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Drug-induced liver injury (DILI) is one of the major reasons for termination of drug
development. Due to the importance of predicting DILI in early phases of drug
development, diverse in silico models have been developed to filter out DILI-causing
candidates before clinical study. However, no computational models have achieved
sufficient prediction power for screening DILI in early phases because 1) drugs often
cause liver injury through reactive metabolites, 2) different clinical outcomes of DILI have
different mechanisms, and 3) the DILI label on drugs is not clearly defined. In this study, we
developed binary classification models to predict drug-induced cholestasis, cirrhosis,
hepatitis, and steatosis based on the structure of drugs and their metabolites. DILI-
positive data was obtained from post-market reports of drugs and DILI-negative data from
DILIrank, a database curated by the Food and Drug Administration (FDA). Support vector
machine (SVM) and random forest (RF) were used in developing models with nine
fingerprints and one 2D molecular descriptor calculated from drug (152 DILI-positives
and 102 DILI-negatives) and drug metabolite (192 DILI-positives and 126 DILI-negatives)
structures. Models were developed according to Organisation for Economic Co-operation
and Development (OECD) guidelines for quantitative structure-activity relationship (QSAR)
validation. Internal and external validation was performed with a randomization test in
order to thoroughly examine model predictability and avoid random correlation between
structural features and adverse outcomes. The applicability domain was defined with a
leverage method for reliable prediction of new chemicals. The best models for each liver
disease were selected based on external validation results from drugs (cholestasis: 70%,
cirrhosis: 90%, hepatitis: 83%, and steatosis: 85%) and drug metabolites (cholestasis:
86%, cirrhosis: 88%, hepatitis: 86%, and steatosis: 83%) with applicability domain
analysis. Compiled data sets were further exploited to derive privileged substructures
that were more frequent in DILI-positive sets compared to DILI-negative sets and in drug
metabolite structures compared to drug structures with a Morgan fingerprint level 2.

Keywords: drug-induced liver injury, structure-activity relationship, structural alerts, computational toxicology,
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INTRODUCTION

Drug-induced liver injury (DILI) is caused by almost all classes of
drugs and covers diverse clinical manifestations such as hepatitis,
cholestasis, cirrhosis, and steatosis depending on the duration of
injury and the histological location of damage (David and
Hamilton, 2010). DILI is typically derived from an initial
hepatocellular injury; however, the mechanisms for each
clinical outcome are distinct. Drug-induced cholestasis (DICH)
is caused when drug disturbs bile acid homeostasis by inhibiting
hepatic transporters that mediate biliary secretion of bile acids
and other organic solutes at the sinusoid (Padda et al., 2011;
Sagnik and Pieter, 2018). Drug-induced cirrhosis (DIC) is
developed when drugs trigger fibrogenesis, through which
excessive extracellular matrix molecules (ECM) are produced.
Normally, ECM is removed by matrix metalloproteinases
(MMPs); however, chronic liver damage upregulates tissue
inhibitors of MMPs, and thus, ECM accumulates throughout
the liver (Schuppan and Afdhal, 2008; Tsochatzis et al., 2014).
Hepatitis is an immune-mediated liver injury, and drug-induced
hepatitis (DIH) is caused by drugs or their metabolites binding to
cellular proteins (e.g., cytochrome P450) which are recognized as
antigens by the immune system (Björnsson et al., 2010) and
triggering an adverse immune response that resembles viral
infection (Hodgson and Levi, 2004). Hepatic steatosis is
characterized by fatty acid accumulation in hepatocytes due to
increases in lipogenesis or decreases in fatty acid secretion
(Rabinowich and Shibolet, 2015). Since mitochondria play a
significant role in lipid metabolism in hepatocytes, drugs
accumulating in mitochondria cause drug-induced steatosis
(DIS) by interfering with mitochondrial respiration or
b-oxidation (Patel and Sanyal, 2013). As each clinical outcome
of liver injury is derived from distinctive mechanisms, prediction
models for each disease are needed to improve predictive power
and interpretability of the results.

DILI is a challenging endpoint in predictive toxicology even
though numerous studies have already been conducted (Hong
et al., 2018). Particularly, DILI classification models based on drug
structures faced limitations in improving their performance since
these are based on the assumption that similar structures have
similar properties, while certain hepatotoxicants damage
hepatocytes through their reactive metabolites (Cherkasov et al.,
2014). There are diverse data sets available in research articles or
databases that provide information on whether drugs cause DILI,
yet DILI induction by reactive metabolites is only partially
reported. Even in the LiverTox (NIDDK, 2012), which listed
DILI causing drugs with information on their reactive
metabolites, drug metabolism information is mentioned for
certain drugs while it is missing for others, and thus it is
impossible to judge whether the drugs are not actively
metabolized, metabolites of the drugs are not reactive, or simply
reactivity of drug metabolites was not examined. Due to lack of
DILI labels on drug metabolites, development of prediction
models for drug metabolites has been a challenging task.
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As DILI has become one of the leading causes for the
termination of premarket studies or drug withdrawal from the
market (Fisk et al., 2018), diverse hepatotoxicity prediction
models have been developed to filter out DILI causing
molecular structures in early phases of drug discovery (Yang
et al., 2018). In silicomodels, which predict DILI causation based
on the molecular structure of drugs, are developed either with
knowledge of experts to give structural alerts (SAs) or with
computation based on statistical modeling (Greene and Naven,
2009). SAs are also referred to as structure-activity relationships
(SARs) in which patterns of the molecular substructure of DILI
causing drugs are defined according to expert knowledge and
experience. SARs have been developed based on reactive drug or
metabolite structures, or pharmacological mechanisms such as
redox cycling, mitochondrial dysfunction, and disruption of
hepatic transporters (Fisk et al., 2018). Derek hepatotoxicity
module is one example of a hepatotoxicity SAR (Greene et al.,
2010). The statistical model is also termed quantitative structure-
activity relationship (QSAR), in which machine learning
algorithms were used to train the model with chemical
structure as an input and their activity as an endpoint (Hong
et al., 2018). Few in silico models were developed to predict
specific DILI endpoints such as cholestasis and steatosis based on
their molecular mechanism, while numerous in silico models
were developed to predict DILI or hepatotoxicity overall (Hewitt
and Przybylak, 2016; Hong et al., 2018; Yang et al., 2018),
although the molecular mechanism of each liver disease is
different. For cholestasis, the bile salt export pump (BSEP)
inhibition model was developed since BSEP inhibition is one
molecular mechanism of hepatic cholestasis (Sagnik and Pieter,
2018). For steatosis, QSAR models were developed for cellular
targets of molecular initiating events in liver steatosis adverse
outcome pathways such as the pregnane X receptor, the liver X
receptor, the aryl hydrocarbon receptor, the nuclear factor
(erythroid-derived 2)-like 2, and the peroxisome proliferator-
activated receptors (Gadaleta et al., 2018).

In this work, binary classification models that predict four
types of DILI (i.e., cholestasis, cirrhosis, hepatitis, and steatosis),
were developed with 257 drugs. DILI caused by drug metabolites
were considered by developing models with 318 drug metabolites
of the compounds. Structural differences of the compounds were
considered alone in the prediction models of this work, since
structural motifs in each drugs and drug metabolites are assumed
to be associated with clinical outcomes. Prediction models were
developed with molecular fingerprints and 2d descriptors.
Support vector machine (SVM) and random forest (RF) were
applied in training, and the models achieved sound prediction
performance. Models were developed, validated, and analyzed
according to the Organisation for Economic Co-operation and
Development (OECD) guidelines for QSAR validation (OECD,
2007). Compiled data sets for drugs and drug metabolites were
further examined to find privileged substructures in DILI-
positive compared to DILI-negative groups, and in drug
metabolites compared to drugs.
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METHODS

Drug-Induced Liver Injury Label
Assignment on Drugs
Two databases were combined in this work to prepare data sets
for model development: PharmaPendium (Elsevier, 2008) and
DILIrank (Chen et al., 2016). Drugs that have been reported to
cause cholestasis, cirrhosis, hepatitis, and steatosis were collected
from PharmaPendium, and drugs with no-evidence-of-DILI
(noDILI) were obtained from DILIrank. Since four clinical
outcomes were the target endpoints in this work, four data
tables for DICH, DIC, DIH, and DIS were separately prepared.
In each data set, drugs were labeled as DILI-positive when they
had over 50 post-market reports for DICH, DIC, DIH, and DIS,
while drugs were labeled as DILI-negative when they met two
conditions: 1) drugs were defined as noDILI in DILIrank, and 2)
no post-market reports were found for the drugs in
PharmaPendium. Further description of DILI label assignment
is illustrated in the DILI label assignment section of the Results
and Discussions.
Structure Curation and Data
Preprocessing
In the structure curation process, salts were removed so that
active ingredients were used alone in model development. Drugs
were removed when they were metallo-organics, proteins, large
peptides, or mixtures. Duplicated structures were also excluded
from the data set. Drugs whose molecular weight (MW) was
higher than 800 Da or lower than 100 Da were removed because
1) data points were sparse within the MW range, 2) molecules
with MW higher than 800 Da were commonly found to be
peptides, and 3) molecules with MW lower than 100 Da were
often organic solvents rather than drugs. One hundred fifty-two
DILI-positive drugs and 105 DILI-negative drugs were obtained
after preprocessing.
Frontiers in Pharmacology | www.frontiersin.org 3
Drug Metabolite Set Preparation
As DILI labels for drug metabolites were not available,
metabolites of drugs that cause DICH, DIC, DIH, and DIS
were identically labeled as DILI-positive metabolites, and
noDILI as DILI-negative, respectively. Metabolite structures for
the DILI-positive set were obtained from the ADME database
(Fujitsu, 1996), in which 78,703 entries of phase I drug
metabolism and 17,692 entries of phase II drug metabolism
were available (updated July 1, 2019); however, those for the
DILI-negative set were relatively sparse. Therefore, DILI-
negative drug metabolite sets were compiled with DILI-
negative drug metabolite structures and DILI-negative parent
drug structures based on the assumption that drugs whose
metabolite structures were not found in the ADME database
were not actively metabolized, since the ADME database covers
drug metabolism of diverse compounds. Given that phase I drug
metabolism produces majority of metabolic products, drug
metabolites produced by human cytochrome P450 were used
in this study. One hundred ninety-two DILI-positive drug
metabolites were obtained from 77 DILI-positive drugs. The
DILI-negative set for the drug metabolite-based prediction
model was composed of 36 DILI-negative drug metabolites
obtained from 20 DILI-negative drugs and 90 DILI-negative
drugs whose metabolite structures were not available in the
ADME database. Summary of data composition is in Figure 1,
and the distribution of the number of metabolites per parent
compound is presented in Figure 2.
Feature Calculation and Curation
In this work, 2D molecular fingerprints (FP) and molecular
descriptors were calculated during model development. RDKit
version 2018.03.2 (Landrum, 2006) was used in FP calculation,
and nine total FPs calculable in RDKit were prepared: MACCS
FP (Durant et al., 2002), Avalon FP in a binary string based on
presence of substructures and in an integer string based on the
number of substructures (Gedeck et al., 2006), atom-pair FP
FIGURE 1 | The number of drugs for each drug data set (A) and drug metabolite set (B). The hepatitis data sets were the largest in each group.
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(Carhart et al., 1985), topological-torsion FP (Nilakantan et al.,
1987), RDKit layered FP, and Morgan FP (Rogers and Hahn,
2010) with three different depths (level 2, 3, and 4). 2D
descriptors were introduced from Mordred (Moriwaki et al.,
2018), which provides 1800 2D and 3D descriptors and is also
implemented as a python package. 3D descriptors were not
calculated in this study since an accurate 3D structure of drugs
and drug metabolites were unavailable. Calculated features were
removed from the data table when their standard deviation was
lower than 0.01.

Training and External Test Set
Eight data sets were compiled from DILI-positive drugs for
DICH, DIC, DIH, and DIS, and DILI-negative for drug and
drug metabolite structures. In the DICH, DIC, and DIS sets, the
number of drugs in the DILI-positive class is almost half of that
of DILI-negative, while the DIH set is imbalanced with 1.5 times
Frontiers in Pharmacology | www.frontiersin.org 4
more DILI-positive drugs than DILI-negative drugs. In the drug
metabolite set, the number of DILI-positives for DICH, DIC, and
DIS is also less than that of DILI-negatives with a smaller
difference in data size between two classes, while that of DIH
has a relatively larger data size difference compared to DILI-
negatives. Models trained with imbalanced data tend to be
improperly trained and give biased prediction outcomes on the
majority class in the data. In order to prevent biased training on
the model, under sampling was applied to reduce data size
imbalance between positive and negative data in the training
set (Zakharov et al., 2014; Klimenko et al., 2019). In this work,
data imbalance was handled by designing the number of DILI-
positives and DILI-negatives for each set, specifically. First,
minor classes from the data set were separated with a ratio of
80 and 20% as a training set and external test set, respectively.
Second, the major class was separated with a ratio that provided a
similar amount of data to the minor class in the training set. This
FIGURE 2 | The distribution of the number of metabolites per parent compound was presented. In each data set, maximum number of drug metabolites per parent
compound was five in drug-induced cholestasis [DICH, (A)], seven in drug-induced cirrhosis [DIC, (B)], eight in drug-induced hepatitis [DIH, (C)], and seven in drug-
induced steatosis [DIS, (D)]. The number of parent compounds that doesn't have their metabolic products is 28 for DICH, 20 for DIC, 67 for DIH, and 24 for DIS.
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approach makes the ratio of DILI-positive to DILI-negative
almost one to one in the training set of each data set. Data
composition is summarized in Table 1 with the number of
positive and negative sets in training and external sets, with
ratio. Even though data was randomly split with the ratio
designed for each data set, it was confirmed that randomly
split test set was evenly distributed within chemical space
represented by randomly split training set. Chemical space
similarity between the training set and the test set implied that
the models trained with the training set can be successfully
evaluated by the test set.

Model Development
Support vector classification (SVC) (Cortes and Vapnik, 1995),
implemented in scikit-learn (Pedregosa et al., 2011), was applied
during model development. The “SelectFromModel” function in
the scikit-learn “feature_selection” package was applied in this
work, which chooses significant features based on the weights of
the model. Since SVC with linear kernel (linear SVC) defines
hyperplane in the linear formula (i.e., w·x+b, where w is weight
vector, x is feature vector, and b is bias vector), linear SVC was
used first to subset significant features with “SelectFromModel,”
and then SVC with radial basis function (RBF) kernel was applied
to develop predictionmodels on the data set with selected features.
RBF kernel projects inputted feature space into high-dimensional
space in which linearly inseparable cases in the original feature
space became separable with linear classifier.

Random forest (RF), implemented in scikit-learn, was also used
in model building. RF model is an ensemble approach, which is
composed of diverse number of decision tree (DT) models. In RF,
unseen data is predicted based on majority vote from DT models.
(Svetnik et al., 2003). In this study, the number of DT was set to 10
due to small size of data, and information gain was used.

Model Performance Validation
The predictive power of the model was evaluated based on five
metrics: accuracy (ACC), sensitivity (SEN), specificity (SPE),
Matthew's correlation coefficients (MCC), which is regarded as
a balanced binary classification performance measure on
imbalanced data, and area under the curve (AUC) of recursive
operating characteristic (ROC) curve.

ACC  ¼   TP + TNð Þ= TP + TN + FP + FNð Þ (1)
Frontiers in Pharmacology | www.frontiersin.org 5
SEN   ¼  TP= TP + FNð Þ (2)

SPE = TN= TN + FPð Þ (3)

MCC =
TP � TN − FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp (4)

where TP, TN, FP, FN are true positive, true negative, false
positive, and false negative, respectively. Binary classification
models are designed to calculate a probability score of the
instances, and the instances are assigned into certain groups if
the score is higher or lower than a threshold value. Better
classification performance is expected when positive data
obtains a higher score while negative data a lower score, which
leads to higher AUC. The “Metrics” package implemented in
scikit-learn was used to calculate AUC, which was measured
from the ROC curve based on SEN and false positive rate (FPR),
calculated by changing the threshold values.

FPR = FP= FP + TNð Þ (5)

For internal validation, five fold cross validation and
bootstrapping were performed. In bootstrapping, data set was
sampled 100 times since recommended sampling iteration was
between 25 and 200. Sampled data is used to train the model, and
the model is validated with un-sampled data. Statistically, 63.2%
of data is sampled on average (Braga-Neto and Dougherty,
2004); therefore, a 0.632 estimator scheme is applied to each
metric to evaluate model robustness and predictability as,

metric0:632   =   1 − 0:632ð Þmetricsampled

+ 0:632metricunsampled (6)

where metric refers to ACC, SEN, SPE, MCC, and AUC on
sampled and un-sampled data during bootstrapping.

Y-randomization tests examine the correlation between
selected features and target endpoint in the model and whether
it is achieved by mere chance. In the test, model development
protocols were repeated after end point values were randomly
shuffled. The models developed from Y-randomization are termed
random models, and the model developed with correctly labeled
data is an original model. Y-randomization testing was repeated 10
times to develop 10 random models, and Z-score was calculated
based on MCC of random models and the original model as,
TABLE 1 | Data set composition for model development.

Data set composition Cholestasis Cirrhosis Hepatitis Steatosis

Positive Negative Positive Negative Positive Negative Positive Negative

Drug Train 47 47 37 42 84 84 48 52
Test 12 58 10 63 56 21 12 53
Ratio (8:2) (4.5:5.5) (8:2) (4:6) (6:4) (8:2) (8:2) (5:5)

Drug metabolite Train 64 69 54 56 101 100 77 81
Test 17 57 14 70 84 26 20 45
Ratio (8:2) (5.5:4.5) (8:2) (4.5:5.5) (5.5:4.5) (8:2) (8:2) (6.5:3.5)
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Z = MCCori −MCCmean
randomð Þ=s (7)

where MCCori is MCC of the original model on external test set,
MCCmean

random is averaged MCC of 10 random models on the
external test set, and s is standard deviation of MCC of 10
random models. Models were considered to achieve statistically
valid correlation between selected features and the endpoint
when Z-score exceeded 3.

Applicability Domain Analysis
Since reliability of the model prediction outcome is dependent on
the data used to train and select the model, applicability domain
(AD) of the models were defined for giving reliable prediction
results under the consideration of the chemical space. Leverage
(hi) is a method to detect outliers or novel entities among data
sets (Tropsha et al., 2003), which is calculated as,

hi =   xTi XTX
� �−1

xi (8)

where xi is a feature vector of i-th compound, X is a feature
matrix, and T is a transpose. When the leverage of certain
compounds was lower than the warning leverage (h*), the
prediction outcome was reliable since input data for the
prediction is not an outlier based on the chemical space of the
training data.

h* = 3 p + 1ð Þ=n (9)

where p is the number of features selected in the model, and n is
the number of training sets.

Analysis of Privileged Substructures
In this study, substructures were called privileged substructures
when their presence is higher in a certain class of data. Frequency
of substructures (F) were calculated as,

F = Nfragment,  class=Nclass

� �
= Nfragment,  total=Ntotal

� �
(10)

where class is the label (i.e., DILI-positive or DILI-negative),
Nfragment, class is the number of drugs that have the fragment
belonging to one of the binary class, Nclass is the total number of
drugs labeled in the class, Nfragment, total is the number of drugs
that have the fragment in total data set, and Ntotal is the total
number of data set.

Frequency of substructures in each data set were examined
based on Morgan FP in this analysis. The draw package
implemented in RDKit was used to visualize substructures
represented by each bit of Morgan FP level 2. In the first
analysis, DILI-positive sets and DILI-negative sets in DICH,
DIC, DIH, and DIS for drugs and drug metabolites were
compared to find privileged substructures in DILI-positive data
sets. Next, drugs and drug metabolites were compared in DICH,
DIC, DIH, and DIS to find privileged substructures that were
significantly influenced by drug metabolism. DILI-positive drug
metabolites and drugs were compared to check which fragments
were increased for bioactivation or decreased for detoxification.
DILI-negative drug metabolites and drugs were also analyzed in
the same way to find the detoxification effects of drug
metabolism on certain molecular fragments.
Frontiers in Pharmacology | www.frontiersin.org 6
RESULTS AND DISCUSSION

Drug-Induced Liver Injury Label
Assignment
Assigning DILI labels on drugs is a challenging task due to the
wide spectrum of severity and differing injury mechanisms.
Inconsistent DILI labels were often found among large DILI
datasets since evidence for estimating DILI risk is differently
weighted (Thakkar et al., 2018). Due to ambiguity of DILI labels,
the noDILI drug list was examined by comparing it with the lists
for DICH, DIC, DIH, and DIS. In DILIrank, 259 drugs were
found to be noDILI; however, some noDILI drugs were found to
have post-market reports on DICH (51 drugs), DIC (70 drugs),
DIH (94 drugs), and DIS (73 drugs). In order to securely obtain
DILI-negative drugs, drugs overlapping with DICH, DIC, DIH,
and DIS were removed.

Distributions of post-market reports were examined from
DICH, DIC, DIH, and DIS drugs overlapping with no DILI drugs
(Figure 3). A majority of the overlapped drugs have less than 10
post-market reports; however, some of them were found to have
a high number of post-market reports on DICH, DIC, DIH, and
DIS. In order to define the number of post-market reports for
assigning a DILI-positive label to drugs, the highest and second
highest post-market reports on DICH (highest: 47 and second
highest: 26), DIC (highest: 76 and second highest: 34), DIH
(highest: 67 and second highest: 56), and DIS (highest: 51 and
second highest: 47) of the overlapped drugs were averaged, and
the mean value (50.5) became standard for DILI-positive
assignment. Hence, drugs having over 50 post-market reports
were defined as DILI-positive drugs in the DICH, DIC, DIH, and
DIS datasets.
Chemical Space Analysis
QSAR study for drug discovery normally focuses on certain classes
of chemicals since it intends to predict activity variation due to
moiety modification. Such approaches give high predictability to
the model with relatively narrow AD. In this study, the data set is
composed of drugs from diverse classes since it aims to develop a
prediction model that covers heterogeneous chemical structures to
secure a broader AD of the model. The chemical spaces of the data
sets were visualized based on molecular weight (MW) and
Wildman-Crippen octanol/water partition coefficient (logP)
(Wildman and Crippen, 1999) of DILI-positive and DILI-
negative sets for drugs (Figure 4) and drug metabolites
(Figure 5). Chemical space analysis revealed that chemical
spaces of DILI-positive drug metabolites are slightly changed
compared to DILI-positive drugs. In Figure 4, several DILI-
positive drugs were found to have logP values less than 0;
however, the number of DILI-positive drug metabolites with
logP values lower than 0 was decreased (Figure 5). Independent
t-test indicated that change of mean logP value between drugs and
drug metabolites were not statistically significant except
cholestasis data set (Table S1); however, decrease of hydrophilic
molecular structures in drug metabolites could potentially
influence on feature selection and model training process. The
shift in the chemical space of drug metabolite data sets was due to
February 2020 | Volume 11 | Article 67
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the fact that drug metabolites for drugs with low logP values were
absent in the Fujitsu database. As DILI-positive drug metabolite
data sets were composed of metabolite structures of DILI-positive
drugs having a high logP, the mean of logP values for DILI-
positive drug metabolite data sets is estimated to be higher than
that for DILI-positive drug data sets even though the logP of
individual drug metabolites was decreased compared to that of its
parent compound. Given that drug metabolism converts lipophilic
xenobiotics into hydrophilic products for rapid excretion, the
chemical space shift in the drug metabolite data sets was
reasonable as lipophilic drugs are more actively metabolized
compared to relatively hydrophilic drugs. Moreover, the drug
metabolite chemical space with increased logP was considered a
more appropriate chemical space for modeling DILI causation
Frontiers in Pharmacology | www.frontiersin.org 7
through drug metabolites due to associations between drug
lipophilicity and DILI (McEuen et al., 2017).

Model Developments and Analysis
Binary classification models were developed with nine FPs and
2D molecular descriptors on drug and drug metabolite data sets
for four types of DILI (cholestasis, cirrhosis, hepatitis, and
steatosis); therefore, 80 models were trained with the SVC
algorithm. Performance of the models are summarized in
Tables 2 and 3.

Drug Based Models
In every model development process, randomization tests were
applied to avoid a situation where correlation between endpoint
FIGURE 3 | Drugs with post-market reports on cholestasis (A), cirrhosis (B), hepatitis (C), and steatosis (D) were compared with drugs labeled as no-drug-induced
liver injury (DILI) in the DILIrank database. Even though drugs were labeled as no-DILI in DILIrank, a number of drugs were reported to have adverse hepatic
outcomes in the post-market phase. Most no-DILI drugs have less than 10 post-market reports while a few of them have a high number of post-market reports.
The highest number of post-market cholestasis reports among no-DILI labeled drugs was 47 and the second highest was 26. The highest number of post-market
cirrhosis reports among no-DILI labeled drugs was 76 and the second highest was 34. The highest number of post-market hepatitis reports among no-DILI labeled
drugs was 67 and the second highest was 56. The highest number of post-market steatosis reports among no-DILI labeled drugs was 51 and the second
highest was 47.
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and structural features was merely the result of coincidence. In
DICH data set, most number of models failed to pass
randomization test [SVM: Avalon count FP, Morgan (lv3) FP,
Layer FP, and MACCS FP and RF: 2D descriptor and Morgan
(lv4) FP]. Second most number of models failed in
randomization test for DIS data set (SVM: 2D descriptor and
Avalon count FP, and RF: Avalon count FP, Morgan (lv2) FP,
and MACCS FP). In DIH data set, only two models failed in
randomization test (SVM: MACCS FP, and RF: layer FP). In DIC
data set, only one model failed to pass randomization test [SVM:
Morgan (lv2) FP]. In terms of ACC and MCC from the external
test set, models with atom-pair FP achieved the best performance
in all drug data sets with a relatively high z score, and the second
best models were those developed with topological-torsion FP.

Feature spaces represented by each FP and 2D descriptor
were examined by principal component analysis (PCA) to
project the N-dimension of the feature space into 2D space.
Frontiers in Pharmacology | www.frontiersin.org 8
This analysis showed that uneven distribution of data points was
found throughout the space when drugs were represented by
atom-pair FP (Figure S2) and topological torsion FP (Figure
S10). The ADs of the models were visualized based on the
leverage and molecular weight range of the drugs. According
to the leverage of atom-pair FP and topological-torsion FP data
sets, several data points were out of the domain in every data set
(Figures S22 and S30) while Avalon FP (Figure S24), layer FP
(Figure S28), and MACCS FP (Figure S29) models didn't have
any data points that exceeded the warning leverage.

The prediction results of the models were reliable when the
inputted data point was included in the AD of the model;
therefore, the AD of the models should be considered together
with their accuracy when the best model is selected. In this study,
performance in the external test set, randomization test results,
and AD analysis were considered in selection of the best models.
In DICH, MACCS FP model (RF) was considered the best model
FIGURE 4 | Molecular weights (MWs) and octanol/water partition coefficients (logP) were visualized for all drug data sets [(A) drug-induced cholestasis, (B): drug-
induced cirrhosis, (C) drug-induced hepatitis, and (D) drug-induced steatosis]. Dotted lines were drawn where logP was0 and molecular weight was 500. The
majority of DILI-positive drugs had MWs less than 500 and logP values higher than 0.
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(external test ACC: 70%, Z-score: 3.14, AD: Figure S29A). In
DIC, layer FP model (RF) was best (external test ACC: 90%, Z-
score: 4.23, AD: Figure S28B). In DIH, 2D descriptor model
(SVM) was best (external test ACC: 83%, Z-score: 5.06, AD:
Figure S21C). In DIS, layer FP model (SVM) was best (external
test ACC: 85%, Z-score: 5.10, AD: Figure S28D).

Drug Metabolite Based Models
In terms of ACC and MCC from the external test set, the best
models were developed with Morgan (lv3) FP in DICH (SVM),
Morgan (lv4) FP in DIC (RF), Morgan (lv2) FP in DIH (SVM),
and topological-torsion FP in DIS (RF). In accuracy comparison,
it was found that 63.8% of the models developed with drug
metabolite data sets achieved higher accuracy compared to that
developed with drug data sets (51 models out of 80 models).
Moreover, only one model was failed in randomization test in all
metabolite data sets (SVM: Avalon count FP). Due to the lack of
DILI-labels on drug metabolites, the metabolites were labeled
Frontiers in Pharmacology | www.frontiersin.org 9
according to their parent drugs' DILI label based on the
assumption that metabolites from DILI-positive drugs cause
DILI and those from DILI-negatives do not. Improvement of
the general performance of the model and randomization test
results showed that assumption for the DILI labeling of
metabolites was reasonable; however, it is still possible that
models for drug metabolites contain a certain degree of
structural noise introduced by the ambiguous DILI labeling of
metabolites, particularly for DILI-positive metabolites since all
metabolites were prepared according to the assumption. DILI-
negative metabolites were composed of DILI-negative drugs and
metabolites of DILI-negative drugs; hence, the correlation
between structural features and endpoint is potentially not
solely based on drug metabolite chemical space.

Feature space visualization was performed for drug
metabolite data sets. In general, data distribution of the feature
space was similar between drug data sets and drug metabolite
data sets, except Morgan FPs where more outliers were found in
FIGURE 5 | Molecular weights (MWs) and octanol/water partition coefficients (logP) were visualized for all drug metabolite data sets [(A) drug-induced cholestasis,
(B)] drug-induced cirrhosis, (C) drug-induced hepatitis, and (D): drug-induced steatosis]. Dotted lines were drawn where logP was 0 and molecular weight was 500.
The majority of drug-induced liver injury (DILI)-positive drug metabolites had MWs less than 500. In particular, DILIpositive drug metabolites whose logP values were
less than 0 had significantly decreased compared to DILI-positive parent drugs (Figure 4).
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TABLE 2 | Drug structure-based model performance.

dom forest Applicability
domain analysis

imator (100 sampling) External test set (Y-rand.)

ACC MCC AUC SE SP ACC MCC AUC Z OD/total ratio

0.78 ±
0.05

0.57 ±
0.1

0.57 ±
0.1

0.75 0.76 0.76 0.41 0.85 2.98 1/70 0.014

0.97 ±
0.02

0.93 ±
0.03

0.93 ±
0.03

0.92 0.98 0.97 0.9 0.95 13.06 3/70 0.043

0.79 ±
0.04

0.58 ±
0.08

0.58 ±
0.08

0.75 0.74 0.74 0.39 0.75 4.76 2/70 0.029

0.75 ±
0.04

0.51 ±
0.08

0.51 ±
0.08

0.58 0.74 0.71 0.26 0.73 3.82 0/70 0.000

0.74 ±
0.05

0.49 ±
0.09

0.49 ±
0.09

0.75 0.76 0.76 0.41 0.7 4.49 0/70 0.000

0.68 ±
0.04

0.37 ±
0.09

0.37 ±
0.09

0.67 0.78 0.76 0.36 0.78 4.11 2/70 0.029

0.77 ±
0.05

0.55 ±
0.1

0.55 ±
0.1

0.75 0.74 0.74 0.39 0.76 2.9 3/70 0.043

0.74 ±
0.04

0.48 ±
0.08

0.48 ±
0.08

0.67 0.72 0.71 0.31 0.74 3.55 0/70 0.000

0.75 ±
0.04

0.5 ±
0.09

0.5 ±
0.09

0.8 0.7 0.7 0.3 0.8 3.14 0/70 ####

0.88 ±
0.04

0.78 ±
0.07

0.78 ±
0.07

0.92 0.93 0.93 0.78 0.95 6.89 4/70 0.057

0.83 ±
0.05

0.67 ±
0.09

0.67 ±
0.09

0.6 0.79 0.77 0.32 0.82 3.06 5/73 0.068

0.96 ±
0.02

0.92 ±
0.05

0.92 ±
0.05

0.9 0.93 0.93 0.75 0.99 7.74 3/73 0.041

0.85 ±
0.05

0.69 ±
0.09

0.69 ±
0.09

0.7 0.88 0.85 0.51 0.81 5.19 1/73 0.014

0.81 ±
0.04

0.63 ±
0.08

0.63 ±
0.08

0.7 0.83 0.81 0.43 0.87 5.81 0/73 0.000

0.82 ±
0.04

0.65 ±
0.07

0.65 ±
0.07

0.9 0.91 0.91 0.71 0.91 7.21 3/73 0.041

0.77 ±
0.03

0.53 ±
0.07

0.53 ±
0.07

0.7 0.9 0.87 0.54 0.86 5.61 3/73 0.041

0.83 ±
0.03

0.65 ±
0.06

0.65 ±
0.06

0.8 0.91 0.9 0.64 0.88 7.06 0/73 0.000

0.87 ±
0.04

0.75 ±
0.08

0.75 ±
0.08

0.8 0.9 0.9 0.6 0.9 4.23 0/73 ####

0.83 ±
0.04

0.67 ±
0.09

0.67 ±
0.09

0.7 0.85 0.82 0.46 0.83 4.83 0/73 0.000

0.91 ±
0.03

0.83 ±
0.06

0.83 ±
0.06

0.9 0.98 0.97 0.88 0.9 7.81 4/73 0.055

0.8 ±
0.03

0.61 ±
0.07

0.61 ±
0.07

0.67 0.76 0.69 0.37 0.77 9.17 0/77 ####

0.99 ±
0.01

0.97 ±
0.02

0.97 ±
0.02

0.95 0.95 0.95 0.88 0.98 8.95 7/77 0.091

0.79 ±
0.04

0.58 ±
0.07

0.58 ±
0.07

0.71 0.62 0.69 0.3 0.68 3.58 5/77 0.065

0.79 ±
0.03

0.58 ±
0.07

0.58 ±
0.07

0.62 0.76 0.66 0.33 0.72 6.21 0/77 0.000

0.76 ±
0.03

0.53 ±
0.06

0.53 ±
0.06

0.67 0.81 0.7 0.41 0.82 6.12 8/77 0.104

0.73 ±
0.03

0.47 ±
0.07

0.47 ±
0.07

0.76 0.81 0.77 0.51 0.79 4.69 6/77 0.078

0.78 ±
0.03

0.55 ±
0.06

0.55 ±
0.06

0.84 0.67 0.8 0.49 0.8 6.33 2/77 0.026

0.78 ±
0.03

0.58 ±
0.06

0.58 ±
0.06

0.68 0.67 0.68 0.31 0.67 2.97 0/77 0.000

0.78 ±
0.03

0.56 ±
0.07

0.56 ±
0.07

0.68 0.71 0.69 0.35 0.78 4.13 0/77 0.000

0.93 ±
0.02

0.86 ±
0.04

0.86 ±
0.04

0.86 0.95 0.88 0.74 0.96 6.82 6/77 0.078

0.76 ±
0.04

0.49 ±
0.08

0.49 ±
0.08

0.75 0.66 0.68 0.32 0.7 3.01 1/65 0.015

0.95 ±
0.02

0.91 ±
0.04

0.91 ±
0.04

0.92 0.98 0.97 0.9 0.98 8.64 4/65 0.062

0.77 ±
0.05

0.54 ±
0.09

0.54 ±
0.09

0.67 0.7 0.69 0.29 0.68 2.3 3/65 0.046

0.76 ±
0.05

0.54 ±
0.1

0.54 ±
0.1

0.83 0.74 0.75 0.46 0.81 5.24 0/65 0.000

0.71 ±
0.04

0.42 ±
0.08

0.42 ±
0.08

0.67 0.79 0.77 0.39 0.69 2.39 1/65 0.015

0.76 ±
0.04

0.53 ±
0.08

0.53 ±
0.08

0.75 0.74 0.74 0.39 0.78 4.59 0/65 0.000

0.8 ±
0.04

0.61 ±
0.08

0.61 ±
0.08

0.67 0.79 0.77 0.39 0.78 6.92 3/65 0.046

0.81 ±
0.04

0.63 ±
0.07

0.63 ±
0.07

0.67 0.79 0.77 0.39 0.73 3.27 0/65 ####

0.75 ±
0.04

0.5 ±
0.08

0.5 ±
0.08

0.83 0.68 0.71 0.4 0.81 2.95 0/65 0.000

0.92 ±
0.03

0.84 ±
0.05

0.84 ±
0.05

0.92 0.98 0.97 0.9 0.95 8.8 3/65 0.046

hlighted best performance among models.
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Feature Support vector machine Ran

Five fold cross validation 0.632 estimator (100 sampling) External test set (Y-rand.) Five fold cross validation 0.632 est

SE SP ACC MCC AUC SE SP ACC MCC AUC SE SP ACC MCC AUC Z SE SP ACC MCC AUC SE SP

Cholestasis 2D
descriptor

0.79 ±
0.07

0.69 ±
0.12

0.74 ±
0.08

0.48 ±
0.15

0.48 ±
0.15

0.82 ±
0.09

0.74 ±
0.08

0.78 ±
0.05

0.55 ±
0.09

0.55 ±
0.09

0.75 0.68 0.69 0.33 0.75 3.64 0.66 ±
0.19

0.8 ±
0.17

0.69 ±
0.08

0.46 ±
0.15

0.46 ±
0.15

0.71 ±
0.07

0.85 ±
0.08

Atompair
FP

0.97 ±
0.08

0.94 ±
0.06

0.95 ±
0.06

0.89 ±
0.12

0.89 ±
0.12

0.93 ±
0.04

0.98 ±
0.04

0.95 ±
0.03

0.91 ±
0.05

0.91 ±
0.05

0.92 0.99 0.98 0.90 0.96 10.32 0.94 ±
0.08

0.96 ±
0.05

0.95 ±
0.05

0.89 ±
0.1

0.89 ±
0.1

0.95 ±
0.03

0.99 ±
0.02

Avalon
count FP

0.8 ±
0.08

0.73 ±
0.11

0.78 ±
0.08

0.53 ±
0.15

0.53 ±
0.15

0.8 ±
0.07

0.78 ±
0.08

0.79 ±
0.04

0.57 ±
0.08

0.57 ±
0.08

0.67 0.78 0.76 0.37 0.79 2.91 0.69 ±
0.14

0.71 ±
0.14

0.67 ±
0.07

0.39 ±
0.14

0.39 ±
0.14

0.73 ±
0.08

0.85 ±
0.07

Avalon FP 0.75 ±
0.12

0.79 ±
0.17

0.77 ±
0.11

0.53 ±
0.22

0.53 ±
0.22

0.78 ±
0.06

0.8 ±
0.08

0.79 ±
0.04

0.58 ±
0.08

0.58 ±
0.08

0.67 0.71 0.70 0.30 0.74 3.45 0.65 ±
0.19

0.74 ±
0.15

0.68 ±
0.09

0.4 ±
0.2

0.4 ±
0.2

0.7 ±
0.08

0.8 ±
0.07

Morgan
(lv2) FP

0.72 ±
0.17

0.79 ±
0.15

0.75 ±
0.13

0.5 ±
0.27

0.5 ±
0.27

0.68 ±
0.09

0.79 ±
0.1

0.73 ±
0.04

0.47 ±
0.08

0.47 ±
0.08

0.67 0.81 0.79 0.41 0.86 3.87 0.69 ±
0.18

0.74 ±
0.19

0.7 ±
0.14

0.43 ±
0.26

0.43 ±
0.26

0.75 ±
0.1

0.74 ±
0.08

Morgan
(lv3) FP

0.74 ±
0.18

0.6 ±
0.21

0.64 ±
0.06

0.36 ±
0.16

0.36 ±
0.16

0.68 ±
0.15

0.71 ±
0.18

0.69 ±
0.05

0.4 ±
0.1

0.4 ±
0.1

0.59 0.78 0.75 0.30 0.81 1.58 0.65 ±
0.15

0.61 ±
0.08

0.63 ±
0.07

0.27 ±
0.16

0.27 ±
0.16

0.63 ±
0.15

0.72 ±
0.14

Morgan
(lv4) FP

0.77 ±
0.17

0.72 ±
0.16

0.74 ±
0.15

0.48 ±
0.31

0.48 ±
0.31

0.77 ±
0.07

0.73 ±
0.08

0.75 ±
0.05

0.5 ±
0.09

0.5 ±
0.09

0.75 0.73 0.73 0.38 0.75 3.31 0.83 ±
0.1

0.73 ±
0.15

0.78 ±
0.11

0.56 ±
0.21

0.56 ±
0.21

0.81 ±
0.08

0.74 ±
0.07

Layer FP 0.64 ±
0.2

0.72 ±
0.12

0.67 ±
0.12

0.35 ±
0.21

0.35 ±
0.21

0.71 ±
0.1

0.76 ±
0.12

0.73 ±
0.05

0.48 ±
0.1

0.48 ±
0.1

0.75 0.68 0.69 0.33 0.77 2.12 0.78 ±
0.12

0.77 ±
0.15

0.77 ±
0.05

0.55 ±
0.1

0.55 ±
0.1

0.72 ±
0.1

0.76 ±
0.09

MACCS FP 0.79 ±
0.17

0.69 ±
0.17

0.72 ±
0.11

0.46 ±
0.21

0.46 ±
0.21

0.73 ±
0.1

0.78 ±
0.12

0.76 ±
0.04

0.52 ±
0.08

0.52 ±
0.08

0.67 0.78 0.76 0.37 0.83 2.61 0.77 ±
0.11

0.65 ±
0.1

0.71 ±
0.06

0.42 ±
0.14

0.42 ±
0.14

0.75 ±
0.1

0.75 ±
0.07

Torsion FP 0.84 ±
0.12

0.94 ±
0.06

0.9 ±
0.05

0.78 ±
0.11

0.78 ±
0.11

0.85 ±
0.06

0.95 ±
0.03

0.9 ±
0.03

0.8 ±
0.05

0.8 ±
0.05

0.92 0.97 0.96 0.86 0.94 6.75 0.81 ±
0.16

0.94 ±
0.05

0.88 ±
0.08

0.76 ±
0.16

0.76 ±
0.16

0.81 ±
0.07

0.96 ±
0.04

Cirrhosis 2D
descriptor

0.78 ±
0.14

0.71 ±
0.2

0.72 ±
0.12

0.46 ±
0.22

0.46 ±
0.22

0.72 ±
0.12

0.79 ±
0.07

0.76 ±
0.04

0.51 ±
0.08

0.51 ±
0.08

0.80 0.75 0.75 0.41 0.84 3.07 0.73 ±
0.06

0.82 ±
0.12

0.79 ±
0.08

0.57 ±
0.15

0.57 ±
0.15

0.79 ±
0.09

0.87 ±
0.06

Atompair
FP

0.93 ±
0.1

0.99 ±
0.04

0.96 ±
0.05

0.92 ±
0.08

0.92 ±
0.08

0.96 ±
0.04

0.99 ±
0.03

0.98 ±
0.03

0.95 ±
0.05

0.95 ±
0.05

0.90 0.95 0.95 0.79 0.98 8.39 0.87 ±
0.09

0.98 ±
0.04

0.93 ±
0.02

0.86 ±
0.04

0.86 ±
0.04

0.94 ±
0.05

0.98 ±
0.03

Avalon
count FP

0.72 ±
0.12

0.9 ±
0.09

0.82 ±
0.1

0.63 ±
0.19

0.63 ±
0.19

0.83 ±
0.09

0.86 ±
0.08

0.85 ±
0.04

0.7 ±
0.07

0.7 ±
0.07

0.60 0.78 0.75 0.30 0.71 3.20 0.84 ±
0.11

0.8 ±
0.18

0.81 ±
0.13

0.62 ±
0.25

0.62 ±
0.25

0.79 ±
0.09

0.89 ±
0.06

Avalon FP 0.71 ±
0.19

0.89 ±
0.14

0.8 ±
0.11

0.62 ±
0.21

0.62 ±
0.21

0.8 ±
0.09

0.85 ±
0.06

0.82 ±
0.04

0.65 ±
0.07

0.65 ±
0.07

0.70 0.90 0.87 0.54 0.86 4.83 0.67 ±
0.15

0.81 ±
0.08

0.74 ±
0.1

0.48 ±
0.18

0.48 ±
0.18

0.74 ±
0.09

0.87 ±
0.07

Morgan
(lv2) FP

0.72 ±
0.17

0.84 ±
0.15

0.78 ±
0.1

0.57 ±
0.22

0.57 ±
0.22

0.76 ±
0.08

0.89 ±
0.07

0.83 ±
0.04

0.66 ±
0.07

0.66 ±
0.07

0.70 0.73 0.73 0.32 0.78 2.39 0.74 ±
0.19

0.87 ±
0.1

0.82 ±
0.04

0.64 ±
0.07

0.64 ±
0.07

0.74 ±
0.08

0.89 ±
0.08

Morgan
(lv3) FP

0.75 ±
0.19

0.82 ±
0.07

0.78 ±
0.1

0.55 ±
0.23

0.55 ±
0.23

0.69 ±
0.09

0.84 ±
0.07

0.78 ±
0.04

0.54 ±
0.08

0.54 ±
0.08

0.80 0.85 0.84 0.53 0.89 3.99 0.72 ±
0.15

0.87 ±
0.08

0.8 ±
0.1

0.6 ±
0.19

0.6 ±
0.19

0.67 ±
0.1

0.85 ±
0.09

Morgan
(lv4) FP

0.76 ±
0.07

0.82 ±
0.14

0.79 ±
0.06

0.58 ±
0.11

0.58 ±
0.11

0.81 ±
0.09

0.87 ±
0.05

0.85 ±
0.04

0.69 ±
0.08

0.69 ±
0.08

0.80 0.80 0.80 0.47 0.82 4.70 0.72 ±
0.14

0.84 ±
0.12

0.79 ±
0.07

0.55 ±
0.12

0.55 ±
0.12

0.74 ±
0.08

0.89 ±
0.07

Layer FP 0.84 ±
0.1

0.89 ±
0.12

0.86 ±
0.1

0.72 ±
0.2

0.72 ±
0.2

0.93 ±
0.06

0.88 ±
0.07

0.9 ±
0.04

0.81 ±
0.08

0.81 ±
0.08

0.70 0.88 0.86 0.51 0.91 3.90 0.68 ±
0.1

0.74 ±
0.09

0.7 ±
0.07

0.41 ±
0.11

0.41 ±
0.11

0.82 ±
0.08

0.92 ±
0.06

MACCS FP 0.78 ±
0.22

0.88 ±
0.14

0.84 ±
0.14

0.64 ±
0.31

0.64 ±
0.31

0.79 ±
0.1

0.84 ±
0.08

0.82 ±
0.05

0.63 ±
0.09

0.63 ±
0.09

0.70 0.88 0.86 0.51 0.85 4.28 0.66 ±
0.17

0.8 ±
0.25

0.73 ±
0.2

0.47 ±
0.38

0.47 ±
0.38

0.79 ±
0.08

0.87 ±
0.09

Torsion FP 0.85 ±
0.15

0.98 ±
0.06

0.93 ±
0.05

0.86 ±
0.1

0.86 ±
0.1

0.88 ±
0.05

0.99 ±
0.02

0.94 ±
0.03

0.88 ±
0.05

0.88 ±
0.05

0.90 0.97 0.96 0.84 1.00 5.26 0.83 ±
0.05

0.97 ±
0.07

0.92 ±
0.03

0.83 ±
0.06

0.83 ±
0.06

0.86 ±
0.07

0.96 ±
0.03

Hepatitis 2D
descriptor

0.8 ±
0.11

0.7 ±
0.16

0.75 ±
0.05

0.52 ±
0.1

0.52 ±
0.1

0.74 ±
0.07

0.75 ±
0.05

0.75 ±
0.03

0.49 ±
0.06

0.49 ±
0.06

### ### 0.83 0.61 0.85 5.06 0.62 ±
0.08

0.71 ±
0.09

0.67 ±
0.06

0.33 ±
0.12

0.33 ±
0.12

0.76 ±
0.06

0.84 ±
0.05

Atompair
FP

0.99 ±
0.04

0.98 ±
0.04

0.99 ±
0.03

0.97 ±
0.06

0.97 ±
0.06

1 ±
0.02

0.98 ±
0.02

0.99 ±
0.02

0.98 ±
0.03

0.98 ±
0.03

0.99 0.96 0.98 0.94 1.00 10.85 0.99 ±
0.02

0.99 ±
0.03

0.99 ±
0.02

0.98 ±
0.03

0.98 ±
0.03

0.98 ±
0.02

0.99 ±
0.01

Avalon
count FP

0.67 ±
0.11

0.85 ±
0.04

0.76 ±
0.07

0.52 ±
0.12

0.52 ±
0.12

0.74 ±
0.07

0.83 ±
0.06

0.79 ±
0.04

0.57 ±
0.08

0.57 ±
0.08

0.66 0.67 0.66 0.28 0.77 4.06 0.6 ±
0.04

0.73 ±
0.15

0.67 ±
0.07

0.34 ±
0.16

0.34 ±
0.16

0.76 ±
0.06

0.82 ±
0.06

Avalon FP 0.71 ±
0.11

0.83 ±
0.12

0.77 ±
0.12

0.53 ±
0.21

0.53 ±
0.21

0.79 ±
0.07

0.8 ±
0.07

0.79 ±
0.03

0.58 ±
0.05

0.58 ±
0.05

0.80 0.81 0.80 0.55 0.81 5.24 0.64 ±
0.13

0.8 ±
0.07

0.73 ±
0.05

0.45 ±
0.11

0.45 ±
0.11

0.75 ±
0.06

0.82 ±
0.06

Morgan
(lv2) FP

0.61 ±
0.15

0.8 ±
0.09

0.71 ±
0.11

0.41 ±
0.22

0.41 ±
0.22

0.73 ±
0.09

0.77 ±
0.06

0.75 ±
0.04

0.5 ±
0.07

0.5 ±
0.07

0.70 0.77 0.72 0.41 0.77 4.91 0.71 ±
0.12

0.81 ±
0.09

0.76 ±
0.09

0.51 ±
0.19

0.51 ±
0.19

0.71 ±
0.06

0.81 ±
0.06

Morgan
(lv3) FP

0.66 ±
0.14

0.71 ±
0.07

0.69 ±
0.08

0.37 ±
0.15

0.37 ±
0.15

0.74 ±
0.07

0.74 ±
0.09

0.74 ±
0.04

0.48 ±
0.07

0.48 ±
0.07

0.72 0.81 0.74 0.46 0.81 5.03 0.69 ±
0.13

0.76 ±
0.05

0.73 ±
0.08

0.46 ±
0.17

0.46 ±
0.17

0.72 ±
0.07

0.75 ±
0.06

Morgan
(lv4) FP

0.7 ±
0.24

0.85 ±
0.07

0.75 ±
0.13

0.54 ±
0.21

0.54 ±
0.21

0.69 ±
0.1

0.78 ±
0.09

0.73 ±
0.04

0.47 ±
0.07

0.47 ±
0.07

0.73 0.72 0.73 0.40 0.73 4.51 0.68 ±
0.13

0.81 ±
0.05

0.75 ±
0.08

0.5 ±
0.15

0.5 ±
0.15

0.76 ±
0.06

0.8 ±
0.06

Layer FP 0.72 ±
0.1

0.86 ±
0.08

0.79 ±
0.06

0.58 ±
0.1

0.58 ±
0.1

0.72 ±
0.06

0.84 ±
0.08

0.78 ±
0.04

0.56 ±
0.06

0.56 ±
0.06

0.73 0.86 0.77 0.52 0.83 3.63 0.69 ±
0.09

0.86 ±
0.06

0.78 ±
0.04

0.56 ±
0.07

0.56 ±
0.07

0.7 ±
0.06

0.86 ±
0.07

MACCS FP 0.67 ±
0.14

0.82 ±
0.06

0.74 ±
0.05

0.49 ±
0.08

0.49 ±
0.08

0.69 ±
0.08

0.8 ±
0.07

0.75 ±
0.04

0.49 ±
0.06

0.49 ±
0.06

0.66 0.77 0.68 0.36 0.77 2.71 0.66 ±
0.16

0.78 ±
0.13

0.73 ±
0.06

0.47 ±
0.08

0.47 ±
0.08

0.71 ±
0.06

0.84 ±
0.06

Torsion FP 0.85 ±
0.07

0.97 ±
0.03

0.91 ±
0.03

0.82 ±
0.05

0.82 ±
0.05

0.89 ±
0.03

0.98 ±
0.02

0.94 ±
0.02

0.87 ±
0.03

0.87 ±
0.03

0.85 0.96 0.87 0.72 0.94 6.21 0.85 ±
0.11

0.98 ±
0.04

0.91 ±
0.06

0.84 ±
0.11

0.84 ±
0.11

0.89 ±
0.03

0.97 ±
0.02

Steatosis 2D
descriptor

0.71 ±
0.14

0.72 ±
0.22

0.71 ±
0.1

0.43 ±
0.21

0.43 ±
0.21

0.74 ±
0.07

0.8 ±
0.06

0.77 ±
0.04

0.55 ±
0.08

0.55 ±
0.08

0.59 0.78 0.74 0.31 0.72 2.40 0.64 ±
0.16

0.74 ±
0.1

0.7 ±
0.08

0.38 ±
0.17

0.38 ±
0.17

0.65 ±
0.09

0.83 ±
0.06

Atompair
FP

0.99 ±
0.04

0.95 ±
0.08

0.96 ±
0.04

0.93 ±
0.07

0.93 ±
0.07

0.93 ±
0.04

0.95 ±
0.04

0.94 ±
0.03

0.88 ±
0.05

0.88 ±
0.05

0.84 0.95 0.93 0.76 0.94 6.86 0.96 ±
0.07

0.97 ±
0.04

0.96 ±
0.04

0.92 ±
0.07

0.92 ±
0.07

0.9 ±
0.04

0.99 ±
0.02

Avalon
count FP

0.63 ±
0.13

0.77 ±
0.08

0.69 ±
0.08

0.38 ±
0.15

0.38 ±
0.15

0.69 ±
0.08

0.79 ±
0.08

0.74 ±
0.04

0.48 ±
0.08

0.48 ±
0.08

0.67 0.72 0.71 0.32 0.73 2.66 0.65 ±
0.23

0.73 ±
0.12

0.68 ±
0.12

0.39 ±
0.16

0.39 ±
0.16

0.72 ±
0.08

0.82 ±
0.07

Avalon FP 0.66 ±
0.22

0.8 ±
0.1

0.73 ±
0.08

0.45 ±
0.19

0.45 ±
0.19

0.69 ±
0.09

0.76 ±
0.09

0.73 ±
0.05

0.45 ±
0.09

0.45 ±
0.09

0.75 0.85 0.84 0.53 0.72 3.51 0.68 ±
0.16

0.72 ±
0.17

0.71 ±
0.1

0.41 ±
0.22

0.41 ±
0.22

0.69 ±
0.09

0.83 ±
0.09

Morgan
(lv2) FP

0.69 ±
0.1

0.67 ±
0.26

0.67 ±
0.11

0.37 ±
0.21

0.37 ±
0.21

0.65 ±
0.07

0.82 ±
0.08

0.74 ±
0.04

0.48 ±
0.07

0.48 ±
0.07

0.84 0.76 0.77 0.48 0.82 6.00 0.63 ±
0.17

0.71 ±
0.15

0.69 ±
0.09

0.36 ±
0.15

0.36 ±
0.15

0.72 ±
0.07

0.7 ±
0.08

Morgan
(lv3) FP

0.78 ±
0.17

0.81 ±
0.16

0.77 ±
0.13

0.57 ±
0.24

0.57 ±
0.24

0.73 ±
0.12

0.79 ±
0.1

0.76 ±
0.06

0.53 ±
0.1

0.53 ±
0.1

0.75 0.78 0.77 0.44 0.76 5.25 0.81 ±
0.06

0.68 ±
0.1

0.75 ±
0.06

0.49 ±
0.13

0.49 ±
0.13

0.78 ±
0.08

0.75 ±
0.07

Morgan
(lv4) FP

0.7 ±
0.22

0.87 ±
0.06

0.77 ±
0.1

0.57 ±
0.17

0.57 ±
0.17

0.66 ±
0.11

0.86 ±
0.08

0.76 ±
0.05

0.53 ±
0.09

0.53 ±
0.09

0.92 0.80 0.82 0.59 0.87 5.28 0.75 ±
0.18

0.66 ±
0.12

0.71 ±
0.07

0.42 ±
0.17

0.42 ±
0.17

0.81 ±
0.08

0.8 ±
0.08

Layer FP 0.77 ±
0.15

0.85 ±
0.06

0.8 ±
0.09

0.62 ±
0.16

0.62 ±
0.16

0.75 ±
0.08

0.83 ±
0.06

0.79 ±
0.04

0.58 ±
0.08

0.58 ±
0.08

### ### 0.85 0.60 0.92 5.10 0.74 ±
0.15

0.8 ±
0.1

0.77 ±
0.09

0.55 ±
0.18

0.55 ±
0.18

0.77 ±
0.06

0.85 ±
0.06

MACCS FP 0.75 ±
0.18

0.72 ±
0.13

0.72 ±
0.13

0.46 ±
0.26

0.46 ±
0.26

0.76 ±
0.09

0.76 ±
0.09

0.76 ±
0.04

0.52 ±
0.08

0.52 ±
0.08

0.75 0.78 0.77 0.44 0.80 3.89 0.65 ±
0.12

0.78 ±
0.11

0.72 ±
0.08

0.44 ±
0.16

0.44 ±
0.16

0.7 ±
0.09

0.79 ±
0.07

Torsion FP 0.84 ±
0.1

0.99 ±
0.04

0.91 ±
0.06

0.83 ±
0.11

0.83 ±
0.11

0.82 ±
0.06

0.98 ±
0.03

0.9 ±
0.03

0.8 ±
0.06

0.8 ±
0.06

0.84 0.99 0.96 0.85 0.96 7.38 0.83 ±
0.09

0.97 ±
0.04

0.9 ±
0.05

0.8 ±
0.09

0.8 ±
0.09

0.84 ±
0.06

0.99 ±
0.02

*SE, sensitivity; SP, specificity; ACC, accuracy; MCC, Matthew's correlation coefficient; AUC, area under the ROC curve; OD, out-of-domain. Bolded and italic texts hig
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TABLE 3 | Drug metabolite structure-based model performance.

forest Applicability
domain
analysisy

tor (100 sampling) External test set (Y-rand.)

ACC MCC AUC SE SP ACC MCC AUC Z OD/

total

ratio

.84 ±
0.04

0.69 ±
0.08

0.69 ±
0.08

0.82 0.87 0.86 0.63 0.88 7.28 2/74 0.027

.86 ±
0.04

0.73 ±
0.08

0.73 ±
0.08

0.94 0.81 0.84 0.64 0.93 10.19 5/74 0.068

.82 ±
0.04

0.64 ±
0.09

0.64 ±
0.09

0.71 0.86 0.83 0.51 0.84 4.7 4/74 0.054

.86 ±
0.03

0.72 ±
0.07

0.72 ±
0.07

0.77 0.91 0.89 0.65 0.87 7.73 0/74 0.000

.79 ±
0.03

0.6 ±
0.05

0.6 ±
0.05

0.94 0.84 0.86 0.67 0.96 6.71 3/74 0.041

.83 ±
0.03

0.67 ±
0.06

0.67 ±
0.06

0.77 0.83 0.82 0.52 0.83 5.67 2/74 0.027

.81 ±
0.03

0.63 ±
0.06

0.63 ±
0.06

0.82 0.86 0.85 0.6 0.83 7.69 4/74 0.054

.86 ±
0.03

0.73 ±
0.06

0.73 ±
0.06

0.9 0.9 0.9 0.7 0.9 5.64 0/74 ####

.85 ±
0.03

0.69 ±
0.07

0.69 ±
0.07

0.94 0.84 0.86 0.67 0.9 7.08 0/74 0.000

.78 ±
0.04

0.57 ±
0.07

0.57 ±
0.07

0.71 0.87 0.84 0.54 0.83 4.94 3/74 0.041

.87 ±
0.04

0.75 ±
0.09

0.75 ±
0.09

0.79 0.84 0.83 0.53 0.81 4.12 2/84 0.024

.88 ±
0.04

0.77 ±
0.08

0.77 ±
0.08

0.86 0.86 0.86 0.61 0.9 5.99 1/84 0.012

.85 ±
0.04

0.71 ±
0.08

0.71 ±
0.08

0.71 0.9 0.87 0.57 0.9 6.98 0/84 0.000

0.9 ±
0.04

0.8 ±
0.07

0.8 ±
0.07

0.86 0.89 0.88 0.65 0.94 6.26 0/84 ####

.87 ±
0.03

0.74 ±
0.06

0.74 ±
0.06

0.71 0.91 0.88 0.6 0.81 5.6 0/84 0.000

.87 ±
0.04

0.75 ±
0.07

0.75 ±
0.07

0.86 0.87 0.87 0.63 0.93 7.02 0/84 0.000

.89 ±
0.04

0.78 ±
0.07

0.78 ±
0.07

0.86 0.94 0.93 0.76 0.96 6.14 0/84 0.000

.91 ±
0.04

0.81 ±
0.08

0.81 ±
0.08

0.79 0.94 0.92 0.71 0.95 6.84 0/84 0.000

.88 ±
0.03

0.76 ±
0.05

0.76 ±
0.05

0.86 0.86 0.86 0.61 0.95 5.18 0/84 0.000

.87 ±
0.03

0.74 ±
0.06

0.74 ±
0.06

0.79 0.83 0.82 0.51 0.87 3.99 - -

.84 ±
0.03

0.68 ±
0.06

0.68 ±
0.06

0.75 0.89 0.78 0.55 0.85 7.89 2/110 0.018

.84 ±
0.03

0.67 ±
0.07

0.67 ±
0.07

0.87 0.73 0.84 0.57 0.83 6.5 4/110 0.036

.84 ±
0.03

0.67 ±
0.06

0.67 ±
0.06

0.83 0.69 0.8 0.49 0.82 4.68 3/110 0.027

.81 ±
0.03

0.63 ±
0.06

0.63 ±
0.06

0.81 0.62 0.76 0.4 0.8 6.45 0/110 0.000

0.8 ±
0.02

0.61 ±
0.05

0.61 ±
0.05

0.77 0.81 0.78 0.51 0.87 11.91 0/110 0.000

.76 ±
0.03

0.52 ±
0.05

0.52 ±
0.05

0.67 0.73 0.68 0.34 0.76 3.88 8/110 0.073

.84 ±
0.03

0.68 ±
0.05

0.68 ±
0.05

0.81 0.73 0.79 0.49 0.86 7.49 1/110 0.009

.79 ±
0.03

0.58 ±
0.05

0.58 ±
0.05

0.81 0.69 0.78 0.46 0.8 5.93 0/110 0.000

.84 ±
0.03

0.68 ±
0.06

0.68 ±
0.06

0.9 0.9 0.9 0.7 0.9 10.9 0/110 ####

0.8 ±
0.02

0.6 ±
0.04

0.6 ±
0.04

0.74 0.81 0.76 0.48 0.77 7.54 11/
110

0.100

.86 ±
0.03

0.72 ±
0.06

0.72 ±
0.06

0.8 0.84 0.83 0.59 0.87 5.9 1/65 0.015

.87 ±
0.03

0.74 ±
0.06

0.74 ±
0.06

0.75 0.84 0.82 0.55 0.87 6.68 4/65 0.062

.82 ±
0.04

0.64 ±
0.08

0.64 ±
0.08

0.85 0.83 0.83 0.61 0.85 4.42 3/65 0.046

.84 ±
0.04

0.69 ±
0.07

0.69 ±
0.07

0.9 0.8 0.8 0.6 0.9 7.42 0/65 ####

.79 ±
0.03

0.58 ±
0.06

0.58 ±
0.06

0.8 0.86 0.84 0.61 0.8 4.74 4/65 0.062

.78 ±
0.03

0.56 ±
0.07

0.56 ±
0.07

0.85 0.76 0.78 0.54 0.89 6.8 1/65 0.015

.81 ±
0.03

0.62 ±
0.05

0.62 ±
0.05

0.65 0.81 0.77 0.43 0.75 2.89 1/65 0.015

.88 ±
0.04

0.75 ±
0.07

0.75 ±
0.07

0.75 0.84 0.82 0.55 0.87 4.92 0/65 0.000

.88 ±
0.03

0.77 ±
0.05

0.77 ±
0.05

0.75 0.86 0.83 0.57 0.87 3.89 0/65 0.000

.88 ±
0.03

0.76 ±
0.05

0.76 ±
0.05

0.9 0.91 0.9 0.76 0.87 9.56 7/65 0.108
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subtype

Feature Support vector machine Random

Five fold cross validation 0.632 estimator (100 sampling) External test set (Y-rand.) Five fold cross validation 0.632 estima

SE SP ACC MCC AUC SE SP ACC MCC AUC SE SP ACC MCC AUC Z SE SP ACC MCC AUC SE SP

Cholestasis 2D
descriptor

0.88 ±
0.08

0.79 ±
0.1

0.83 ±
0.05

0.67 ±
0.09

0.67 ±
0.09

0.9 ±
0.05

0.84 ±
0.07

0.87 ±
0.03

0.74 ±
0.07

0.74 ±
0.07

0.88 0.83 0.84 0.61 0.91 4.28 0.77 ±
0.15

0.77 ±
0.14

0.78 ±
0.07

0.55 ±
0.14

0.55 ±
0.14

0.8 ±
0.07

0.88 ±
0.05

Atompair
FP

0.87 ±
0.09

0.77 ±
0.13

0.81 ±
0.08

0.64 ±
0.13

0.64 ±
0.13

0.88 ±
0.07

0.78 ±
0.07

0.84 ±
0.03

0.67 ±
0.06

0.67 ±
0.06

0.88 0.79 0.81 0.56 0.92 8.04 0.83 ±
0.06

0.74 ±
0.08

0.78 ±
0.02

0.57 ±
0.04

0.57 ±
0.04

0.85 ±
0.07

0.88 ±
0.06

Avalon
count FP

0.75 ±
0.12

0.75 ±
0.11

0.75 ±
0.03

0.51 ±
0.05

0.51 ±
0.05

0.82 ±
0.06

0.79 ±
0.08

0.8 ±
0.04

0.61 ±
0.08

0.61 ±
0.08

0.82 0.77 0.78 0.5 0.84 2.8 0.72 ±
0.07

0.77 ±
0.1

0.74 ±
0.07

0.49 ±
0.15

0.49 ±
0.15

0.79 ±
0.08

0.85 ±
0.06

Avalon FP 0.87 ±
0.1

0.72 ±
0.17

0.78 ±
0.1

0.59 ±
0.19

0.59 ±
0.19

0.89 ±
0.05

0.77 ±
0.06

0.83 ±
0.03

0.67 ±
0.06

0.67 ±
0.06

0.71 0.77 0.76 0.41 0.81 4.3 0.83 ±
0.06

0.75 ±
0.06

0.79 ±
0.04

0.58 ±
0.08

0.58 ±
0.08

0.84 ±
0.06

0.87 ±
0.06

Morgan
(lv2) FP

0.79 ±
0.07

0.77 ±
0.1

0.78 ±
0.08

0.56 ±
0.18

0.56 ±
0.18

0.75 ±
0.06

0.84 ±
0.04

0.79 ±
0.03

0.59 ±
0.06

0.59 ±
0.06

0.94 0.79 0.82 0.6 0.9 4.46 0.76 ±
0.13

0.88 ±
0.08

0.82 ±
0.07

0.64 ±
0.15

0.64 ±
0.15

0.72 ±
0.06

0.88 ±
0.05

Morgan
(lv3) FP

0.75 ±
0.14

0.9 ±
0.06

0.81 ±
0.09

0.64 ±
0.14

0.64 ±
0.14

0.71 ±
0.07

0.91 ±
0.07

0.8 ±
0.04

0.63 ±
0.07

0.63 ±
0.07

0.88 0.9 0.9 0.71 0.92 6.78 0.73 ±
0.1

0.92 ±
0.08

0.83 ±
0.03

0.67 ±
0.05

0.67 ±
0.05

0.74 ±
0.05

0.93 ±
0.04

Morgan
(lv4) FP

0.76 ±
0.11

0.88 ±
0.08

0.82 ±
0.03

0.65 ±
0.06

0.65 ±
0.06

0.77 ±
0.06

0.85 ±
0.05

0.81 ±
0.03

0.62 ±
0.05

0.62 ±
0.05

0.71 0.84 0.82 0.49 0.82 6.17 0.74 ±
0.09

0.82 ±
0.08

0.78 ±
0.05

0.55 ±
0.1

0.55 ±
0.1

0.78 ±
0.05

0.85 ±
0.05

Layer FP 0.84 ±
0.1

0.74 ±
0.09

0.79 ±
0.08

0.59 ±
0.15

0.59 ±
0.15

0.83 ±
0.06

0.84 ±
0.08

0.83 ±
0.03

0.67 ±
0.06

0.67 ±
0.06

0.88 0.79 0.81 0.56 0.89 7.09 0.89 ±
0.03

0.76 ±
0.17

0.83 ±
0.08

0.66 ±
0.14

0.66 ±
0.14

0.85 ±
0.06

0.88 ±
0.04

MACCS
FP

0.91 ±
0.05

0.76 ±
0.07

0.84 ±
0.04

0.68 ±
0.1

0.68 ±
0.1

0.85 ±
0.08

0.83 ±
0.06

0.84 ±
0.04

0.68 ±
0.07

0.68 ±
0.07

0.65 0.84 0.81 0.45 0.89 3.55 0.84 ±
0.16

0.87 ±
0.11

0.85 ±
0.06

0.72 ±
0.08

0.72 ±
0.08

0.82 ±
0.06

0.87 ±
0.05

Torsion FP 0.84 ±
0.12

0.86 ±
0.05

0.84 ±
0.07

0.7 ±
0.12

0.7 ±
0.12

0.78 ±
0.07

0.79 ±
0.05

0.79 ±
0.04

0.57 ±
0.07

0.57 ±
0.07

0.82 0.83 0.83 0.57 0.86 5.24 0.84 ±
0.1

0.8 ±
0.07

0.82 ±
0.06

0.63 ±
0.13

0.63 ±
0.13

0.81 ±
0.06

0.76 ±
0.06

Cirrhosis 2D
descriptor

0.82 ±
0.12

0.82 ±
0.05

0.82 ±
0.05

0.64 ±
0.1

0.64 ±
0.1

0.87 ±
0.05

0.87 ±
0.05

0.87 ±
0.03

0.75 ±
0.06

0.75 ±
0.06

0.79 0.91 0.89 0.65 0.89 7.76 0.75 ±
0.17

0.75 ±
0.12

0.76 ±
0.08

0.52 ±
0.16

0.52 ±
0.16

0.85 ±
0.08

0.89 ±
0.06

Atompair
FP

0.79 ±
0.15

0.83 ±
0.06

0.81 ±
0.08

0.62 ±
0.14

0.62 ±
0.14

0.83 ±
0.06

0.84 ±
0.06

0.83 ±
0.03

0.67 ±
0.06

0.67 ±
0.06

0.79 0.86 0.85 0.55 0.82 6.25 0.86 ±
0.15

0.86 ±
0.05

0.86 ±
0.08

0.72 ±
0.16

0.72 ±
0.16

0.88 ±
0.06

0.89 ±
0.06

Avalon
count FP

0.74 ±
0.12

0.8 ±
0.12

0.77 ±
0.1

0.54 ±
0.19

0.54 ±
0.19

0.9 ±
0.06

0.87 ±
0.07

0.89 ±
0.04

0.78 ±
0.07

0.78 ±
0.07

0.93 0.86 0.87 0.66 0.93 5.85 0.83 ±
0.08

0.84 ±
0.1

0.84 ±
0.06

0.68 ±
0.12

0.68 ±
0.12

0.85 ±
0.07

0.86 ±
0.06

Avalon FP 0.87 ±
0.05

0.87 ±
0.09

0.87 ±
0.03

0.75 ±
0.07

0.75 ±
0.07

0.86 ±
0.05

0.91 ±
0.05

0.89 ±
0.03

0.78 ±
0.06

0.78 ±
0.06

0.9 0.9 0.9 0.7 1 7.98 0.89 ±
0.1

0.83 ±
0.12

0.86 ±
0.06

0.72 ±
0.12

0.72 ±
0.12

0.89 ±
0.06

0.9 ±
0.05

Morgan
(lv2) FP

0.83 ±
0.09

0.86 ±
0.12

0.85 ±
0.06

0.68 ±
0.13

0.68 ±
0.13

0.89 ±
0.05

0.82 ±
0.06

0.85 ±
0.03

0.71 ±
0.06

0.71 ±
0.06

0.93 0.87 0.88 0.68 0.95 9.26 0.84 ±
0.11

0.83 ±
0.08

0.85 ±
0.04

0.68 ±
0.08

0.68 ±
0.08

0.85 ±
0.06

0.88 ±
0.06

Morgan
(lv3) FP

0.83 ±
0.06

0.85 ±
0.1

0.85 ±
0.06

0.69 ±
0.11

0.69 ±
0.11

0.87 ±
0.08

0.84 ±
0.06

0.85 ±
0.04

0.71 ±
0.08

0.71 ±
0.08

0.71 0.84 0.82 0.48 0.87 5.06 0.75 ±
0.19

0.93 ±
0.06

0.84 ±
0.07

0.7 ±
0.13

0.7 ±
0.13

0.85 ±
0.07

0.89 ±
0.06

Morgan
(lv4) FP

0.92 ±
0.12

0.81 ±
0.15

0.86 ±
0.06

0.74 ±
0.1

0.74 ±
0.1

0.84 ±
0.06

0.88 ±
0.05

0.86 ±
0.03

0.73 ±
0.06

0.73 ±
0.06

0.86 0.86 0.86 0.61 0.86 8.82 0.89 ±
0.07

0.86 ±
0.07

0.87 ±
0.03

0.75 ±
0.07

0.75 ±
0.07

0.88 ±
0.06

0.9 ±
0.06

Layer FP 0.9 ±
0.02

0.88 ±
0.09

0.89 ±
0.05

0.78 ±
0.09

0.78 ±
0.09

0.91 ±
0.06

0.86 ±
0.05

0.89 ±
0.03

0.78 ±
0.07

0.78 ±
0.07

0.79 0.83 0.82 0.51 0.92 4.85 0.89 ±
0.04

0.86 ±
0.1

0.87 ±
0.05

0.74 ±
0.11

0.74 ±
0.11

0.91 ±
0.06

0.9 ±
0.06

MACCS
FP

0.8 ±
0.08

0.94 ±
0.05

0.87 ±
0.06

0.75 ±
0.11

0.75 ±
0.11

0.86 ±
0.08

0.85 ±
0.08

0.86 ±
0.03

0.72 ±
0.06

0.72 ±
0.06

0.86 0.87 0.87 0.63 0.91 5.74 0.84 ±
0.09

0.88 ±
0.12

0.85 ±
0.07

0.7 ±
0.14

0.7 ±
0.14

0.87 ±
0.07

0.88 ±
0.08

Torsion FP 0.89 ±
0.06

0.82 ±
0.12

0.86 ±
0.08

0.72 ±
0.16

0.72 ±
0.16

0.86 ±
0.05

0.87 ±
0.05

0.86 ±
0.03

0.73 ±
0.05

0.73 ±
0.05

0.79 0.89 0.87 0.6 0.91 8.24 0.82 ±
0.09

0.83 ±
0.07

0.84 ±
0.07

0.66 ±
0.14

0.66 ±
0.14

0.86 ±
0.04

0.88 ±
0.05

Hepatitis 2D
descriptor

0.75 ±
0.11

0.84 ±
0.08

0.79 ±
0.07

0.59 ±
0.13

0.59 ±
0.13

0.79 ±
0.05

0.81 ±
0.04

0.8 ±
0.03

0.61 ±
0.05

0.61 ±
0.05

0.81 0.77 0.8 0.52 0.84 5.47 0.8 ±
0.11

0.78 ±
0.05

0.79 ±
0.07

0.58 ±
0.13

0.58 ±
0.13

0.85 ±
0.05

0.83 ±
0.05

Atompair
FP

0.87 ±
0.03

0.7 ±
0.08

0.79 ±
0.05

0.58 ±
0.08

0.58 ±
0.08

0.82 ±
0.04

0.82 ±
0.04

0.82 ±
0.03

0.64 ±
0.05

0.64 ±
0.05

0.82 0.89 0.84 0.63 0.88 6.57 0.8 ±
0.07

0.76 ±
0.12

0.77 ±
0.03

0.56 ±
0.06

0.56 ±
0.06

0.83 ±
0.06

0.84 ±
0.05

Avalon
count FP

0.76 ±
0.06

0.84 ±
0.07

0.79 ±
0.04

0.59 ±
0.08

0.59 ±
0.08

0.79 ±
0.05

0.84 ±
0.05

0.82 ±
0.03

0.63 ±
0.05

0.63 ±
0.05

0.92 0.81 0.89 0.71 0.92 9.64 0.75 ±
0.12

0.84 ±
0.08

0.8 ±
0.04

0.6 ±
0.08

0.6 ±
0.08

0.82 ±
0.04

0.85 ±
0.05

Avalon FP 0.82 ±
0.04

0.74 ±
0.17

0.79 ±
0.08

0.57 ±
0.18

0.57 ±
0.18

0.78 ±
0.06

0.77 ±
0.06

0.78 ±
0.03

0.56 ±
0.06

0.56 ±
0.06

0.81 0.77 0.8 0.52 0.84 6.24 0.71 ±
0.07

0.76 ±
0.07

0.73 ±
0.03

0.47 ±
0.05

0.47 ±
0.05

0.82 ±
0.06

0.81 ±
0.05

Morgan
(lv2) FP

0.82 ±
0.1

0.8 ±
0.07

0.8 ±
0.04

0.61 ±
0.07

0.61 ±
0.07

0.76 ±
0.07

0.82 ±
0.08

0.79 ±
0.03

0.58 ±
0.06

0.58 ±
0.06

0.85 0.92 0.86 0.69 0.92 6.45 0.76 ±
0.08

0.86 ±
0.07

0.81 ±
0.03

0.63 ±
0.07

0.63 ±
0.07

0.75 ±
0.05

0.86 ±
0.04

Morgan
(lv3) FP

0.71 ±
0.15

0.73 ±
0.18

0.71 ±
0.08

0.46 ±
0.17

0.46 ±
0.17

0.71 ±
0.08

0.75 ±
0.07

0.73 ±
0.03

0.47 ±
0.06

0.47 ±
0.06

0.74 0.73 0.74 0.41 0.76 4.93 0.73 ±
0.13

0.73 ±
0.1

0.73 ±
0.08

0.47 ±
0.16

0.47 ±
0.16

0.7 ±
0.06

0.82 ±
0.05

Morgan
(lv4) FP

0.74 ±
0.07

0.78 ±
0.04

0.76 ±
0.04

0.52 ±
0.07

0.52 ±
0.07

0.71 ±
0.04

0.84 ±
0.05

0.78 ±
0.02

0.56 ±
0.05

0.56 ±
0.05

0.81 0.73 0.79 0.49 0.83 5.52 0.76 ±
0.06

0.78 ±
0.07

0.77 ±
0.04

0.54 ±
0.08

0.54 ±
0.08

0.85 ±
0.05

0.84 ±
0.04

Layer FP 0.79 ±
0.04

0.69 ±
0.13

0.74 ±
0.07

0.48 ±
0.14

0.48 ±
0.14

0.79 ±
0.06

0.78 ±
0.06

0.79 ±
0.03

0.58 ±
0.05

0.58 ±
0.05

0.82 0.73 0.8 0.51 0.77 8.05 0.78 ±
0.03

0.73 ±
0.13

0.76 ±
0.06

0.52 ±
0.12

0.52 ±
0.12

0.79 ±
0.05

0.78 ±
0.05

MACCS
FP

0.76 ±
0.08

0.81 ±
0.1

0.79 ±
0.08

0.58 ±
0.15

0.58 ±
0.15

0.79 ±
0.06

0.83 ±
0.05

0.81 ±
0.03

0.63 ±
0.06

0.63 ±
0.06

0.82 0.73 0.8 0.51 0.82 7.42 0.79 ±
0.06

0.85 ±
0.05

0.82 ±
0.04

0.64 ±
0.08

0.64 ±
0.08

0.8 ±
0.05

0.87 ±
0.05

Torsion FP 0.72 ±
0.06

0.77 ±
0.08

0.75 ±
0.07

0.49 ±
0.14

0.49 ±
0.14

0.72 ±
0.05

0.82 ±
0.05

0.77 ±
0.03

0.55 ±
0.05

0.55 ±
0.05

0.75 0.85 0.77 0.52 0.85 4.4 0.72 ±
0.06

0.78 ±
0.05

0.75 ±
0.05

0.5 ±
0.09

0.5 ±
0.09

0.77 ±
0.05

0.82 ±
0.05

Steatosis 2D
descriptor

0.91 ±
0.09

0.8 ±
0.07

0.85 ±
0.04

0.71 ±
0.08

0.71 ±
0.08

0.89 ±
0.06

0.82 ±
0.05

0.86 ±
0.03

0.72 ±
0.07

0.72 ±
0.07

0.9 0.84 0.86 0.67 0.88 6.01 0.86 ±
0.1

0.82 ±
0.08

0.83 ±
0.04

0.67 ±
0.08

0.67 ±
0.08

0.84 ±
0.06

0.87 ±
0.05

Atompair
FP

0.82 ±
0.05

0.72 ±
0.03

0.77 ±
0.03

0.54 ±
0.05

0.54 ±
0.05

0.87 ±
0.06

0.79 ±
0.06

0.84 ±
0.03

0.68 ±
0.07

0.68 ±
0.07

0.85 0.75 0.77 0.52 0.86 3.91 0.83 ±
0.08

0.82 ±
0.11

0.84 ±
0.07

0.65 ±
0.14

0.65 ±
0.14

0.85 ±
0.06

0.88 ±
0.05

Avalon
count FP

0.78 ±
0.05

0.84 ±
0.11

0.81 ±
0.08

0.61 ±
0.16

0.61 ±
0.16

0.85 ±
0.06

0.85 ±
0.08

0.85 ±
0.04

0.7 ±
0.07

0.7 ±
0.07

0.9 0.84 0.86 0.67 0.91 8.13 0.83 ±
0.14

0.78 ±
0.14

0.79 ±
0.05

0.62 ±
0.07

0.62 ±
0.07

0.86 ±
0.06

0.78 ±
0.06

Avalon FP 0.92 ±
0.06

0.72 ±
0.17

0.83 ±
0.1

0.66 ±
0.21

0.66 ±
0.21

0.92 ±
0.06

0.74 ±
0.06

0.84 ±
0.03

0.68 ±
0.06

0.68 ±
0.06

0.95 0.78 0.82 0.64 0.9 4.23 0.86 ±
0.06

0.83 ±
0.05

0.84 ±
0.04

0.69 ±
0.07

0.69 ±
0.07

0.86 ±
0.06

0.82 ±
0.07

Morgan
(lv2) FP

0.71 ±
0.15

0.9 ±
0.11

0.79 ±
0.13

0.6 ±
0.25

0.6 ±
0.25

0.73 ±
0.06

0.83 ±
0.08

0.78 ±
0.04

0.57 ±
0.07

0.57 ±
0.07

0.75 0.87 0.84 0.6 0.82 10.84 0.77 ±
0.09

0.83 ±
0.07

0.79 ±
0.04

0.6 ±
0.07

0.6 ±
0.07

0.76 ±
0.05

0.82 ±
0.07

Morgan
(lv3) FP

0.76 ±
0.05

0.8 ±
0.11

0.78 ±
0.03

0.56 ±
0.07

0.56 ±
0.07

0.8 ±
0.06

0.73 ±
0.07

0.77 ±
0.03

0.53 ±
0.06

0.53 ±
0.06

0.85 0.67 0.71 0.44 0.87 5.74 0.75 ±
0.13

0.74 ±
0.08

0.76 ±
0.09

0.5 ±
0.17

0.5 ±
0.17

0.82 ±
0.05

0.73 ±
0.09

Morgan
(lv4) FP

0.76 ±
0.11

0.76 ±
0.12

0.76 ±
0.08

0.52 ±
0.17

0.52 ±
0.17

0.79 ±
0.07

0.77 ±
0.08

0.78 ±
0.04

0.56 ±
0.08

0.56 ±
0.08

0.85 0.84 0.84 0.63 0.84 5.46 0.74 ±
0.09

0.87 ±
0.07

0.79 ±
0.05

0.6 ±
0.07

0.6 ±
0.07

0.8 ±
0.04

0.82 ±
0.05

Layer FP 0.88 ±
0.1

0.78 ±
0.15

0.83 ±
0.09

0.67 ±
0.16

0.67 ±
0.16

0.92 ±
0.04

0.72 ±
0.07

0.83 ±
0.04

0.66 ±
0.07

0.66 ±
0.07

0.8 0.79 0.8 0.53 0.73 4.11 0.85 ±
0.07

0.82 ±
0.1

0.83 ±
0.07

0.66 ±
0.14

0.66 ±
0.14

0.91 ±
0.05

0.83 ±
0.06

MACCS
FP

0.81 ±
0.14

0.82 ±
0.12

0.82 ±
0.09

0.64 ±
0.17

0.64 ±
0.17

0.88 ±
0.05

0.81 ±
0.06

0.85 ±
0.04

0.7 ±
0.08

0.7 ±
0.08

0.85 0.78 0.8 0.56 0.85 5.92 0.81 ±
0.1

0.83 ±
0.13

0.83 ±
0.09

0.64 ±
0.2

0.64 ±
0.2

0.89 ±
0.05

0.88 ±
0.04

Torsion FP 0.8 ±
0.08

0.83 ±
0.11

0.82 ±
0.04

0.64 ±
0.08

0.64 ±
0.08

0.81 ±
0.07

0.82 ±
0.07

0.81 ±
0.03

0.63 ±
0.05

0.63 ±
0.05

0.95 0.81 0.84 0.67 0.91 6.99 0.8 ±
0.14

0.89 ±
0.09

0.84 ±
0.05

0.7 ±
0.08

0.7 ±
0.08

0.86 ±
0.05

0.9 ±
0.05

*AD analysis was failed in cirrhosis data set with torsion FP since the descriptor matrix was a singular matrix. Bolded and italic texts highlighted best performance among mo
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feature space generated from drug metabolite sets (Figures S15–
S17). In AD analysis of the drug metabolite set, models
developed with Avalon FP (Figure S34), layer FP (Figure S38,
and MACCS FP (Figure S39) showed that no data points
exceeded the warning leverage.

Based on the prediction performance in the external test set,
randomization test results, and AD analysis, the best models for
drug metabolites were selected. AD of the models was considered
more important than accuracy in model selection since models
with narrow AD cannot be applied for prediction of
heterogeneous structures. In cases where accuracy in the
external test was equal, MCC was used to evaluate model
performance. In DICH, the layer FP model (RF) was best
(external test ACC: 86%, Z-score: 5.64, AD: Figure S38A). In
DIC, the Avalon FP model (SVM) was best (external test ACC:
88%, Z-score: 7.98, AD: Figure S34B). In DIH, the MACCS FP
model (RF) was best (external test ACC: 86%, Z-score: 10.85,
AD: Figure S39C). In DIS, the Avalon FP model (RF) was best
(external test ACC: 83%, Z-score: 7.42, AD: Figure S34D).

Privileged Structure Analysis for Drug-
Induced Liver Injury
Privileged substructures, which were more frequent in DILI-
positive sets, were found using Morgan FP in level 2 based on the
number of substructures and their frequency as calculated with
equation 10. Privileged substructures for drugs are listed in
Tables S2–S5 and for drug metabolites in Tables S6–S9.
Throughout every data set, including drugs and drug
metabolites, the most commonly selected privileged
substructure's SMARTS pattern was [#6]-[#6](-[#6])-[#6]-[#6]
(-[#6])-[#6] whose frequency (F) was relatively high for DILI-
positive in all data sets except DIC of the drug data set. Privileged
substructures that are sensitive to drug metabolism were also
analyzed by comparing variations of the number of substructures
between DILI-positive and DILI-negative drugs and drug
metabolites (Tables S10–S13). Two privileged structures, [#6]-
[#6]-1=[#6]-[#6]=[#6]-[#6]=[#6]-1 and [#8]-c(:c): in simplified
molecular-input line-entry system arbitrary target specification
(SMARTS) pattern, were increased in DILI-positive drug
metabolite sets compared to that of drug sets while the number
of substructures, [#6]-[#7] in SMARTS pattern, was relatively
Frontiers in Pharmacology | www.frontiersin.org 12
decreased in DILI-positive drug metabolite sets compared to
drug sets and slightly increased in DILI-negative drug
metabolites sets compared drug sets in all data sets.
Substructures of the SMARTS patterns are available in Table 4.
In DILI, drugs often damage hepatocytes through their reactive
metabolites; therefore, privileged substructures were derived by
comparing DILI-positive and DILI-negative sets and also
comparing drug and drug metabolite data sets to consider
metabolic activation of compounds. Even though privileged
substructures were suggested based on cholestasis, cirrhosis,
hepatitis, and steatosis data for drugs and drug metabolites,
SAs based on the privileged substructures suggested in this
work may have limited predictability for DILI since the
substructures were obtained from small data sets, and
uncertainty in drug metabolite labeling may introduce a certain
degree of structural noise in the analysis. These substructures in
Tables S1–S12may still need further exploration to confirm their
predictability on DILI in SAs.
CONCLUSION

In the current study, binary classification models were developed
to predict four types of DILI; cholestasis, cirrhosis, hepatitis, and
steatosis. 2D fingerprints and molecular descriptors were
calculated from drugs and their metabolite structures to find
significant structural features from both chemical spaces since
DILI is caused by drugs or their reactive metabolites. Due to
uncertainty in DILI labeling, we curated the DILI label on drugs
by integrating DILIrank labels and post-market reports on drugs.
Drug metabolites were labeled according to the label of their
parent drugs based on the assumption that drug metabolites
produced from DILI-positive drugs also caused DILI and drug
metabolites from DILI-negative drugs did not. Models were
developed and analyzed according to OECD guidelines for
QSAR validation. Sufficient performances were observed from
the models in internal and external validation results. In
particular, improved performance in models built with drug
metabolite sets implied that consideration of drug metabolism
was significant in DILI prediction. Privileged substructure
analysis identified frequent substructures in DILI-positive sets
TABLE 4 | Commonly increased and decreased substructures due to drug metabolism in all data sets.

Structure VN, DICH VF, DICH VN, DIC VF, DIC VN, DIH VF, DIH VN, DIS VF, DIS Daylight SMARTS

Increased in DILI-positive drug metabolites compared to DILI-positive drugs

16 0.392 17 0.347 39 0.203 29 0.309 [#6]-[#6]-1=[#6]-[#6]=[#6]-[#6]=[#6]-1

20 0.626 17 0.585 35 0.371 26 0.781 [#8]-c(:c):c

Decreased in DILI-positive drug metabolites compared to DILI-positive drugs

-11 -0.653 -10 -0.83 -22 -0.431 -7 -0.514 [#6]-[#7]
Feb
*VN, variation of the number of fragments in DILI-positive. It is calculated by substracting the number of fragment in DILI-positive drug sets from that in DILI-positive drug metabolite data
sets.
*VF, variation of the frequency of fragments in DILI-positive. It is calculated by substracting the frequency of fragment in DILI-positive drug sets from that in DILI-positive drug metabolite data
sets.
*DICH, drug-induced cholestasis; DIC, drug-induced cirrhosis; DIH, drug-induced hepatitis; DIS, drug-induced steatosis.
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and drug metabolite sets that could be responsible for DILI
induction or metabolic activation of drugs.
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