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Renal ischemia–reperfusion (I/R) injury is a predominant cause of acute kidney injury (AKI),
the pathologic mechanism of which is highly complex involving reactive oxygen species
(ROS) accumulation, inflammatory response, autophagy, apoptosis as well as
endoplasmic reticulum (ER) stress. Fibroblast growth factor 10 (FGF10), as a
multifunctional growth factor, plays crucial roles in embryonic development, adult
homeostasis, and regenerative medicine. Herein, we investigated the molecular
pathways underlying the protective effect of FGF10 on renal I/R injury using Sprague–
Dawley rats. Results showed that administration of FGF10 not only effectively inhibited I/R-
induced activation of Caspase-3 and expression of Bax, but also alleviated I/R evoked
expression of ER stress-related proteins in the kidney including CHOP, GRP78, XBP-1,
and ATF-4 and ATF-6. The protective effect of FGF10 against apoptosis and ER stress
was recapitulated by in vitro experiments using oxidative damaged NRK-52E cells
induced by tert-Butyl hydroperoxide (TBHP). Significantly, U0126, a selective
noncompetitive inhibitor of MAP kinase kinases (MKK), largely abolished the protective
role of FGF10. Taken together, both in vivo and in vitro experiments indicated that FGF10
attenuates I/R-induced renal epithelial apoptosis by suppressing excessive ER stress,
which is, at least partially, mediated by the activation of the MEK–ERK1/2 signaling
pathway. Therefore, our present study revealed the therapeutic potential of FGF10 on
renal I/R injury.
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INTRODUCTION

Acute kidney injury (AKI), characterized by rapidly declining
glomerular filtration rate (GFR), is a clinical lethal symptom
mainly caused by renal ischemia–reperfusion (I/R) injury, sepsis,
and nephrotoxic drugs (Mehta et al., 2007; Bonventre and Yang,
2011). AKI is considered as a nosocomial disease with an
incidence of 2–7% in hospitalized patients. Despite advances of
therapeutic strategies in the past decades, the morbidity and
mortality of AKI remain very high (Chertow et al., 2005; Uchino
et al., 2005; Bonventre and Yang, 2011; Basile et al., 2012). Renal
I/R injury, commonly caused by shock, surgery interventions,
kidney transplantation, and toxic insults, accounts for the
majority of AKI (Chertow et al., 2005; Ishani et al., 2009).
Many previous studies have shown that the pathological
mechanism of renal I/R injury is often associated with excessive
reactive oxygen species (ROS), oxidative stress, autophagy,
inflammation, apoptosis as well as ER stress (Paller et al., 1984;
Thadhani et al., 1996; Inagi, 2009; Hotamisligil, 2010; Tan et al.,
2017). Although several drugs and therapeutic treatments that could
ameliorate renal ischemia injury in animal models have been
reported, few of them have been successfully utilized in clinical
therapies (Tsuda et al., 2012; Tan et al., 2013). Rapid restoration of
renal blood flow after ischemia remains the quickest way to lessen
renal tissue damage and functional deterioration caused by ischemia
(Paller et al., 1984). However, reperfusion itself also has the potential
to elicit additional damage, mainly caused by over-production of
ROS, mitochondrial dysfunction, and inflammatory response,
which further leads to apoptosis or necrosis (Tsuda et al., 2012;
Tan et al., 2013; Inoue et al., 2019). Therefore, effective treatment for
AKI is desperately needed.

Endoplasmic reticulum (ER) is a specialized organelle for the
synthesis, folding, and trafficking of proteins (Cao and Kaufman,
2012). Many studies have shown that ER is highly sensitive to the
changes of the intracellular microenvironment (Cao and
Kaufman, 2014; Walter and Ron, 2011). Hypoxia and oxidative
stress intrinsic to I/R injury could impair the protein folding of
ER. Overaccumulation of unfolded and misfolded proteins
triggers the Unfolded Protein Response (UPR) to resolve the
excessive ER stress. It has been demonstrated that UPR could
expand the ER membrane and thus improve the efficiency of ER
for protein folding. UPR could also decrease mRNA translation
and reduce protein expression (Schuck et al., 2009). It has been
reported that ER stress plays an important role in cell growth,
differentiation, and apoptosis. However, excessive activation of
ER stress and UPR could activate apoptotic signaling pathways
(Hetz et al,. 2012; Tabas and Ron, 2011). Studies have revealed
that C/EBP homologous proteins (CHOP), also known as DNA
damage inducible transcript 3 (DDIT3), is a master regulator of
maladaptive ER stress-induced apoptosis (Rutkowski et al.,
2006). Therefore, a strategy focusing on the inhibition of
maladaptive ER stress may facilitate the treatment of renal I/
R injury.

Fibroblast growth factor 10 (FGF10) is an important member
of the FGF family, which mediates mesenchymal to epithelial
signaling in a paracrine manner. FGF10 plays a crucial role in
embryonic development, wound healing, and tissue regeneration
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with binding and activating FGF receptor (FGFR) on the cell
surface (Itoh and Ohta, 2014). FGF10 highly specifically binds to
FGFR2b and initiates the activation of intracellular signaling
cascades, including the extracellular signal-regulated kinase
(ERK) 1/2 signaling pathway (Zhang et al., 2006; Cho et al.,
2009; Wang et al., 2009; Itoh, 2015). Many experimental studies
using Fgf10 gene knockout mice have confirmed the crucial role
of FGF10 in the development and homeostasis of multiple organs
such as the kidney, lung, limb, and pancreatic gland (De
Moerlooze et al., 2000; Ohuchi et al., 2000; Beenken and
Mohammadi, 2009; Michos et al., 2010; El Agha et al., 2012;
Itoh, 2015). It has been reported that FGF10 could accelerate the
regeneration of myocardium after myocardial I/R injury
(Rochais et al., 2014). Recombinant FGF10 has also been
utilized for the treatment of ulcerative colitis and mucositis
(Sandborn et al., 2003; Freytes et al., 2004). However, the
protective mechanism of FGF10 on renal I/R injury has not yet
been fully confirmed. In the present study, we hypothesized that
FGF10 could attenuate renal I/R injury by suppressing excessive
ER stress and inhibiting renal tubular epithelial cell apoptosis.
The protective effect of FGF10 on AKI may be related to the
activation of MEK–ERK1/2 signaling pathway. We verified our
hypothesis with Sprague–Dawley (SD) rats subjected to renal I/R
injury. Rat renal tubular epithelial cell line NRK-52E was also
utilized to clarify the protective mechanism of FGF10 in the
present study. Results demonstrated that the protective effect of
FGF10 on AKI is intimately connected to ER stress which is, at
least partially, mediated by the MEK–ERK1/2 signaling pathway.
MATERIALS AND METHODS

Reagents and Antibodies
Bovine serum albumin (BSA), recombinant human FGF10, Tert-
Butyl hydroperoxide (TBHP), and U0126 (selective MKK1/2
inhibitor) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Dulbecco's Modified Eagle Medium (DMEM), fetal bovine
serum (FBS), Trypsin-EDTA (0.25%), and 4′, 6-Diamidino-2-
phenylindole (DAPI) were purchased from Invitrogen (Carlsbad,
CA, USA). Antibodies against cleaved Caspase-3 (catalog
number: 9661), cleaved Caspase-9 (catalog number: 9507), and
phospho-ERK1/2 (catalog number: 9101) were purchased from
Cell Signaling Technology, Inc. (Danvers, MA, USA). Anti-
ERK1/2 antibody (catalog number: 82380) was purchased from
Thermo Fisher Scientific (Sunnyvale, CA, USA). Antibodies
against GRP78 (catalog number: ab21685), ATF-6 (catalog
number: ab203119), ATF-4 (catalog number: ab23760), PDI
(catalog number: ab154820), CHOP (catalog number:
ab11419), XBP1 (catalog number: ab37152), and GAPDH
(catalog number: ab9485) were purchased from Abcam, Inc.
(Cambridge, MA, USA). The secondary antibodies were
purchased from Abcam, Inc. (Cambridge, MA, USA) or Santa
Cruz Biotechnology, Inc. (Santa Cruz, CA, USA). Annexin V-
FITC-PI Apoptosis Detection Kit was purchased from Becton
Dickinson, Inc. (San Jose, CA, USA). High sensitivity ECL
substrate kit, Hematoxylin and Eosin (H&E) staining kit, and
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Periodic Acid Schiff (PAS) staining kit were purchased from
Abcam, Inc. (Cambridge, MA, USA). The terminal
deoxynucleotidyl transferase mediated dUTP nick-end labeling
(TUNEL) Assay Kit was purchased form Abcam, Inc.
(Cambridge, MA, USA).

Renal I/R Injury Model and Assessment of
Renal Function
To confirm the protective effect of FGF10 treatment on kidney after
reperfusion, rat renal I/R injury model was established by surgical
operation. Male Sprague–Dawley (SD) rats, eight weeks old, were
purchased from Beijing Vital River Laboratory Animal Technology
Co., Ltd. and were housed in a Specific-pathogen-free (SPF) facility.
The experimental protocol was approved by the Institutional
Animal Ethical and Use Committee of Wenzhou Medical
University. The rat model of renal I/R injury was established as
we described in our previous study (Tan et al., 2017). Briefly, SD
rats were anesthetized with intraperitoneal (ip) injection of
pentobarbital sodium (25 mg/kg) and placed on a thermostatic
surgical table. A small incision was made through the medioventral
line and exposed the right kidney. The right kidney was carefully
liberated from the surrounding tissue, and nephrectomy was
performed. The left kidney was exposed, and the renal artery was
clamped using a nontraumatic vascular clamp. Renal blood flow
was re-established after 45 min ischemia, and the muscle layer and
skin layer were closed using a medical suture. For measurement of
renal function, serum creatinine (Cr) was measured 1 day following
renal ischemia by the hospital medicine biochemical laboratory (at
The First Affiliated Hospital of Wenzhou Medical University).
Kidneys were harvested and stored in cryogenic refrigerator for
further experiments. Rats were randomly divided into three groups:
(a) Sham group: Sham-operated rats with unconstricted renal
artery; (b) I/R group: rats were subjected to 45 min of ischemia
via renal artery followed by reperfusion; (c) I/R–FGF10 group: rats
were treated with 0.5 mg/kg FGF10 (ip) 1 h before ischemia. FGF10
was dissolved in sterile saline.

Cell Culture
The results of in vivo experiments in the present study have
demonstrated that FGF10 could increase the phosphorylation of
ERK1/2 in kidney tissues after reperfusion. To further clarify the
role of MEK–ERK1/2 signaling pathway in the protective effect of
FGF10, NRK-52E, a rat renal tubular epithelial cell line, was utilized
in our present study. We verified the protective effect of FGF10 on
damaged NRK-52E induced by TBHP. Furthermore, the
participation role of MEK–ERK1/2 signaling pathway in the
protective effect of FGF10 was clarified in the in vitro experiment.
NRK-52E was purchased from the American Type Culture
Collection (Manassas, USA) and cultured in DMEM
supplemented with 10% FBS, antibiotics (100 units/ml penicillin,
100 mg/ml streptomycin) and incubated under 37°C, 95% air, and
5%CO2. To detect the effect of FGF10 on ER stress induced by
TBHP, NRK-52E was cultured on 6-well plates with 2×105 cells per
well and randomly divided into four groups: (a) Control group:
NRK-52E was cultured in complete medium without any
supplement; (b) TBHP group: NRK52E was cultured in complete
Frontiers in Pharmacology | www.frontiersin.org 3
medium, and then TBHP (200 mmol/L) was added for an additional
12 h; (c) TBHP + FGF10 group: NRK-52Ewas pretreated with
recombinant FGF10 (100 ng/ml) for 2 h, and then TBHP (200
mmol/L) was added for an additional 12 h; (d) TBHP + FGF10 +
U0126: NRK-52E was pretreated for 2 h with U0126 (20 mmol/L),
and then cells were treated the same as TBHP + FGF10 group. The
pretreatment compounds in the culture medium were not removed
before successive treatment conditions. All experiments with NRK-
52E were performed in triplicates.

Western Blot Analysis
To assess the regulatory role of FGF10 on ER stress and
apoptosis, the expression of relevant proteins was analyzed by
western blot. For protein analysis of in vivo samples, total kidney
tissues (contain both of cortex and medulla, but don't contain the
renal fibrous capsule) were homogenized and total proteins were
extracted using tissue lysis buffer. For protein analysis of in vitro
samples, NRK-52E cultured in a petri dish was rinsed with PBS
buffer three times; total proteins were extracted using cell lysis
buffer. An equivalent of 100 mg protein of the in vivo sample (30
mg protein of the in vitro sample) was separated by Sodium
Dodecyl Sulfate PolyAcrylamide and then transferred to a
polyvinylidene fluoride (PVDF) membrane for immunoblot
analysis. Primary antibodies against cleaved Caspase-3
(1:1,000), cleaved Caspase-9 (1:1,000), Bax (1:3,000), Bcl-2
(1:1,000), GRP78 (1:1,000), CHOP (1:5,000), XBP-1 (1:1,000),
ATF-4 (1:1,000), ATF-6 (1:2,000), PDI (1:2,000), ERK1/2
(1:1,000), and phosphor-ERK1/2 (1:1,000) were used in the
present study. GAPDH (1:2,500) was used as loading control.
The signals were visualized with the ChemiDic™ XRS + Imaging
System (Bio-Rad Laboratories). The band densities were
quantified with Multi Gauge Software of Science Lab 2006
(FUJIFILM Corporation, Tokyo, Japan).

Fluorescence Activated Cell
Sorting Analysis
To assess the protective effect of FGF10 on NRK-52E against
apoptosis induced by TBHP, apoptosis of NRK-52E in each
group was quantified with Annexin V-FITC-PI Apoptosis
Detection Kit fol lowing the manufacturing process
instructions. Briefly, NRK-52E was cultured and randomly
divided into four groups as described above. Cells were
collected and washed twice with PBS and resuspended in
binding buffer before the addition of Annexin V-FITC-PI.
Cells were then gently vortex mixed and incubated for 15 min
in the dark at room temperature before analysis using a BD
FACSCalibur™ flow cytometer (BD Biosciences, San Jose, CA,
USA) and FlowJo software (Tree Star, San Carlos, CA, USA).

Immunohistochemistry and
Immunofluorescence Staining
To observe the expression and location of ER stress and apoptosis
relevant proteins in kidney tissues, immunohistochemistry and
immunofluorescence staining were performed. The renal
morphology was detected as we described in a previous study
(Tan et al., 2017). Briefly, kidneys (both of cortex and medulla)
February 2020 | Volume 11 | Article 39
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were excised and harvested 1 day after I/R injury. After being
dehydrated in gradient ethanol, renal tissue was embedded in
paraffin and cut into 5 mm sections. For immunohistochemistry
staining, slides were incubated with antibodies against cleaved
Capase-3 (1:300), CHOP (1:300), GRP-78 (1:500), and ATF6
(1:300) separately, and then incubated at 4°C overnight. After
being incubated with primary antibodies and washed with PBS
solution for three times, the slides were incubated with secondary
antibodies for 1 h at room temperature, washed with PBS solution
for three times, stained with Diaminobenzidine (DAB), and
counterstained with hematoxylin. The slides were then subjected
to gradient ethanol dehydration, dimethyl benzene transparent,
andmounted with neutral resin cover slides. Images were captured
using a Nikon ECLPSE 80i. For immunofluorescence staining,
slides were incubated with primary antibodies against CHOP
(1:300) and GRP-78 (1:500) incubated at 4°C overnight. After
reacting with the primary antibodies, the slides were washed 3
times with PBS and then incubated with secondary antibodies
(AlexaFluor 488, Abcam) for 1 h at room temperature. Images
were captured using a laser confocal microscope (Nikon, Ti-
E&A1 plus).

Renal Histopathology Damage
Assessment
To evaluate the renal histopathology damages, slides were
stained with hematoxylin and eosin (H&E) and Periodic acid
Schiff (PAS), respectively. Each image of the sections was
examined under light microscope (Nikon ECLPSE 80i, Japan).
Renal histopathology damage degree was evaluated based on
intraluminal necrotic cells, cell swelling, interstitial congestion,
edema, and protein casts. The following 5 point scoring system
was utilized to assess renal damage: 0 point (normal renal
morphology), 1 point (damage of kidney tissue ≤10%), 2
points (damage of kidney tissue 11–25%), 3 points (damage of
kidney tissue 26–45%), 4 points (damage of kidney tissue 46–
75%), 5 points (damage of kidney tissue ≥76%). The pathologists
who assessed the images were blinded to the allocation group.

TUNEL Assay
The Terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL) assay is a method for detecting DNA
fragmentation. TUNEL has been widely used to identify and
quantify cell death in tissues within the last two decades. To
assess the protective effect of FGF10 against apoptosis, TUNEL
staining and immunohistochemistry staining of cleaved Caspase-
3 were used to detect the apoptosis in the kidney tissue after
reperfusion. The experimental protocol was exactly the same as
we described in our previous study. Kidneys were excised and
harvested 1 day after I/R injury. After being dehydrated in
gradient ethanol, renal tissue was embedded in paraffin and cut
into 5 mm sections. For TUNEL assay, slides were handled with
the TUNEL Apoptosis Assay KIT following manufacturing
process instructions. The images were captured under a Laser
confocal microscope (Nikon, Ti-E&A1 plus). The apoptosis
index was analyzed based on five randomly selected images
from each group.
Frontiers in Pharmacology | www.frontiersin.org 4
Statistical Analysis
SPSS 19.0 statistical software (Cary, NC, USA) was used for the
analysis of rat survival rate after reperfusion. The statistical
evaluation of the data was performed using one-way Analysis
of Variance (ANOVA) when two groups were compared in this
study. Data are expressed as the mean ± SEM of n independent
experiments (n ≥ 5). *P < 0.05, **P < 0.01, and ***P < 0.001 were
considered statistically significant.
RESULTS

FGF10 Protects Renal Function and
Histological Integrity
We utilized a rat model of I/R injury to investigate the protective
effect of FGF10 on AKI as depicted in Figure 1A. To evaluate the
protective effect of FGF10, survival rate was analyzed for 30 days
after reperfusion. As shown in Figure 1B, the 30-days survival
rate was significantly improved in the I/R–FGF10 group (91.7%)
compared with the I/R group (66.7%). Serum creatinine (Cr) levels
were measured at 24 h post reperfusion to assess renal function. As
expected, the level of serum Cr was increased nearly five folds in I/R
rats (n = 5) compared to the Sham group (Figure 1C). However, the
level of serum Cr in the I/R–FGF10 group was significantly
decreased compared to the I/R rats (P < 0.05). Renal
morphological changes were assessed by H&E staining; no
obvious damage in the kidney of the Sham group was detected
(Figure 1D-a), whereas the kidney of the I/R group showed typical
pathological features of AKI. The arrows represent intraluminal
necrotic cells, swelling of renal tubular cells, interstitial congestion,
and edema. The asterisks represent protein casts in delated
tubulars (Figure 1D-b). Administration of FGF10 significantly
attenuated the extent of renal damages (Figure 1D-c) and largely
preserved the integrity of renal morphology. Tubular injury score
was analyzed based on H&E staining. As shown in Figure 1E,
FGF10 treatment strikingly ameliorated the damage of the kidney
tissue after I/R injury. There is no significant difference of the
tubular injury between the I/R–FGF10 group and Sham group.
PAS staining for glycogen deposition (purple plaques) further
indicated that the integrity of brush border on the surface of the
renal proximal epithelial cell was damaged in I/R rats. As shown in
Figure 1F-b, the arrows point to the detachment of brush border
from epithelial cell, and the asterisks represent tubular lumen
narrowing caused by swelling of epithelial cells. The integrity of
the brush border in the I/R–FGF10 group was significantly
improved compared with the I/R group (Figure 1F-c). In
addition, I/R rats displayed significantly increased glycogen
accumulation in the glomerulus compared with that of the Sham
rats, whereas FGF10 preadministration effectively reduced the
deposition of glycogen in glomerulus after reperfusion (Figure 1F).

FGF10 Prevents I/R-Induced Apoptosis of
Renal Tubular Epithelial Cells
TUNEL staining was used to assess the apoptosis of renal tubular
cells caused by I/R injury. As shown in Figure 2A, few TUNEL-
positive cells were observed in the kidney of the Sham group,
February 2020 | Volume 11 | Article 39
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whereas the number of TUNEL-positive cells in the kidney of the
I/R–FGF10 was dramatically increased. Importantly, the number
of TUNEL-positive cells in the kidney of the I/R–FGF10 group
was markedly reduced compared to the I/R group.
Quantification analysis of the number of TUNEL-positive cells
revealed that the average percentage of dead cells was 1.19% in
the Sham group, 32% in the I/R group, and 4% in the I/R–FGF10
group, respectively (Figure 2B).

Caspase-3, also known as CPP32, is synthesized as an inactive
proenzyme that is processed to an active form (cleaved Caspase-
3) in cells undergoing apoptosis (Fernandes-Alnemri et al.,
1994). Previous studies have demonstrated that Caspase-3 is
the most important regulatory factor in the apoptotic cell both by
death ligand (extrinsic) and mitochondrial (intrinsic) pathways
(Salvesen, 2002). The Bcl-2 family, including Bax and Bcl-2,
plays a crucial role in the mitochondrial apoptotic pathway
(Havasi and Borkan, 2011). To further clarify the mechanism
Frontiers in Pharmacology | www.frontiersin.org 5
under the protective effect of FGF10 against renal I/R injury, we
examined the act iva t ion of c leaved Caspase-3 by
immunohistochemistry staining. As shown in Figure 3A, I/R
injury increased the production of cleaved Caspase-3 as
demonstrated by strong staining in the cytoplasm of renal
tubular cells. The production of cleaved Caspase-3 was
markedly decreased in the kidney tissue of the I/R–FGF10
group. Furthermore, several key proteins involved in the
regulation of tubular cell apoptosis including cleaved Caspase-
3, Bax, and Bcl2 were determined by western blot (Figure 3B).
As shown in Figures 3C, D, the production of cleaved Caspase-3
and Bax in the kidney tissue was markedly increased after
reperfusion, whereas administration of FGF10 inhibited the
production of cleaved Caspase-3 and Bax. Together, these
results indicated that FGF10 preadministration protects the
kidneys via alleviating apoptosis of the renal tubular epithelial
cells after reperfusion.
FIGURE 1 | FGF10 attenuates renal I/R injury. (A) Flow chart for animal procedures. (B) Survival rate. The survival rate of I/R–FGF10 group was significantly
improved compared with the I/R group (n = 12). *P < 0.05. (C) Serum creatinine levels of animals from Sham group, I/R group and I/R-FGF10 group. *P < 0.05,
**P < 0.01. n = 5. (D) Histological evaluations of renal tissue stained with H&E staining. Panels are representative of five animals in each group. The arrows point to
renal tubular swelling, interstitial congestion and glomerular basement membrane thickening. Asterisks represent protein casts in delated tubulars. Scale bars
represent 50 mm. (E) Tubular injury score was analyzed based on H&E staining. ***P < 0.001. Results are representative of five rats in each group. (F) Brush border
of renal proximal epithelial cell was evaluated with PAS staining (purple red). The arrows represent the abscission of brush border in proximal tubulars. Asterisks
represent tubular lumen narrowing caused by swelling of epithelial cells. Panels are representative of five rats in each group. Scale bars represent 50 mm.
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The Protective Effect of FGF10 Against
Renal I/R Injury Is Associated With
ER Stress
ER stress is a common feature of I/R injury and known to impact
renal tubular cell survival. To investigate whether the protective
Frontiers in Pharmacology | www.frontiersin.org 6
effect of FGF10 on renal tubular cells is associated with the
inhibition of excessive ER stress, we examined the expression of
ER stress related proteins by immunohistochemistry staining. As
shown in Figures 4A–C, the expression of CHOP was
dramatically increased in the nucleus and cytoplasm of renal
FIGURE 2 | FGF10 reduced cell death in ischemic kidneys. (A) Representative sections from kidney tissues 1 day after reperfusion for the detection of nuclear DNA
fragmentation performed by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) staining. Panels are representative of five rats in each
group. Scale bars represent 50 mm. (B) Quantitative analysis of the proportion of TUNEL-positive renal tubular epithelial cells in kidney tissues of each group.1.19%
in Sham group, 17.3% in I/R group, 1.5% in I/R–FGF10 group. FGF10 significantly reduced the apoptosis of renal tubular epithelial cells after reperfusion.
Representative data of five individual samples for each group. **P < 0.001.
FIGURE 3 | FGF10 reduced the expression of proapoptotic proteins. (A) Immunohistochemistry staining of kidney tissues 1 day after reperfusion for the activation of
Caspase-3. The expression of cleaved Caspase-3 was significantly increased in the cytoplasm of renal tubular cells after reperfusion, whereas FGF10 treatment reduced the
expression of cleaved Caspase-3. Panels are representative of five rats in each group. Scale bars represent 50 mm. (B) Western blot analysis of apoptosis index expression.
Total kidney tissues (contain both cortex and medulla, but don't contain renal fibrous capsule) were used for the analysis of protein expression in kidney. The expression levels
of cleaved Caspase-3, Bax, and Bcl2 were detected. GAPDH was used as a loading control. (C, D) The column panels show the normalized optical density analysis. FGF10
significantly reduced the expression of cleaved Caspae-3 and Bax compared with I/R group. *P < 0.05, **P < 0.01.
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tubular epithelial cells after reperfusion, whereas FGF10
treatment reduced the expression of CHOP. FGF10 treatment
reduced the expression of GRP78 in the cytoplasm of epithelial
cells after reperfusion. The expression of ATF-6 was increased in
the nucleus of renal tubular epithelial cells after reperfusion,
FGF10 largely reduced the expression of ATF-6 compared to the
I/R group. Results of immunohistochemistry staining confirmed
that FGF10 could strikingly decreased the expression of ER stress
relevant proteins induced by renal I/R injury. Western blotting
was used to examine the expression of CHOP, GRP78, ATF-4,
ATF6, PDI and XBP1, all of which are ER-stress effectors that,
via regulation of the unfolded protein response, contribute to
cellular homeostasis in kidney. As shown in Figure 5A and
quantification analysis in Figures 5B–G, we observed elevated
expression of these proteins in the kidney tissue of the I/R group,
whereas pretreatment with FGF10 significantly down-regulated
the expression of the proteins mentioned above. These results
suggest that preadministration of FGF10 can effectively
ameliorate I/R-induced maladaptive ER-stress response, which
may contribute to mitigate tubular cell apoptosis. In addition, the
apoptosis of renal tubular epithelial cells is the primary reason
for AKI caused by I/R injury. We observed that cleaved Caspase-
3, CHOP, GRP78, and ATF-6 are mainly expressed in the
epithelial cells of the renal tubules (Figures 3A and 4). Based
on the results of immunohistochemistry staining, we could infer
Frontiers in Pharmacology | www.frontiersin.org 7
that FGF10 reduces apoptosis of renal tubular epithelial cells via
inhibiting the excessive ER stress.

The Protective Effect of FGF10 Against
Apoptosis Is Related to ERK1/2 Pathway
MAPK/ERK1/2 is a critical downstream pathway of FGF, which
plays an important role in the regulation of variety of cellular
processes including cell survival, proliferation, migration, and
differentiation (Lunn et al., 2007). As mentioned above, FGF10
specifically binds to FGFR2b, which was distributed in the
membrane of epithelial cells. To assess the effect of FGF10 on
the activation of ERK1/2 pathway, we detected the
phosphorylation of ERK1/2 in the kidney tissue of the Sham
group, the I/R group, and the I/R–FGF10 group. As shown in
Figures 5A, H, the phosphorylation of ERK1/2 was mildly
increased in the kidney tissue of the I/R group compared to the
Sham group. Preadministration of FGF10 led to a robust increase
in the phosphorylation of ERK1/2 compared to the I/R group. The
PI3K–Akt signal transduction pathway also plays an important
role in the regulation of cell survival, proliferation, and migration
(Wang et al., 2012). We also detected the phosphorylation of AKT
in the kidney tissue of the Sham group, I/R group, and I/R–FGF10
group. As shown in Figures 5A, I, the phosphorylation of AKT
was increased in the kidney tissue of the I/R group compared to
the Sham group. However, there is no significant difference in the
FIGURE 4 | Immunohistochemistry staining of ER stress relevant proteins in kidney tissues after reperfusion. (A) Immunohistochemistry staining for CHOP for renal
tissues after 1 day of reperfusion. The expression of CHOP was significantly increased in the nucleus and cytoplasm of renal tubular epithelial cells after reperfusion,
whereas FGF10 treatment reduced the expression of CHOP. (B) Immunohistochemistry staining for GRP78. FGF10 treatment reduced the expression of GRP78 in
the cytoplasm of epithelial cells after reperfusion. (C) Immunohistochemistry staining for ATF-6. The expression of ATF-6 was significantly increased in the nucleus of
renal tubular epithelial cells after reperfusion, whereas FGF10 treatment reduced the expression of ATF-6 compared to I/R alone. Panels are representative of five
rats in each group. Scale bars represent 50 mm.
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phosphorylation of AKT in the kidney tissue between the I/R
group and I/R–FGF10 group. Those results may imply that FGF10
protects against renal I/R injury through activating the ERK1/2
signaling pathway, not the PI3K-Akt signaling pathway. To
further clarify the relationship between the ERK1/2 signaling
pathway and the protective effect of FGF10, we treated NRK-
52E cells with TBHP, a commonly ROS inducer which is much
stable compared with hydrogen peroxide (H2O2) solution. The
apoptosis of NRK52E cells was detected by flow cytometric
analysis with Annexin V-FITC-PI Apoptosis Detection Kit. As
shown in Figures 6A, B, FGF10 treatment significantly reduced
the apoptosis rate of NER-52E caused by TBHP. However, U0126,
a selective inhibitor of MEK1/2 that blocks the phosphorylation of
ERK1/2 (Shukla et al., 2007), largely abolished the protective effect
of FGF10 on NRK-52E cells. To further confirm the role of ERK1/
2 signaling pathway in the protective effect against TBHP-induced
apoptosis, the expression of cleaved Caspase-3, cleaved Caspase-9,
Bax, and Bcl2 was detected by immunoblots. Caspase-9 is an
initiator caspase which could further process the activation of
other caspases, including Caspase-3, to start the caspase cascade
Frontiers in Pharmacology | www.frontiersin.org 8
leading to apoptosis. Under the action of the apoptotic signals, the
release of Cytochrome c from the mitochondria and activation of
Apoptotic protease activating factor 1 (APAF1) cleave pro-caspase
9 into the active form (Li et al., 1997). Our results indicated that
FGF10 pretreatment effectively antagonized TBHP-induced
Caspase-3 and Caspase-9 cleavages. More importantly, the effect
of FGF10 was completely reversed in the presence of MEK
inhibitor U0126. Consistently, the drastically increased
production of Bax caused by TBHP also appeared to be restored
with the treatment of FGF10. However, U0126 exposure partially
reversed the effect of FGF10 (Figures 7A–D).

As shown in Figures 7A, E, FGF10 treatment significantly
activated ERK1/2 phosphorylation compared to the TBHP group,
which is consistent with what we observed in the kidney tissue. As
expected, preaddition of U0126, a highly specific inhibitor of
MEK, largely abolished the effect of FGF10 on the
phosphorylation of ERK1/2 in NRK-52E cells. These results
strongly suggest that ERK1/2 activation is a crucial mechanism
in FGF10-mediated protection against cell apoptosis in both I/R
injured kidney and TBHP injured NRK-52E cells.
FIGURE 5 | The regulation effect of FGF10 on ER stress and ERK1/2 signaling pathway. (A) The expression levels of GRP-78, CHOP, XBP-1, ATF-4, ATF-6, PDI,
ERK1/2, and phospho-ERK1/2 in kidney tissues of Sham group, I/R group and I/R-FGF10 group were determined by immunoblot analysis. FGF10 significantly
increased the phosphorylation of ERK1/2. (B–I) The histograms show the normalized optical density analysis. Results are representative of five rats in each group.
*P < 0.05, **P < 0.01, ***P < 0.001, ns represents no significant difference.
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The Effect of FGF10 on the Regulation of
ER Stress Is Related to the Activation of
ERK1/2 Pathway
To clarify the relationship between the protective effect of FGF10
and ER stress, we examined the expression of CHOP and GRP78
Frontiers in Pharmacology | www.frontiersin.org 9
by immunofluorescence staining in NRK-52E cells respectively
(Figures 8A, B). We observed that FGF10 effectively attenuated
ER stress relevant proteins induced by TBHP, which was
inhibited by U0126 to a large extent. The expression levels of
CHOP and GRP78 were also examined by western blotting. As
FIGURE 6 | FGF10 inhibits the apoptosis of NRK-52E induced by TBHP. (A) Apoptosis of NRK-52E was detected by flow cytometry with annexin V-FITC-/
propidium iodide. The top-right panel indicates the apoptotic cells. (B) Bar chart represents the apoptosis rate of NRK-52E in each group with three separate
experiments. **P < 0.01, ***P < 0.001.
FIGURE 7 | FGF10 reduced the expression of proapoptotic proteins via activating ERK1/2 signaling pathway. (A) For protein analysis of in vitro samples, total
proteins of NRK-52E were extracted using cell lysis buffer. NRK-52E was treated with different culture media and then the expression of cleaved Caspase-3, cleaved
Caspase-9, Bax, Bcl-2, ERK1/2, and phosphor-ERK1/2 was detected by western blotting. (B–E) Histogram figures show the normalized optical density analysis.
Results are representative of five rats in each group. *P < 0.05, **P < 0.01, ***P < 0.001.
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shown in Figures 8C, D, E, TBHP remarkably increased the
expression of CHOP and GRP78 in NRK52E cells, indicating
that oxidative stress triggered excessive ER stress in these cells.
Similar to the results observed in vivo, FGF10 significantly
reduced the expression of CHOP and GRP78 in NRK-52E cells
treated with TBHP. The effect of FGF10 is partially abolished by
U0126. Our results strongly suggested that activation of ERK1/2
signal pathway contributes to FGF10 mediated protection
against maladaptive ER stress.
DISCUSSION

AKI, mainly caused by renal I/R injury, remains a vexing health
problem. Despite the current clinical advances in prevention and
treatment, the morbidity and mortality of AKI in hospitalized
patients remain very high (Basile et al., 2012; Winterberg and Lu,
2012). As a crucial mesenchymal–epithelial signaling growth
factor in embryonic development, tissue repair, and regeneration,
the role of FGF10 has been investigated in several disease
conditions such as cerebral ischemia injury, pulmonary
Frontiers in Pharmacology | www.frontiersin.org 10
fibrosis, and wound healing (Li et al., 2016; Chen et al., 2017;
Chao et al., 2017; El Agha et al., 2017). However, whether FGF10 is
capable of delivering a protective effect on AKI in rat model of I/R
injury is still unclear.

Currently, many studies reported the relationship between
ERK1/2, ER stress, and apoptosis (Sun et al., 2015; Yao et al.,
2017). Generally, ERK1/2 are activated upon phosphorylation by
MEK1/2 and are considered to promote cell survival (Darling
and Cook, 2014). ERK1/2 signaling inhibits apoptosis via
activating the expression of prosurvival proteins (BCL-2, MCL-
1, and BCL-XL) and repressing the expression of proapoptotic
proteins (BAD, BIM, BMF, and PUMA). However, in some
certain conditions such as starvation, ERK1/2 could also
promote the expression of NOXA (phorbol-12-myristate-13-
acetate-induced protein 1), a proapoptotic member of the
BCL-2 family, to decide autophagy or apoptosis (Yao et al.,
2017). ER stress could be triggered by a variety of extracellular
stimuli and induces apoptosis. It has been reported that renal
tubular cell apoptosis induced by I/R injury is associated with
excessive ER stress. Excessive ER stress can activate apoptotic
signaling pathways via CHOP, a master regulator of maladaptive
FIGURE 8 | FGF10 attenuates ER stress in NRK-52E cells. (A, B) Immunofluorescent staining for CHOP and GRP78 in NRK-52E. FGF10 significantly decreased the
expression of CHOP and GRP78 in NRK-52E induced by TBHP, whereas U0126 largely eliminated the effect of FGF10. Panels are representative of five rats in each
group. Scale bar represents 50 mm. (C) The expression of CHOP and GRP78 was detected by Western blotting. (D, E) Bar chart for quantification analysis for the
expression of CHOP and GRP78. Results are representative of five rats in each group. GAPDH was used as a protein loading control. *P < 0.05, **P < 0.01,
***P < 0.001.
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ER stress-induced apoptosis (Rutkowski et al., 2006). The
interaction of ERK1/2 signaling pathway and ER stress has
been reported in many studies (Zhang et al., 2009; Darling and
Cook, 2014). The activation of the ERK1/2 signaling pathway
exhibits an antiapoptotic role during ER stress through
regulating the IRE1 (inositol requiring enzyme 1) axis of the
UPR (Darling and Cook, 2014). FGF10 is a member of the FGF
family with multifunctional effect in the regulation of
development, wound healing, and tissue regeneration. It has
been proved that FGF10 can ameliorate cerebral I/R injury and
spinal cord injury via inhibiting NF-kB-dependent inflammation
and activating the PI3K/Akt signaling pathway (Li et al., 2016;
Chen et al., 2017; Dong et al., 2019). In our previous study, we
demonstrated that FGF10 can protect the kidney against
apoptosis via the regulation of inflammatory response and
autophagy (Tan et al., 2018). In our present study, the
administration of FGF10 can not only reduced the expression
of proapoptotic proteins, but also effectively alleviated ER stress
kidneys after I/R injury. Therefore, FGF10 exhibits reliable
capability in the protection against AKI caused by I/R injury
via inhibiting maladaptive ER stress.

ER stress and UPR, which could be provoked by glucose
depletion and hypoxia after renal I/R injury, have previously
shown to play a pivotal role in the enhancement of protein
folding ability (Belaidi et al., 2013; Wang et al., 2015). However,
excessive and prolonged ER stress and UPR can elicit glomerular
and tubular cell damage in patients with AKI and CKD (Bhatt et al.,
2008; Inagi, 2009; Xu et al., 2016). Our present results indicated that
the expression of ER stress relevant proteins including CHOP,
GRP78, XBP-1, ATF-4, ATF-6, and PDI was significantly increased
after reperfusion. Importantly, treatment of recombination FGF10
can reduce ER stress relevant proteins and thus inhibited renal
tubular cell apoptosis caused by I/R injury. The present study
suggested that the renoprotective effect of FGF10 is associated
with the regulation of ER stress.

Mitogen-activated protein kinases (MAPKs) are among the
most commonly activated signaling pathways associated with
various renal injuries (Tian et al., 2000). ERK, an important
member of MAPK family, is mainly activated by mitogenic
stimuli such as growth factor and hormones. The ERK1/2
signaling pathway is particularly important in the regulation
of cell survival, migration, differentiation, and proliferation in a
variety of circumstances (Sun et al., 2015; Yao et al., 2017). The
role of ERK1/2 in the restoration of renal structure and function
is still controversial (Feliers and Kasinath, 2011; Zhang and Cai,
2016; Li et al., 2018). To confirm the role of ERK1/2 in the
protective effect of FGF10 on AKI caused by renal I/R injury, we
examined the expression of phospho-ERK1/2 in the kidney
tissue after reperfusion as shown in Figure 5. Our experiments'
results confirmed that FGF10 treatment increased the
phosphorylation of ERK1/2 in the kidney tissues after
reperfusion. As the effect of FGF10 in reducing apoptosis and
inhibiting ER stress has been verified in the present study, we
speculate that the protective effect of FGF10 in down-regulation
of apoptosis may be related to the activation of ERK1/2
signaling pathway.
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To further clarify the role of ERK1/2 signaling pathway in
the regulation of FGF10 on ER stress after reperfusion, we
then examined the protective effect of FGF10 against apoptosis
with NRK-52E induced by TBHP. TBHP is a widely used
oxidative stress inducer which can increase intracellular ROS
production. Our present study demonstrated that FGF10
treatment can strikingly inhibit the apoptosis of NER-52E
induced by TBHP. U0126, a specific inhibitor of MKK,
abrogated the antiapoptosis effect of FGF10 via blocking the
phosphorylation of ERK1/2. Moreover, U0126 also reversed
the down-regulation effect of FGF10 on ER stress related
proteins including GRP78 and CHOP. These results suggest
that ERK1/2 signaling pathway is probably the downstream
signals induced by FGF10 in the restoration of renal I/R injury.
U0126 could suppress the activation of ERK1/2 and abolish
the role of FGF10 in the regulation of ER stress on injured
NRK-52E induced by TBHP.

As a multifunctional growth factor, FGF10 has been reported
to play crucial roles in development and disease. However, the
protective mechanism of FGF10 on AKI has not yet been clearly
elucidated. In the present study, we confirmed that renal tubular
epithelial cell apoptosis induced by hypoxia injury is related to
the excessive activation of ER stress. Convincing experimental
evidence has been provided both in vivo and in vitro that
exogenously administered FGF10 could attenuate renal tubular
epithelial cell apoptosis via inhibiting excessive ER stress.
Through in vitro experiments, we also demonstrated that the
protective effect of FGF10 is, at least partly, mediated by MEK–
ERK1/2 signaling pathway. In conclusion, results of our present
study have implications for understanding the pathophysiology
of AKI caused by renal I/R injury and indicate the therapeutic
potential of FGF10 in clinical applications. Future research
should clarify the exact protective mechanisms of FGF10 in
tissue repair and provide novel insights in the field of
regenerative medicine.
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