection (MIA) Systemic or
intracerebral poly I:C
administration

Mouse, g12–16 • Chronic epilepsy phenotype in offspring prevented by antibodies
to IL-1b and IL-6 (when combined)

(Pineda et al., 2013)

Prenatal immune
challenge (IL-6)

Systemic IL-6
administration

Mouse, g12–16 • In combination with IL-1b, increased propensity to hippocampal
kindling, associated with social deficits

(Washington et al.,
2015)

Status epilepticus KA kindling Rat, p9–21 • Upregulated IL-6 acutely after KA, associated with glial
activation

(Rizzi et al., 2003)

TNFa Bacterial infection Systemic or
intracerebral LPS
administration

Rat, p6–7, p14 • Increased TNFa acutely post-LPS, and in response to KA at
adulthood

• Response to lithium-pilocarpine, KA, and pentylenetetrazol at
adulthood was mimicked by i.c.v. recombinant TNFa and
blocked by an anti-TNFa antibody

(Galic et al., 2008;
Chen et al., 2013;
Kosonowska et al.,
2015)

Bacterial infection
(meningitis)

S. pneumoniae
inoculation

Rat, p11 • TNFa-converting enzyme attenuates incidence of seizures and
exerts neuroprotection

(Meli et al., 2004)

Preterm HI In utero HI + LPS
administration

Rat, g18 • Increased placental IL-1b acutely and sub-acutely associated
with fetal neuroinflammation and neuronal injury

(Maxwell et al., 2015)

Status epilepticus KA kindling; lithium-
pilocarpine

Rat, p9–21
Rat, p25

• Upregulated TNFa acutely after KA associated with glial
activation

• Upregulated TNFa and chronically in pilocarpine model of TLE,
associated with astrocyte activation

(Rizzi et al., 2003;
Ashhab et al., 2013)
February 2020
BBB, blood–brain barrier; DAMP, damage-associated molecular pattern; g, gestational day; GABA, gamma-aminobutyric acid; FS, febrile seizure; HCN, hyperpolarization-activated cyclic
nucleotide-gated channel; HI, hypoxic–ischemic injury; HMGB1, high-mobility group box protein-1; HPA, hypothalamic–pituitary axis; i.c.v., intracerebroventricular; IL, interleukin; IL-1R,
interleukin-1 receptor; KA, kainic acid; LPS, lipopolysaccharide; mRNA, messenger ribonucleic acid; MIA, maternal immune activation; NF-kB, nuclear factor kappa-light-chain-enhancer of
activated B cells; NMDA, N-methyl-D-aspartate; NMDAR, N-methyl-D-aspartate receptor; p, postnatal day; poly I:C, polyinosinic:polycytidylic acid; PTZ, pentylenetetrazol; S. pneumoniae,
Streptococcus pneumoniae; TBI, traumatic brain injury; TLE, temporal lobe epilepsy; TLR, toll-like receptor; TNFa, tumor necrosis factor alpha.
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damage-associated molecular patterns including IL-6 and high
mobility group box protein-1 have also been implicated in
seizure ictogenesis and epileptogenesis, as reviewed extensively
elsewhere (Vezzani et al., 2008; Vezzani and Viviani, 2015;
Webster et al., 2017; Vezzani et al., 2019). However, few
studies to date have studied these mediators in the context of
how early life immune challenges promote later onset epilepsy.

Future studies to identify and characterize the key factors
mediating the chronic consequences of such insults may allow
for the development of predictive tests to more readily identify
those individuals at greatest risk. Further, novel immune-based
therapies may provide therapeutic benefit by aborting the
epileptogenesis process prior to the onset of spontaneous
recurrent seizures, or even mitigating its severity after the
onset of epilepsy (i.e. disease modifying).
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